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Abstract
Bandit and reinforcement learning (RL) problems
can often be framed as optimization problems
where the goal is to maximize average perfor-
mance while having access only to stochastic esti-
mates of the true gradient. Traditionally, stochas-
tic optimization theory predicts that learning dy-
namics are governed by the curvature of the loss
function and the noise of the gradient estimates.
In this paper we demonstrate that the standard
view is too limited for bandit and RL problems.
To allow our analysis to be interpreted in light of
multi-step MDPs, we focus on techniques derived
from stochastic optimization principles (e.g., nat-
ural policy gradient and EXP3) and we show that
some standard assumptions from optimization the-
ory are violated in these problems. We present
theoretical results showing that, at least for bandit
problems, curvature and noise are not sufficient
to explain the learning dynamics and that seem-
ingly innocuous choices like the baseline can de-
termine whether an algorithm converges. These
theoretical findings match our empirical evalua-
tion, which we extend to multi-state MDPs.

1. Introduction
In the standard multi-arm bandit setting (Robbins, 1952),
an agent needs to choose, at each timestep t, an arm
at ∈ {1, ..., n} to play, receiving a potentially stochastic
reward rt with mean µat

. The goal of the agent is usually to
maximize the total sum of rewards,

�T
i=1 ri, or to maximize

the average performance at time T , Ei∼πµi with π being
the probability of the agent of drawing each arm (Bubeck
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& Cesa-Bianchi, 2012). While the former measure is often
used in the context of bandits,1 Ei∼πµi is more common in
the context of Markov Decision Processes (MDPs), which
have multi-arm bandits as a special case.

In this paper we focus on techniques derived from stochastic
optimization principles, such as EXP3 (Auer et al., 2002;
Seldin et al., 2013). In particular, we study policy gradient
methods, a family of algorithms useful in the more general
MDP setting which have seen empirical success in recent
times (Schulman et al., 2017).

We analyze the problem of learning to maximize the average
reward, J , by gradient ascent:

θ∗ = argmax
θ

J(θ) = argmax
θ

�

a

πθ(a)µa , (1)

with µa being the average reward of arm a. In this case,
we are mainly interested in outputting an effective policy
at the end of the optimization process, without explicitly
considering the performance of intermediary policies.

Optimization theory predicts that the convergence speed of
stochastic gradient methods will be affected by the variance
of the gradient estimates and by the geometry of the func-
tion J , represented by its curvature. Roughly speaking, the
geometry dictates how effective true gradient ascent is at op-
timizing J(θ) while the variance can be viewed as a penalty,
capturing how much slower the optimization process is by
using noisy versions of this true gradient. More concretely,
doing one gradient step with stepsize α, using a stochastic
estimate gt of the gradient, leads to (Bottou et al., 2018):

E[J(θt+1)]− J(θt) ≥ (α− Lα2

2 )�E[gt]�22 − Lα2

2 Var[gt],

when J is L-smooth, i.e. its gradients are L-Lipschitz.

As large variance has been identified as an issue for policy
gradient (PG) methods, many works have focused on reduc-
ing the noise of the updates. One common technique is the
use of control variates (Greensmith et al., 2004; Hofmann
et al., 2015), referred to as baselines in the context of RL.
These baselines b are subtracted from the observed returns
to obtain shifted returns, r(ai)− b, and do not change the

1The objective is usually presented as regret minimization.
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expectation of the gradient. In MDPs, they are typically
state-dependent. While the value function is a common
choice, previous work showed that the minimum-variance
baseline for the REINFORCE (Williams, 1992) estimator
is different and involves the norm of the gradient (Peters &
Schaal, 2008). Reducing variance has been the main moti-
vation for many previous works on baselines (e.g., Gu et al.,
2016; Liu et al., 2017; Grathwohl et al., 2017; Wu et al.,
2018; Cheng et al., 2020), but the influence of baselines on
other aspects of the optimization process has hardly been
studied. We take a deeper look at baselines and their effects
on optimization.

CONTRIBUTIONS

We show that baselines can impact the optimization process
beyond variance reduction and lead to qualitatively different
learning curves, even when the variance of the gradients
is the same. For instance, given two baselines with the
same variance, the more negative baseline promotes com-
mittal behaviour where a policy quickly tends towards a
deterministic one, while the more positive baseline leads to
non-committal behaviour, where the policy retains higher
entropy for a longer period.

Furthermore, we show that the choice of baseline can
even impact the convergence of natural policy gradient
(NPG), something variance cannot explain. In particular,
we construct a three-armed bandit where using the base-
line minimizing the variance can lead to convergence to a
deterministic, sub-optimal policy for any positive stepsize,
while another baseline, with larger variance, guarantees
convergence to the optimal policy. As such a behaviour is
impossible under the standard assumptions in optimization,
this result shows how these assumptions may be violated in
practice. It also provides a counterexample to the conver-
gence of NPG algorithms in general, a popular variant with
much faster convergence rates than vanilla PG when using
the true gradient in tabular MDPs (Agarwal et al., 2019).

Further, we identify on-policy sampling as a key factor
to these convergence issues as it induces a vicious cycle
where making bad updates can lead to worse policies, in
turn leading to worse updates. A natural solution is to
break the dependency between the sampling distribution
and the updates through off-policy sampling. We show
that ensuring all actions are sampled with sufficiently large
probability at each step is enough to guarantee convergence
in probability. Note that this form of convergence is stronger
than convergence of the expected iterates, a more common
type of result (e.g., Mei et al., 2020b; Agarwal et al., 2019).

We also perform an empirical evaluation on multi-step
MDPs, showing that baselines have a similar impact in that
setting. We observe a significant impact on the empirical
performance of agents when using two different sets of

baselines yielding the same variance, once again suggesting
that learning dynamics in MDPs are governed by more than
the curvature of the loss and the variance of the gradients.

2. Baselines, learning dynamics & exploration
The problem defined in Eq. 1 can be solved by gradient
ascent. Given access only to samples, the true gradient
cannot generally be computed and the true update is replaced
with a stochastic one, resulting in the following update:

θt+1 = θt +
α

N

�

i

r(ai)∇θ log πθ(ai) , (2)

where ai are actions drawn according to the agent’s current
policy πθ, α is the stepsize, and N , which can be 1, is the
number of samples used to compute the update. To reduce
the variance of this estimate without introducing bias, we
can introduce a baseline b, resulting in the gradient estimate
(r(ai)− b)∇θ log πθ(ai).

While the choice of baseline is known to affect the variance,
we show that baselines can also lead to qualitatively differ-
ent behaviour of the optimization process, even when the
variance is the same. This difference cannot be explained
by the expectation or variance, quantities which govern the
usual bounds for convergence rates (Bottou et al., 2018).

2.1. Committal and non-committal behaviours

To provide a complete picture of the optimization process,
we analyze the evolution of the policy during optimization.
We start in a simple setting, a deterministic three-armed ban-
dit, where it is easier to produce informative visualizations.

To eliminate variance as a potential confounding factor, we
consider different baselines with the same variance. We start
by computing the baseline leading to the minimum-variance
of the gradients for the algorithm we use. For vanilla policy
gradient, we have b∗θ =

E[r(ai)�∇ log πθ(ai)�2
2]

E[�∇ log πθ(ai)�2
2]

(Peters &
Schaal, 2008; Greensmith et al., 2004) (see Appendix D.1
for details and the NPG version). Note that this baseline
depends on the current policy and changes throughout the
optimization. As the variance is a quadratic function of the
baseline, the two baselines b+θ = b∗θ + � and b−θ = b∗θ − �
result in gradients with the same variance (see Appendix
D.4 for details). Thus, we use these two perturbed baselines
to demonstrate that there are phenomena in the optimization
process that variance cannot explain.

Fig. 1 presents fifteen learning curves on the probability
simplex representing the space of possible policies for the
three-arm bandit, when using NPG and a softmax parame-
terization. We choose � = 1/2 to obtain two baselines with
the same variance: b+θ = b∗θ + 1/2 and b−θ = b∗θ − 1/2.

Inspecting the plots, the learning curves for � = −1/2 and
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(a) b−θ = b∗θ − 1/2 (b) bθ = b∗θ (c) b+θ = b∗θ + 1/2 (d) bθ = V πθ

Figure 1: We plot 15 different trajectories of natural policy gradient with softmax parameterization, when using various
baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0) and stepsize α = 0.025 and θ0 = (0, 3, 5). The black dot is the
initial policy and colors represent time, from purple to yellow. The dashed black line is the trajectory when following the true
gradient (which is unaffected by the baseline). Different values of � denote different perturbations to the minimum-variance
baseline. We see some cases of convergence to a suboptimal policy for both � = −1/2 and � = 0. This does not happen for
the larger baseline � = 1/2 or the value function as baseline. Figure made with Ternary (Harper & Weinstein, 2015).

� = 1/2 are qualitatively different, even though the gradient
estimates have the same variance. For � = −1/2, the policies
quickly reach a deterministic policy (i.e., a neighborhood
of a corner of the probability simplex), which can be sub-
optimal, as indicated by the curves ending up at the policy
choosing action 2. On the other hand, for � = 1/2, every
learning curve ends up at the optimal policy, although the
convergence might be slower. The learning curves also do
not deviate much from the curve for the true gradient. Again,
these differences cannot be explained by the variance since
the baselines result in identical variances.

Additionally, for bθ = b∗θ , the learning curves spread out fur-
ther. Compared to � = 1/2, some get closer to the top corner
of the simplex, leading to convergence to a suboptimal so-
lution, suggesting that the minimum-variance baseline may
be worse than other, larger baselines. In the next section,
we theoretically substantiate this and show that, for NPG,
it is possible to converge to a suboptimal policy with the
minimum-variance baseline; but there are larger baselines
that guarantee convergence to an optimal policy.

We look at the update rules to explain these different be-
haviours. When using a baseline b with NPG, sampling ai
results in the update

θt+1 = θt + α[r(ai)− b]F−1
θ ∇θ log πθ(ai)

= θt + α
r(ai)− b

πθ(ai)
1ai

+ αλe

where F−1
θ = Ea∼π[∇ log πθ(a)∇ log πθ(a)

�], 1ai
is a

one-hot vector with 1 at index i, and λe is a vector contain-
ing λ in each entry. The second line follows for the softmax
policy (see Appendix D.2) and λ is arbitrary since shifting
θ by a constant does not change the policy.

Thus, supposing we sample action ai, if r(ai)−b is positive,

which happens more often when the baseline b is small
(more negative), the update rule will increase the probability
πθ(ai). This leads to an increase in the probability of taking
the actions the agent took before, regardless of their quality
(see Fig.1a for � = −1/2). Because the agent is likely
to choose the same actions again, we call this committal
behaviour.

While a smaller baseline leads to committal behaviour, a
larger (more positive) baseline makes the agent second-
guess itself. If r(ai)− b is negative, which happens more
often when b is large, the parameter update decreases the
probability πθ(ai) of the sampled action ai, reducing the
probability the agent will re-take the actions it just took,
while increasing the probability of other actions. This might
slow down convergence but it also makes it harder for the
agent to get stuck. This is reflected in the � = 1/2 case
(Fig.1c), as all the learning curves end up at the optimal
policy. We call this non-committal behaviour.

While the previous experiments used perturbed variants of
the minimum-variance baseline to control for the variance,
this baseline would usually be infeasible to compute in more
complex MDPs. Instead, a more typical choice of baseline
would be the value function (Sutton & Barto, 2018, Ch. 13),
which we evaluate in Fig. 1d. Choosing the value function
as a baseline generated trajectories converging to the op-
timal policy, even though their convergence may be slow,
despite it not being the minimum variance baseline. The
reason becomes clearer when we write the value function as
V π = b∗θ − Cov(r,�∇ log π�2)

E[�∇ log π�2] (see Appendix D.3). The term
Cov(r, �∇ log π�2) typically becomes negative as the gra-
dient becomes smaller on actions with high rewards during
the optimization process, leading to the value function being
a noncommittal baseline, justifying a choice often made by
practitioners.
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Additional empirical results can be found in Appendix A.1
for natural policy gradient and vanilla policy gradient for
the softmax parameterization. Furthermore, we explore the
use of different parameterizations: First, we testprojected
stochastic gradient ascent and directly optimizing the policy
probabilities πθ(a). Next, we try the escort transform (Mei
et al., 2020a), which was designed to improve the curvature
of the objective. We find qualitatively similar results in all
cases; baselines can induce committal and non-committal
behaviour.

3. Convergence to suboptimal policies with
natural policy gradient (NPG)

We empirically showed that PG algorithms can reach sub-
optimal policies and that the choice of baseline can affect
the likelihood of this occurring. In this section, we provide
theoretical results proving that it is indeed possible to con-
verge to a suboptimal policy when using NPG. We discuss
how this finding fits with existing convergence results and
why standard assumptions are not satisfied in this setting.

3.1. A simple example

Standard convergence results assume access to the true gra-
dient (e.g., Agarwal et al., 2019) or, in the stochastic case, as-
sume that the variance of the updates is uniformly bounded
for all parameter values (e.g., Bottou et al., 2018). These
assumptions are in fact quite strong and are violated in a sim-
ple two-arm bandit problem with fixed rewards. Pulling the
optimal arm gives a reward of r1 = +1, while pulling the
suboptimal arm leads to a reward of r0 = 0. We use the sig-
moid parameterization and call pt = σ(θt) the probability
of sampling the optimal arm at time t.

Our stochastic estimator of the natural gradient is

gt =

�
1−b
pt

,with probability pt
b

1−pt
,with probability 1− pt,

where b is a baseline that does not depend on the action
sampled at time t but may depend on θt. By computing the
variance of the updates, Var[gt] =

(1−pt−b)2

pt(1−pt)
, we notice it

is unbounded when the policy becomes deterministic, i.e.
pt → 0 or pt → 1, violating the assumption of uniformly
bounded variance, unless b = 1− pt, which is the optimal
baseline. Note that using vanilla (non-natural) PG would,
on the contrary, yield a bounded variance. In fact, we prove
a convergence result in its favour in Appendix B (Prop. 4).

For NPG, the proposition below establishes potential con-
vergence to a suboptimal arm and we demonstrate this em-
pirically in Fig. 2.

Proposition 1. Consider a two-arm bandit with rewards
1 and 0 for the optimal and suboptimal arms, respectively.

(a) α = 0.05 (b) α = 0.1 (c) α = 0.15

Figure 2: Learning curves for 100 runs of 200 steps, on the
two-arm bandit, with baseline b = −1 for three different
stepsizes α. Blue: Curves converging to the optimal policy.
Red: Curves converging to a suboptimal policy. Black: Avg.
performance. The number of runs that converged to the
suboptimal solution are 5%, 14% and 22% for the three α’s.
Larger α’s are more prone to getting stuck at a suboptimal
solution but settle on a deterministic policy more quickly.

Suppose we use natural policy gradient starting from θ0,
with a fixed baseline b < 0, and fixed stepsize α > 0. If
the policy samples the optimal action with probability σ(θ),
then the probability of picking the suboptimal action forever
and having θt go to −∞ is strictly positive. Additionally, if
θ0 ≤ 0, we have

P (suboptimal action forever) ≥ (1−eθ0)(1−eθ0+αb)−
1
αb .

Proof. All the proofs may be found in the appendix.

The updates provide some intuition as to why there is con-
vergence to suboptimal policies. The issue is the com-
mittal nature of the baseline. Choosing an action leads
to an increase of that action’s probability, even if it is
a poor choice. Choosing the suboptimal arm leads to
a decrease in θ by αb

1−pt
, thus increasing the probabil-

ity the same arm is drawn again and further decreasing
θ. By checking the probability of this occurring forever,
P (suboptimal arm forever) =

�∞
t=1(1− pt), we show that

1−pt converges quickly enough to 1 that the infinite product
is nonzero, showing it is possible to get trapped choosing
the wrong arm forever (Prop. 1), and θt → −∞ as t grows.

This issue could be solved by picking a baseline with lower
variance. For instance, the minimum-variance baseline b =
1 − pt leads to 0 variance and both possible updates are
equal to +α, guaranteeing that θ → +∞, thus convergence.
In fact, any baseline b ∈ (0, 1) suffices since both updates
are positive and greater than αmin(b, 1− b). However, this
is not always the case, as we show in the next section.

To decouple the impact of the variance with that of the com-
mittal nature of the baseline, Prop. 2 analyzes the learning
dynamics in the two-arm bandit case for perturbations of
the optimal baseline, i.e. we study baselines of the form
b = b∗ + � and show how �, and particularly its sign, affects
learning. Note that, because the variance is a quadratic func-
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tion with its minimum in b∗, both +� and −� have the same
variance. Our findings can be summarized as follows:

Proposition 2. For the two-armed bandit defined in Prop. 1,
when using a perturbed min-variance baseline b = b∗ + �,
the value of � determines the learning dynamics as follows:

• For � < −1, there is a positive probability of converg-
ing to the suboptimal arm.

• For � ∈ (−1, 1), we have convergence in probability
to the optimal policy.

• For � ≥ 1, the supremum of the iterates goes to +∞ in
probability.

While the proofs can be found in Appendix B.2, we provide
here some intuition behind these results.

For � < −1, we reuse the same argument as for b < 0
in Prop. 1. The probability of drawing the correct arm
can decrease quickly enough to lead to convergence to the
suboptimal arm.

For � ∈ (−1, 1), the probability of drawing the correct arm
cannot decrease too fast. Hence, although the updates, as
well as the variance of the gradient estimate, are potentially
unbounded, we still have convergence to the optimal solu-
tion in probability.

Finally, for � ≥ 1, we can reuse an intermediate argument
from the � ∈ (0, 1) case to argue that for any threshold C,
the parameter will eventually exceed that threshold. For
� ∈ (0, 1), once a certain threshold is crossed, the policy is
guaranteed to improve at each step. However, with a large
positive perturbation, updates are larger and we lose this
additional guarantee, leading to the weaker result.

We want to emphasize that not only we get provably differ-
ent dynamics for � < −1 and � ≥ 1, showing the importance
of the sign of the perturbation, but that there also is a sharp
transition around |�| = 1, which cannot be captured solely
by the variance.

The above analysis was specific to these updates. To predict
committal vs. non-committal behaviour more generally, it
may be possible to utilize higher order moments or other
distributional properties, even when the mean and variance
is the same. Unfortunately, it is difficult to utilize higher-
moment information in theoretical bounds in a general man-
ner as Markov-type inequalities do not take into account
the sign of the higher moment, which we think is where the
committal vs. non-committal distinction would appear.

3.2. Reducing variance with baselines can be
detrimental

As we saw with the two-armed bandit, the direction of
the updates is important in assessing convergence. More
specifically, problems can arise when the choice of baseline

induces committal behaviour. We now show a different
bandit setting where committal behaviour happens even
when using the minimum-variance baseline, thus leading
to convergence to a suboptimal policy. Furthermore, we
design a better baseline which ensures all updates move
the parameters towards the optimal policy. This cements
the idea that the quality of parameter updates must not be
analyzed in terms of variance but rather in terms of the
probability of going in a bad direction, since a baseline
that induces higher variance leads to convergence while
the minimum-variance baseline does not. The following
theorem summarizes this.
Theorem 1. There exists a three-arm bandit where using
the stochastic natural gradient on a softmax-parameterized
policy with the minimum-variance baseline can lead to con-
vergence to a suboptimal policy with probability ρ > 0, and
there is a different baseline (with larger variance) which re-
sults in convergence to the optimal policy with probability 1.

The bandit used in this theorem is the one we used for the
experiments depicted in Fig. 1. The key is that the minimum-
variance baseline can be lower than the second best reward;
so pulling the second arm will increase its probability and
induce committal behaviour. This can cause the agent to
prematurely commit to the second arm and converge to the
wrong policy. On the other hand, using any baseline whose
value is between the optimal reward and the second best
reward, which we term a gap baseline, will always increase
the probability of the optimal action at every step, no matter
which arm is drawn. Since the updates are sufficiently large
at every step, this is enough to ensure convergence with
probability 1, despite the higher variance compared to the
minimum variance baseline. The key is that whether a
baseline underestimates or overestimates the second best
reward can affect the algorithm convergence and this is more
critical than the resulting variance of the gradient estimates.

As such, more than lower variance, good baselines are those
that can assign positive effective returns to the good trajec-
tories and negative effective returns to the others. These
results cast doubt on whether finding baselines which mini-
mize variance is a meaningful goal to pursue. The baseline
can affect optimization in subtle ways, beyond variance, and
further study is needed to identify the true causes of some
improved empirical results observed in previous works. This
importance of the sign of the returns, rather than their exact
value, echoes with the cross-entropy method (De Boer et al.,
2005), which maximizes the probability of the trajectories
with the largest returns, regardless of their actual value.

4. Off-policy sampling
So far, we have seen that committal behaviour can be prob-
lematic as it can cause convergence to a suboptimal policy.
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This can be especially problematic when the agent follows a
near-deterministic policy as it is unlikely to receive different
samples which would move the policy away from the closest
deterministic one, regardless of the quality of that policy.

Up to this point, we assumed that actions were sampled
according to the current policy, a setting known as on-policy.
This setting couples the updates and the policy and is a root
cause of the committal behaviour: the update at the current
step changes the policy, which affects the distribution of
rewards obtained and hence the next updates. However,
we know from the optimization literature that bounding the
variance of the updates will lead to convergence (Bottou
et al., 2018). As the variance becomes unbounded when
the probability of drawing some actions goes to 0, a natural
solution to avoid these issues is to sample actions from a
behaviour policy that selects every action with sufficiently
high probability. Such a policy would make it impossible to
choose the same, suboptimal action forever.

4.1. Convergence guarantees with IS

Because the behaviour policy changed, we introduce impor-
tance sampling (IS) corrections to preserve the unbiased up-
dates (Kahn & Harris, 1951; Precup, 2000). These changes
are sufficient to guarantee convergence for any baseline:

Proposition 3. Consider a n-armed bandit with stochas-
tic rewards with bounded support and a unique optimal
action. The behaviour policy µt selects action i with prob-
ability µt(i) and let �t = mini µt(i). When using NPG
with importance sampling and a bounded baseline b, if
limt→∞ t �2t = +∞ , then the target policy πt converges to
the optimal policy in probability.

Proof. (Sketch) Using Azuma-Hoeffding’s inequality, we
can show that for well chosen constants Δi, δ and C > 0 ,

P
�
θ1t ≥ θ10 + αδΔ1t

�
≥ 1− exp

�
−δ2Δ2

1

2C2
t�2t

�

where θ1 is the parameter associated to the optimal arm.
Thus if limt→∞ t�2t = +∞, the RHS goes to 1. In a similar
manner, we can upper bound P

�
θit ≥ θi0 + αδΔit

�
for all

suboptimal arms, and applying an union bound, we get the
desired result.

The condition on µt imposes a cap on how fast the behaviour
policy can become deterministic: no faster than t−1/2. Intu-
itively, this ensures each action is sampled sufficiently often
and prevents premature convergence to a suboptimal policy.
The condition is satisfied for any sequence of behaviour
policies which assign at least �t probability to each action
at each step, such as �-greedy policies. It also holds if �t
decreases over time at a sufficiently slow rate. By choosing
as behaviour policy µ a linear interpolation between π and

(a) b = 0 / IS. (b) b = 0 / b∗. (c) b∗ / IS.

Figure 3: Comparison between the variance of different
methods on a 3-arm bandit. Each plot depicts the log of the
ratio between the variance of two approaches. For example,
Fig. (a) depicts log Var[gb=0]

Var[gIS]
, the log of the ratio between the

variance of the gradients of PG without a baseline and PG
with IS. The triangle represents the probability simplex with
each corner representing a deterministic policy on a specific
arm. The method written in blue (resp. red) in each figure
has lower variance in blue (resp. red) regions of the simplex.
The sampling policy µ, used in the PG method with IS, is a
linear interpolation between π and the uniform distribution,
µ(a) = 1

2π(a) +
1
6 . Note that this is not the min. variance

sampling distribution and it leads to higher variance than
PG without a baseline in some parts of the simplex.

the uniform policy, µ(a) = (1 − γ)π(a) + γ
K , γ ∈ (0, 1],

where K is the number of arms, we recover the classic
EXP3 algorithm (Auer et al., 2002; Seldin et al., 2012).

We can also confirm that this condition is not satisfied for
the simple example we presented when discussing conver-
gence to suboptimal policies. There, pt could decrease
exponentially fast since the tails of the sigmoid function
decay exponentially and the parameters move by at least a
constant at every step. In this case, �t = Ω(e−t), resulting
in limt→∞ te−2t = 0, so Proposition 3 does not apply.

4.2. Importance sampling, baselines & variance

As we have seen, using a separate behaviour policy that
samples all actions sufficiently often may lead to stronger
convergence guarantees, even if it increases the variance of
the gradient estimates in most of the space, as what matters
is what happens in the high variance regions, which are
usually close to the boundaries. Fig. 3 shows the ratios of
gradient variances between on-policy PG without baseline,
on-policy PG with the minimum variance baseline, and
off-policy PG using importance sampling (IS) where the
sampling distribution is µ(a) = 1

2π(a) +
1
6 , i.e. a mixture

of the current policy π and the uniform distribution. While
using the minimum variance baseline decreases the variance
on the entire space compared to not using a baseline, IS
actually increases the variance when the current policy is
close to uniform. However, IS does a much better job at
reducing the variance close to the boundaries of the simplex,
where it actually matters to guarantee convergence.
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This suggests that convergence of PG methods is not so
much governed by the variance of the gradient estimates in
general, but by the variance in the worst regions, usually
near the boundary. While baselines can reduce the variance,
they generally cannot prevent the variance in those regions
from exploding, leading to the policy getting stuck. Thus,
good baselines are not the ones reducing the variance across
the space but rather those that can prevent the learning from
reaching these regions altogether. Large values of b, such
that r(ai)− b is negative for most actions, achieve precisely
that. On the other hand, due to the increased flexibility
of sampling distributions, IS can limit the nefariousness of
these critical regions, offering better convergence guarantees
despite not reducing variance everywhere.

Importantly, although IS is usually used in RL to correct for
the distribution of past samples (e.g., Munos et al., 2016),
we advocate here for expanding the research on designing
appropriate sampling distributions as done by Hanna et al.
(2017; 2018) and Parmas & Sugiyama (2019). This line of
work has a long history in statistics (c.f., Liu, 2008).

4.3. Other mitigating strategies

We conclude this section by discussing alternative strategies
to mitigate the convergence issues. While they might be
effective, and some are indeed used in practice, they are not
without pitfalls.

First, one could consider reducing the stepsizes, with the
hope that the policy would not converge as quickly towards a
suboptimal deterministic policy and would eventually leave
that bad region. Indeed, if we are to use vanilla PG in the
two-arm bandit example, instead of NPG, this effectively
reduces the stepsize by a factor of σ(θ)(1−σ(θ)) (the Fisher
information). In this case, we are able to show convergence
in probability to the optimal policy. See Proposition 4 in
Appendix B.

Empirically, we find that, when using vanilla PG, the policy
may still remain stuck near a suboptimal policy when using
a negative baseline, similar to Fig. 2. While the previous
proposition guarantees convergence eventually, the rate may
be very slow, which remains problematic in practice. There
is theoretical evidence that following even the true vanilla
PG may result in slow convergence (Schaul et al., 2019),
suggesting that the problem is not necessarily due to noise.

An alternative solution would be to add entropy regular-
ization to the objective. By doing so, the policy would be
prevented from getting too close to deterministic policies.
While this might prevent convergence to a suboptimal pol-
icy, it would also exclude the possibility of fully converging
to the optimal policy, though the policy may remain near it.

In bandits, EXP3 has been found not to enjoy high-
probability guarantees on its regret so variants have been

developed to address this deficiency (c.f. Lattimore &
Szepesvári, 2020). For example, by introducing bias in the
updates, their variance can be reduced significantly (Auer
et al., 2002; Neu, 2015). Finally, other works have also
developed provably convergent policy gradient algorithms
using different mechanisms, such as exploration bonuses or
ensembles of policies (Cai et al., 2019; Efroni et al., 2020;
Agarwal et al., 2020).

5. Extension to multi-step MDPs
We focused our theoretical analyses on multi-arm bandits
so far. However, we are also interested in more general
environments where gradient-based methods are common-
place. We now turn our attention to the Markov Decision
Process (MDP) framework (Puterman, 2014). An MDP is
a set {S,A, P, r, γ, ρ} where S and A are the set of states
and actions, P is the environment transition function, r is
the reward function, γ ∈ [0, 1) the discount factor, and ρ is
the initial state distribution. The goal of RL algorithms is to
find a policy πθ, parameterized by θ, which maximizes the
(discounted) expected return; i.e. Eq. 1 becomes

argmax
θ

J(θ) = argmax
θ

�

s

dπθ
γ (s)

�

a

πθ(a|s)r(s, a),

where there is now a discounted distribution over states
induced by πθ. Although that distribution depends on πθ

in a potentially complex way, the parameter updates are
similar to Eq. 2:

θt+1 = θt +
α

N

�

i

[Q(si, ai)− b(si)]∇θ log πθ(ai|si) ,

where (ai, si) pairs are drawn according to the discounted
state-visitation distribution induced by πθ and Q is the state-
action value function induced by πθ (c.f. Sutton & Barto,
2018). To match the bandit setting and common practice,
we made the baseline state dependent.

Although our theoretical analyses do not easily extend to
multi-step MDPs, we empirically investigated if the similar-
ity between these formulations leads to similar differences
in learning dynamics when changing the baseline. We con-
sider a 10x10 gridworld consisting of 4 rooms as depicted
on Fig. 4a. We use a discount factor γ = 0.99. The agent
starts in the upper left room and two adjacent rooms con-
tain a goal state of value 0.6 or 0.3. The best goal (even
discounted), with a value of 1, lies in the furthest room, so
that the agent must learn to cross the sub-optimal rooms and
reach the furthest one.

Similar to the bandit setting, for a state s, we can derive the
minimum-variance baseline b∗(s) assuming access to state-
action values Q(s, a) for πθ and consider perturbations to it.
Again, we use baselines b(s) = b∗(s)+� and b(s) = b∗(s)−
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(a) MDP (b) Returns (c) Entropy (A) (d) Entropy (S)

Figure 4: We plot the discounted returns, the entropy of the policy over the states visited in each trajectory, and the entropy of
the state visitation distribution, averaged over 50 runs, for multiple baselines. The baselines are of the form b(s) = b∗(s)+ �,
perturbations of the minimum-variance baseline, with � indicated in the legend. The shaded regions denote one standard
error. Note that the policy entropy of lower baselines tends to decay faster than for larger baselines. Also, smaller baselines
tend to get stuck on suboptimal policies, as indicated by the returns plot. See text for additional details.

�, since they result in identical variances (this would not be
the case if we used standard REINFORCE). We use a natural
policy gradient estimate, which substitutes ∇ log π(ai|si)
by F−1

si ∇ log π(ai|si) in the update rule, where Fsi is the
Fisher information matrix for state si and solve for the exact
Q(s, a) values using dynamic programming for all updates
(see Appendix D.6 for details).

In order to identify the committal vs. non-committal be-
haviour of the agent depending on the baseline, we monitor
the entropy of the policy and the entropy of the stationary
state distribution over time. Fig.4b shows the average re-
turns over time and Fig.4c and 4d show the entropy of the
policy in two ways. The first is the average entropy of the
action distribution along the states visited in each trajec-
tory, and the second is the entropy of the distribution of
the number of times each state is visited up to that point in
training.

The action entropy for smaller baselines tends to decay
faster compared to larger ones, indicating convergence to a
deterministic policy. This quick convergence is premature
in some cases since the returns are not as high for the lower
baselines. In fact for � = −1, we see that the agent gets
stuck on a policy that is unable to reach any goal within the
time limit, as indicated by the returns of 0. On the other
hand, the larger baselines tend to achieve larger returns with
larger entropy policies, but do not fully converge to the
optimal policy as evidenced by the gap in the returns plot.

Since committal and non-committal behaviour can be di-
rectly inferred from the PG and the sign of the effective
rewards R(τ)− b, we posit that these effects extend to all
MDPs. In particular, in complex MDPs, the first trajectories
explored are likely to be suboptimal and a low baseline will
increase their probability of being sampled again, requir-
ing the use of techniques such as entropy regularization to
prevent the policy from getting stuck too quickly. In some
preliminary experiments with a deep RL policy gradient al-

gorithm, PPO (Schulman et al., 2017), where we perturb the
baseline by a fixed constant, seem to indicate that negative
perturbations perform slightly worse than positive perturba-
tions. The results are not conclusive though and there are
many confounding factors in this setting which could affect
the outcome, including clipping due to PPO, neural network
generalization, and adaptive optimizers. It is likely that a
more careful strategy to perturb the baseline is needed to
gain benefits, similar to using exploration bonuses.

6. Conclusion
We presented results that dispute common beliefs about
baselines, variance, and policy gradient methods in general.
As opposed to the common belief that baselines only provide
benefits through variance reduction, we showed that they
can significantly affect the optimization process in ways that
cannot be explained by the variance and that lower variance
can even sometimes be detrimental.

Different baselines can give rise to very different learning
dynamics, even when they reduce the variance of the gradi-
ents equally. They do that by either making a policy quickly
tend towards a deterministic one (committal behaviour) or
by maintaining high-entropy for a longer period of time
(non-committal behaviour). We showed that committal be-
haviour can be problematic and lead to convergence to a
suboptimal policy. Specifically, we showed that stochas-
tic natural policy gradient does not always converge to the
optimal solution due to the unusual situation in which the
iterates converge to the optimal policy in expectation but
not almost surely. Moreover, we showed that baselines that
lead to lower-variance can sometimes be detrimental to op-
timization, highlighting the limitations of using variance to
analyze the convergence properties of these methods. We
also showed that standard convergence guarantees for PG
methods do not apply to some settings because the assump-
tion of bounded variance of the updates is violated.
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The aforementioned convergence issues are also caused by
the problematic coupling between the algorithm’s updates
and its sampling distribution since one directly impacts the
other. As a potential solution, we showed that off-policy
sampling can sidestep these difficulties by ensuring we use
a sampling distribution that is different than the one induced
by the agent’s current policy. This supports the hypothesis
that on-policy learning can be problematic, as observed in
previous work (Schaul et al., 2019; Hennes et al., 2020).
Nevertheless, importance sampling in RL is generally seen
as problematic (van Hasselt et al., 2018) due to instabilities it
introduces to the learning process. Moving from an imposed
policy, using past trajectories, to a chosen sampling policy
reduces the variance of the gradients for near-deterministic
policies and can lead to much better behaviour. In gen-
eral, other variance-reduction strategies may also be more
effective (Xu et al., 2019).

More broadly, this work suggests that treating bandit and re-
inforcement learning problems as a black-box optimization
of a function J(θ) may be insufficient to perform well. As
we have seen, the current parameter value can affect all fu-
ture parameter values by influencing the data collection pro-
cess and thus the updates performed. Theoretically, relying
on immediately available quantities such as the gradient vari-
ance and ignoring the sequential nature of the optimization
problem is not enough to discriminate between certain opti-
mization algorithms. In essence, to design highly-effective
policy optimization algorithms, it may be necessary to de-
velop a better understanding of how the optimization process
evolves over many steps.
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