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Abstract

Markov decision processes (MDPs) are known
to be sensitive to parameter specification. Dis-
tributionally robust MDPs alleviate this issue by
allowing for ambiguity sets which give a set of
possible distributions over parameter sets. The
goal is to find an optimal policy with respect to
the worst-case parameter distribution. We pro-
pose a framework for solving Distributionally ro-
bust MDPs via first-order methods, and instan-
tiate it for several types of Wasserstein ambigu-
ity sets. By developing efficient proximal up-
dates, our algorithms achieve a convergence rate
of O

(
NA2.5S3.5 log(S) log(ε−1)ε−1.5

)
for the

number of kernels N in the support of the nomi-
nal distribution, states S, and actions A; this rate
varies slightly based on the Wasserstein setup.
Our dependence on N,A and S is significantly
better than existing methods, which have a com-
plexity of O

(
N3.5A3.5S4.5 log2(ε−1)

)
. Numer-

ical experiments show that our algorithm is sig-
nificantly more scalable than state-of-the-art ap-
proaches across several domains.

1. Introduction
In many applications of sequential decision-making prob-
lems, the dynamics of the environment can only be partially
modeled, because of statistical errors and inaccurate distri-
butional information regarding the parameters of the model.
This occurs, for example, in healthcare applications (Grand-
Clément et al., 2020; Steimle et al., 2018) and vehicle rout-
ing (Miao et al., 2017). In Markov Decision Processes
(MDPs), this can be addressed using robust formulations,
where the transition probabilities belong to a safety region
called the uncertainty set (Iyengar, 2005; Nilim & Ghaoui,
2005; Wiesemann et al., 2013; Goyal & Grand-Clément,
2018). However, robust MDPs often compute conservative
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policies, as they optimize only for the worst-case kernel re-
alization, without incorporating distributional information
about uncertainties.

Distributionally Robust MDPs (DR-MDPs) (Xu & Mannor,
2010; Yu & Xu, 2015) attempt to overcome the conservative
nature of robust MDPs. In DR-MDPs the goal is to max-
imize the worst-case expected reward, assuming that the
distribution over the set of possible transition kernels is not
known, but belongs to a so-called ambiguity set consisting
of all the possible measures over transition kernels. Robust
MDPs can be viewed as a special case of DR-MDP, where
the distribution over the set of possible kernels is restricted
to Dirac masses. Yang (2017) introduces a Wasserstein ball
formulation for ambiguity sets, shows the existence of an
optimal policy that is Markovian, and gives a Value Itera-
tion (VI) algorithm based on iterating a Bellman equation.
Wasserstein distances have been shown to be particularly
useful when the data is too sparse to use moment-based
ambiguity sets (Gao & Kleywegt, 2016; Esfahani & Kuhn,
2018; Zhao & Guan, 2018).

One drawback of the Value Iteration approach to solving DR-
MDPs is that every iteration of the algorithm requires solv-
ing the associated Bellman equation. Yang (2017) shows
that this Bellman equation can be reformulated as a finite-
dimensional convex program with a max-min objective. In
the special case of DR-MDP policies for Wasserstein balls
with a finite number of states and actions and s-rectangular
ambiguity sets, it is possible to derive a large conic con-
vex program using standard optimization methods. Letting
N be the number of kernels in the support of the nominal
distribution over the set of possible kernels, S the num-
ber of states, and A the number of actions of the MDP, VI
with such a conic convex reformulation (solved using stan-
dard interior-point methods) returns an ε-optimal policy in
O
(
N3.5A3.5S4.5 log2(ε−1)

)
time, for Wasserstein uncer-

tainty based on the `2-metric. The same complexity results
hold for Wasserstein uncertainty based on `1 and `∞ metric,
see end of Section 2.1. This time complexity is largely due
to the expensive per-iteration cost of interior-point methods.
This may prove prohibitively slow when the MDP instance
or the number of kernels is large.

In this paper, our goal is to design algorithms based on first-
order methods (FOMs), which are typically more scalable
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(at the cost of lower precision in the final solution). Recently,
Grand-Clément & Kroer (2021) introduced FOMs to solve
robust MDPs. Their algorithms adapt FOMs for solving
static zero-sum games to the dynamic setting of MDP. In-
terleaving FOM updates with approximate VI updates, the
authors obtain an algorithm that improves significantly on
VI, in terms of dependence on S and A, at the price of a
O(1/ε) convergence rate rather than O(log(1/ε)).

Our contributions

A First-Order Method for Distributionally Robust MDP.
We build upon the Wasserstein framework for DR-MDP
of Yang (2017) and on the first-order framework of Grand-
Clément & Kroer (2021). Our algorithmic framework in-
terleaves first-order steps and approximate Bellman up-
dates. Our algorithm generates a sequence of iterates
(x1,y1), . . . , (xT ,yT ), each of which is a policy xt and
an uncertainty instantiation yt. The t’th iterate is generated
based on a first-order update on iterate t−1. This is achieved
by computing the gradients for the first-order updates based
on the linear objective arising from a value-vector estimate.
By carefully interleaving approximate Bellman updates on
this value-vector estimate, we show that the average of
our generated policy iterates constructs a solution to the
DR-MDP problem whose duality gap decreases at a rate
of O(1/T 2/3) after T first-order updates. Note that this
is different from the usual convergence guarantees for VI,
which is on the last iterate value vector.

Our algorithmic framework attains a O(1/T 2/3) conver-
gence rate in terms of the number of FOM steps T . As is
expected with FOMs, this is worse than the log(1/ε) rate
achieved by VI. However, our dependence on N,A and S
is better than VI by a factor of O(N2.5AS).

Novel proximal setup. A fundamental component in our
scheme is to show that the iterate FOM updates can be
computed very cheaply (in nearly linear time) for various
ambiguity sets of interest. This is crucial in practice, since
even a moderate number of states S, actions A, and kernels
in the nominal estimate N , leads to a large MDP, whose
instance size isO(NAS2). Since Wasserstein distances rely
on a choice of type and metric (see next section), we show
how to instantiate our FOM framework for several such
Wasserstein ambiguity sets. We cover metrics based on the
norms `1, `2, and `∞, as these are the most common found
in the literature on Wasserstein distances. For each of these
setups, we give novel algorithms that allow the proximal
first-order iterates to be computed in nearly linear time.

Combining these proximal setups with our FOM framework
yields an algorithm that, to the best of our knowledge, has
the best convergence rates in terms of N,S and A for DR-
MDPs with Wasserstein balls for any of the three metrics.

Empirical evaluation. We focus our numerical experiments
on `2-based Wasserstein balls. We consider random MDPs,
and applications to machine replacement and forest manage-
ment. We compare our algorithms to four state-of-the-art
Value Iteration algorithms (VI, Gauss-Seidel, Anderson, and
Accelerated VI) and show that our algorithm is significantly
faster. Even for small instances (e.g. S = 10, N,A = 30 or
N = 10 and S,A = 30), our algorithm is at least twice as
fast as Value Iteration. As instances get larger (both in terms
of states/actions or number of observed kernels), our algo-
rithm becomes much faster than all the VI variants. This
is because the VI variants are solving large optimization
programs for every state at every iteration, compared to
our algorithm which only takes cheap primal-dual proximal
steps.

Related works

Faster algorithms for MDPs. Accelerating the convergence
rate of VI for regular MDPs has been studied extensively, e.g.
in Zhang et al. (2018) and Goyal & Grand-Clément (2019).
For robust MDPs, fast Bellman updates can be computed
for s, a-rectangular uncertainty sets (Iyengar, 2005; Nilim
& Ghaoui, 2005) and s-rectangular uncertainty sets (see Ho
et al. (2018) for d1-based uncertainty set). However, none
of these algorithms extend directly to a setup with N ≥ 2
kernels in the support of the nominal distribution, and they
do not modify the Value Iteration algorithm itself. Grand-
Clément & Kroer (2021) develop a FOM framework which
outperforms value iteration for robust MDPs, when the size
of the MDP instance is large. While this improves upon
VI for large instances of robust MDPs, their methods do
no directly extend to N ≥ 2 (i.e. to distributionally robust
MDPs) nor to Wasserstein balls. Exploiting the linear pro-
gramming formulation of non-robust MDP, Gong & Wang
(2020) and Jin & Sidford (2020) propose to adapt mirror
descent algorithms to solve MDPs. There is no known linear
programming reformulation for robust and distributionally
robust MDPs. Finally, our work differs from value function
approximation (Tsitsiklis & Van Roy, 1997; De Farias &
Van Roy, 2003; Petrik, 2010; Tamar et al., 2014) in that we
can control the desired accuracy of our inexact updates, con-
trary to value function approximation once the basis on the
chosen subspace of functions is fixed. Additionally, unlike
value function approximation, our algorithm improves con-
vergence time even when the number of states and actions
remain small, if there is a large number of kernels N .

Distributionally Robust MDPs. DR-MDPs were introduced
in Xu & Mannor (2010). Yu & Xu (2015) considerably ex-
tend the expressiveness of the ambiguity sets (to e.g. mean
absolute deviation and confidence sets) by using lifting meth-
ods developed in Wiesemann et al. (2014). Yang (2017)
introduces Wasserstein DR-MDPs and presents a reformu-
lation of the robust Bellman update based on Kantorovitch
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duality; however, the author appeals to general convex pro-
gramming to solve the resulting min-max problem, which
may not be tractable without exploiting further problem
structure or reformulation. Our approach builds on the ro-
bust Bellman formulation of Yang (2017) by combining
it with a tractable first-order setup. The authors in Chen
et al. (2019) combine various ambiguity sets (among others
moments, φ-divergences, and Wasserstein distances) and
give a conic formulation for the Bellman equation for this
combination of ambiguity sets.

Notation We let P (X) be the set of all Borel probability
measures on a setX. For n ∈ N, ∆(n) is the probability sim-
plex of dimension n. For S,A ∈ N, we let U = (∆(S))

A be
the Cartesian product of probability simplexes over states.

2. Distributionally Robust MDP
A Distributionally Robust MDP (DR-MDP) is a tuple
(S,A, c,p0, λ,D); S is the set of states and A is the set
of actions. We assume a finite set of states and actions:
|S| = S < +∞, |A| = A < +∞. There is a state-action
cost c ∈ R|S|×|A|, an initial distribution over the set of
states p0 ∈ ∆(S) and a discount factor λ. The transi-
tion rates (ysa)s,a ∈ (∆(S))S×A are unknown; instead,
we assume that they follow a joint probability distribution
µ, which is known to belong to an ambiguity set D. This
distribution µ is typically estimated from historical data
(see next section). The goal of the decision maker is to
compute a policy x in Π = (∆(A))

S , which maps each
state s to a distribution over actions, so as to minimize
the worst-case infinite-horizon discounted cost, defined as
C(x, µ) = ExEy∼µ[

∑+∞
t=0 λ

tcstat |s0 ∼ p0]. Specifically,
we want to solve

min
x∈Π

max
µ∈D

C(x, µ). (1)

We focus on the case of s-rectangular ambiguity, where the
uncertainty about transitions is independent across states.
Formally, D = {µ | µ =

⊗
µs, µs ∈ Ds,∀s ∈ S}, where

for each state s ∈ S the set Ds is a set of probability dis-
tributions over the parameters (ysa)Aa=1 ∈ (∆(S))

A and⊗
stands for the product over measures. This is a stan-

dard assumption in the literature, as related transition rates
across different states lead to intractable problems in general
(Wiesemann et al., 2013).

As detailed in Yu & Xu (2015) and Yang (2017), the value
vector v∗ of a solution (x∗, µ∗) to (1) satisfies the following
Bellman equation:

v∗s = min
xs∈∆(A)

max
µs∈Ds

E
ys∼µs

[∑
a∈A

xsa
(
csa + λy>sav

∗)] .
(2)

Moreover, (x∗, µ∗) can be recovered as the optimal so-
lutions in the right-hand min-max problem in (2). Since

(x,y) 7→
∑
a∈A xsa

(
csa + λy>sav

∗) is bilinear, the Bell-
man equation depends on µs only through Eys∼µs [ys] (Yu
& Xu, 2015). By linearity of expectation, we may maximize
over the set of possible expected values for ys instead:

v∗s = min
xs∈∆(A)

max
ys∈Bs

∑
a∈A

xsa
(
csa + λy>sav

∗) , (3)

where Bs = {ys | ∃ µs ∈ Ds s.t. ys = Eŷs∼µs
[ŷs]}.

2.1. Wasserstein Distributionally Robust MDP

We will investigate the case where the sets of densities Ds
are defined by Wasserstein distances. For single-state distri-
butionally robust optimization and chance-constrained prob-
lems, this distance has proved useful when the number of
data points is too small to rely on moment estimation of the
underlying distribution (Gao & Kleywegt, 2016; Esfahani &
Kuhn, 2018). In particular, a Wasserstein ball contains both
continuous and discrete distributions while balls based on
φ-divergences (e.g. Kullback-Leibler divergence) centered
at a discrete distribution do not contain relevant continu-
ous distributions. Additionally, φ-divergences do not take
into account the closeness of two distributions, contrary to
Wasserstein distance. Finally, by choosing a metric accord-
ingly (see definition below), the Wasserstein distance can
account for the underlying geometry of the space that the
distributions are defined on.

Let us define Wasserstein distances and balls. The Wasser-
stein distance Wp(µ, νs) between two distributions µ and
νs is defined with respect to a metric d and a type p ∈ N as

Wp(µ, νs) = min
(
E(x,y)∼κ [d(x, y)p]

)1/p
κ ∈ P (U × U),

Π1κ = µ,Π2κ = νs.

where Π1κ and Π2κ are the first and second marginals for a
density κ on U×U . When p→ +∞, we have the pointwise
convergence Wp →W∞ (Givens et al., 1984) where

W∞(µ, νs) = min κ-ess.sup(d)

κ ∈ P (U × U),

Π1κ = µ,Π2κ = νs,

with κ-ess.sup(d) defined as

inf{c ∈ R | κ ({(x, y) | d(x, y)) > c}) = 0}.

We will be interested in the norm-based metrics d1 =
`1, d2 = `2 and d∞ = `∞.

We assume that we have a nominal estimate ν ∈ D
of the distribution over the transition rates. Addition-
ally, we assume that ν has finite support, i.e. for each
s, νs = (1/N)

∑N
i=1 δŷi,s , for some observed kernels
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ŷ1,s, ...., ŷN,s ∈ U = (∆(S))
A. This occurs, for exam-

ple, when ν is the empirical distribution over N samples
of the transition kernels, obtained from observed, historical
data (Yang, 2017). Note that here, each ŷi,s represents the
collection (ŷi,s,a)a∈A of distributions over the next states
given state and action pairs. The ambiguity set Dp,s will be
the set of all measures µ within some Wasserstein distance
Wp(µ, νs) of the nominal estimate:

Dp,s = {µ ∈ P (U)|Wp(µ, νs) ≤ θp}. (4)

In a small abuse of notation, we will let D∞,s denote the
Wasserstein ball (4) based on W∞ instead of Wp, with a
radius of θ. Given a metric d, and p ∈ R

⋃
{∞}, the set of

expected kernels for the measures µ in the Wasserstein ambi-
guity sets Dp,s can be described as (Yang, 2017; Bertsimas
et al., 2018; Xie, 2020):

Bp,s = { 1

N

N∑
i=1

yi|
1

N

N∑
i=1

d(yi, ŷi)
p ≤ θp,yi ∈ U ,∀ i},

B∞,s = { 1

N

N∑
i=1

yi|d(yi, ŷi) ≤ θ,yi ∈ U ,∀i = 1, ..., N}.

Computing an optimal policy Yang (2017) shows that
for Wasserstein balls (with p < +∞), there exists an opti-
mal policy which is stationary and Markovian; we present a
proof of this result for p = +∞ in our Appendix D. Yang
(2017) also gives a Value Iteration algorithm to compute an
optimal value vector v∗ by iterating the Bellman equation.
In particular, let F : RS → RS be the Bellman operator

F (v)s = min
xs∈∆(A)

max
ys∈Bp,s

∑
a∈A

xsa
(
csa + λy>sav

)
,∀ s ∈ S.

(5)
The Value Iteration (VI) algorithm is defined as follow:

v0 ∈ RS ,v`+1 = F (v`),∀ ` ≥ 0. (VI)

F is a contraction of factor λ and VI returns a sequence
(v`)`≥0 such that ‖v`+1−v∗‖∞ ≤ λ·‖v`−v∗‖∞,∀ ` ≥ 0;
an ε-optimal policy and distribution over kernels can be
computed as the pair attaining the min max in F (v), if
‖v − F (v)‖∞ < 2λε(1− λ)−1 (Wiesemann et al., 2013).

In Appendix A, we show that (5) can be reformulated
as a convex program by invoking convex duality twice.
Thus, using an Interior Point Method (IPM), F (v) can
be computed in O(N3.5A3.5S3.5 log(ε−1)) arithmetic op-
erations (Ben-Tal & Nemirovski (2001), Section 4.6.1-
4.6.2), for d = d1, d2, d∞. This leads to an overall com-
plexity for Value Iteration to return an ε-optimal policy
in O(N3.5A3.5S4.5 log2(ε−1)), which can be prohibitively
large when the number of kernels, states, and actions grows.

3. First-Order Methods for Wasserstein
DR-MDP

Our algorithm builds upon (VI), but avoids repeatedly solv-
ing expensive convex programs. At every VI epoch ` ≥ 1
(we refer to VI iterations as epochs to distinguish from FOM
iterations), we have a value vector v` and we use a FOM
to compute an approximation of the Bellman update F (v`).
At VI epoch ` + 1, we use our approximate solution to
F (v`) to warm-start the computation of an approximation
to F (v`+1). We will show that the (weighted) average of
the FOM strategies across all epochs converges to a solution
to the Distributionally-Robust MDP problem (1).

It is important to note that our scheme is very different
from the following simpler approach: run (VI), but use a
FOM (instead of interior point methods) to solve each of the
Bellman-equation problems. This would only converge in
terms of the value vector, rather than in terms of the duality
gap guarantee that we provide for the average of all pairs
of policy-kernel visited (see Theorem 1). In particular, our
analysis allows us to construct an average of all iterates
generated across T FOM iterations and allows us to use this
T in our convergence guarantee.

First, we rewrite the strategy space for the y player to explic-
itly be in terms of the individual components of the averaged

vector y =
1

N

∑N
i=1 yi,s. Concretely, we rewrite F (v)s

from (5) as

min
xs∈∆(A)

max
(y1,s,...,yN,s)∈B̃p,s

∑
a∈A

xsa

(
csa + λ

N∑
i=1

1

N
y>i,sav

)
,

(6)
for B̃p,s ⊂ RN×S×A defined as

B̃p,s = {(yi)Ni=1|
1

N

N∑
i=1

d(yi, ŷi)
p ≤ θp,yi ∈ U ,∀ i}.

(7)
As we are now considering elements indexed by i =
1, ..., N , for the sake of conciseness we will write (yi)i for
(yi)

N
i=1. This strategy space representation will be easier to

design FOMs for.

Proximal Setup for First-Order Methods. Let us fix a
state s ∈ S, for which we solve (5). FOMs such as the one
we consider rely on having a proximal setup for the convex
and compact decision spaces ∆(A) (referred to as X for
simplicity in this section) and B̃s (referred to as Y ).

UsingψX , we construct the Bregman divergenceDX , which
measures a (pseudo) distance between any pair x,x′ ∈ X
(DY is defined analogously):

DX(x,x′) = ψX(x′)− ψX(x)− 〈∇ψX(x),x′ − x〉,
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The convergence rate depends on the set widths ΘX ,ΘY ,
which are the maxima ofDX andDY onX×X and Y ×Y .
We will also require the maximum norm-magnitude RX =
maxx∈X ‖x‖X , with RY defined analogously.

We will pay particular attention to the Euclidean case, where
(‖ · ‖X , ‖ · ‖Y ) = (ψX , ψY ) = (`2, `2), though Algorithm 1
applies more broadly (for example, a proximal setup with
the `1 norm is also possible). The Bregman divergences are

DX(x,x′) =
1

2
‖x− x′‖22,

DY ((yi)i, (y
′
i)i) =

N∑
i=1

1

2
‖yi − y′i‖22. (8)

Given a proximal setup, a crucial component of the FOMs
we are interested in is the proximal mapping, which can
effectively be thought of as a generalization of taking a step
from the previous iterate in the direction of improvement
along the gradient g:

proxx(gx,x
′
s) = arg min

xs∈X
〈gx,x〉+DX(xs,x

′
s),

proxy(gy,y
′
s) = arg max

ys∈Y
〈gy,ys〉 −DY (ys,y

′
s).

These two proximal mapping are computed once per itera-
tion of the algorithm, with varying inputs. A crucial issue
for a practical scalable method is therefore whether these
proximal mappings can be computed efficiently. As we
will show later, this is indeed the case for several types of
distributional uncertainty that are of practical interest.

Primal-Dual update for MDP. In this paper we focus
on the primal-dual FOM from Chambolle & Pock (2016),
which we refer to as PDA. Given the saddle-point formula-
tion of (5), for some step sizes τ, σ ∈ R and some vector
v ∈ RS , the Primal-Dual Algorithm (PDA) repeatedly ap-
plies proximal mappings as follows:

xt+1
s = proxx(τct′s ,x

t
s), (9)

(yt+1
i,s )i = proxy(σĥts, (y

t
i,s)i) (10)

where ct′s ∈ RA, ct′sa = csa + λ
1

N

∑N
i=1 y

t >
i,s,av, and

ĥts ∈ RN×A×S , hias′ = − λ
N

(2xt+1
sa − xtsa)vs′ for each

i, a and s′. After T iterations, PDA obtains a O(1/T )
approximation to a (static) saddle-point problem such as
F (v) (Chambolle & Pock, 2016). Various weight schemes
can be chosen to accelerate the ergodic convegence (Gao
et al., 2019). We now show how to combine PDA updates
with VI in order to compute a solution to (2).

Algorithm for DR-MDP. Our algorithm builds upon the
first-order framework introduced in Grand-Clément & Kroer

(2021) for robust MDP. In particular, the horizon T is di-
vided into k epochs of lengths 1, ..., k2. During epoch `,
we perform `2 PDA iterations, starting from the last policy-
kernel pair computed at the previous epoch. The average of
the policy-kernel pairs visited across all epochs converges
to an optimal solution of the distributionally robust MDP
problem, as shown in Theorem 1. Our Algorithm 1 is dif-
ferent from the algorithm proposed in Grand-Clément &
Kroer (2021) for robust MDP, which only optimizes for a
single kernel. This is because we must iterate over an N -
tuple of kernels (y1, ...,yN ) for the max-player. To better
understand the distinction between the algorithms, note that
one could apply the algorithm of (Grand-Clément & Kroer,
2021) directly to (5) since that formulation has a single y.
However, it is not clear how one would set up an appropriate
strongly-convex function ψBp,s

for this space, as it suffers
from degeneracy issues where the same average kernel y
can be represented by multiple combinations of the samples
y1, ...,yN . In contrast, we will show that there are effi-
cient proximal setups for our representation in terms of B̃p,s.
Our choice of step sizes τ and σ also specifically addresses
the dimension imbalance between the min-player decisions
x ∈ RA and the max-player decisions (yi)i ∈ RNAS .

Algorithm 1 First-order Method for Wasserstein DR-MDP

1: Input A number of epochs k.
2: Initialize v1, x̄0, ȳ0 at random
3: for epoch ` = 1, ..., k do
4: for s ∈ S do
5: τ =

(√
Aλ‖v`‖2

)−1

, σ = N
√
A(λ‖v`‖2)−1

6: τ` =
∑(`−1)2

k′=1 k′

7: for t = τ`, . . . , τ` + T` do
8: xt+1

s = proxx(τct′s ,x
t
s)

9: (yt+1
i,s )i = proxy(σĥts, (y

t
i,s)i)

10: S` =
∑τ`+`2

t=τ`
t

11: (x̄`s, (ȳ
`
i,s)i) =

∑τ`+`2

t=(`+1)
t
S`

(xt, (yt,i)i)

12: Compute ȳ`s ∈ Bs as ȳ`s =
1

N

∑N
i=1 ȳ

`
i,s

13: Update v`+1
s = F x̄`

s,ȳ
`
s(v`)s

14: Let ST =
∑T
t=1 t

15: Output (x̄Ts , (ȳ
T
i,s)i) =

∑T
t=1

t
ST

(xt, (yt,i)i)

Algorithm 1 guarantees a bound on the duality gap of a
policy-kernel pair (x,y) defined as

max
s∈S
{max
y′∈Bs

Fx,y′
(v∗)s − min

x′∈∆(A)
Fx′,y(v∗)s}, (11)

where Fx,y(v)s =
∑
a∈A xsa

(
csa + λy>sav

)
. Note that

(11) ≤ ε/2 guarantees that x is a ε-optimal policy in (1).
We give a detailed proof of our theorem in Appendix B.



First-Order Methods for Wasserstein Distributionally Robust MDPs

Theorem 1. Let v∗ be the value vector for a pair x∗,y∗ of
optimal solutions to the Bellman equation (1).

Let x̄T , ȳT the output of Algorithm 1 after T iterations.
The duality gap (11) of x̄T , ȳT is upper bounded by

O

(√
S√
N
RXRY

(
ΘX

τ
+

ΘY

σ

)
1

T 2/3

)
.

Therefore, Algorithm 1 returns a sequence of policies which
converges to an optimal solution to the Distributionally Ro-
bust MDP over Wasserstein balls. In order to give the num-
ber of arithmetic operations for Algorithm 1 before returning
an ε-optimal policy, there remains to investigate the com-
plexity of the proximal updates (9)-(10).

Remark 2. We could use other FOMs than PDA in Algo-
rithm 1. For example, Mirror Prox would yield a similar
rate (Nemirovski, 2004), while Mirror Descent would yield
a slower rate. It is also possible to change the proximal
setup, e.g. to ‖ · ‖X = ‖ · ‖1, ‖ · ‖Y = ‖ · ‖1. For such a
choice of norms, a natural choice of 1-convex function is
the negative entropy, which leads to the Kullback-Leibler
divergence as the Bregman divergence.

Remark 3. FOMs for constrained saddle-point problems
can be accelerated (from 1/T to 1/T 2) when the objec-
tive is strongly convex-concave (Theorem 4 in Section 5 of
(Chambolle & Pock, 2016)). Additionally, if the objective
is smooth, it is possible to achieve a linear convergence rate
(Theorem 5 in Section 6 of (Chambolle & Pock, 2016)).
In our setting the objective is a bilinear function (see (6)),
and therefore we cannot use accelerated FOMs. Finally,
the only known 1/T lower bounds for FOMs in stationary
settings (Ouyang & Xu, 2021) are very technical and relate
to `2-ball settings, and not on the simplex. It appears hard
to extend these results to MDPs.

4. Convergence Rate for Wasserstein Balls.
Note that in Theorem 1, we only provide a convergence
rates in term of the number of PD iterations T . In order to
obtain our complexity results, we now turn to investigating
the complexity of the primal-dual updates (9) and (10). The
uncertainty set B̃p,s is quite unusual in the first-order meth-
ods literature, where most of the updates are computed in
closed-form upon the simplex or the non-negative orthant.
One of the main contributions of this paper is to design
novel efficient algorithms for computing (10) when the met-
ric d is d1, d2 or d∞. In particular in Proposition 4 we show
that we can compute (10) in nearly linear time. To the best
of our knowledge, we are the first to present efficient algo-
rithms for computing the proximal updates on intersection
of simplices and (various) Wasserstein balls.

Proximal setup for x player The proximal update for the
x player (9) is the classical proximal update onto the sim-

plex of dimension A, and can be computed in O(A log(A))
operations (Ben-Tal & Nemirovski, 2001).

Proximal setup for y player Since (10) decomposes into
independent problems for each state, we drop the index s in
our formulation of (10) and assume that we are solving for
some arbitrary state s. For p < +∞, the proximal update
of the max player (10) from a kernel y′ can be reformulated
as

min

N∑
i=1

〈yi,h〉+
1

2σ
‖yi − y′

i‖22

y1, ...,yN ∈ U ,

1

N

N∑
i=1

d(yi, ŷi)
p ≤ θp.

(12)

In the next propositions, we show that (12) can be solved
efficiently, for d equal to d1, d2 and d∞. The proof for each
case is different, but follows a similar argument:

1. We first introduce a Lagrange multiplier γ for the last
constraint. This simplifies the problem of computing
(12) to solving N sub-problems over U , each of the
form

min 〈yi,h〉+
1

2σ
‖yi − y′

i‖22 + γ · d(yi, ŷi)
p

yi ∈ U .
(13)

2. We then turn to efficiently solving (13).

• For d = d2, p = 2, (13) can be rewritten as a
series of Euclidean projections onto the simplex
∆(S), as U = (∆(S))

A.
• For d = d1, p = 1, we introduce Lagrange multi-

pliers αi,s,a for each simplex constraint y>i,s,ae =
1; we can then solve the resulting problems using
the KKT conditions. By carefully inspecting the
breakpoints of the Lagrangian for the multipliers
αi,s,a, we do not need to use bisection to find the
multipliers αi,s,a; see Appendix C.

• Finally, for d = d∞, p = 1, we use bisection
to find an optimal α such that d(ya, ŷi,a) ≤ α,
for all a ∈ A. Then we solve the problem of
Euclidean projection onto the simplex ∆(S) with
box constraints.

3. Having designed efficient algorithms for solving (13),
we use a bisection method on the multiplier µ and
return an optimal solution of (12).

Summarizing the above ideas, we have the following propo-
sition. We present the detailed proof in Appendix C.

Proposition 4. Let d = d2, p = 2 or d = d1, p =
1. The proximal update (12) can be computed in
O
(
NAS log(S) log(ε−1)

)
arithmetic operations.
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Let d = d∞, p = 1. The proximal update (12) can be com-
puted in O

(
NAS log(S) log3(ε−1)

)
arithmetic operations.

We can now give the overall convergence rates of our algo-
rithms in the following theorem.

Theorem 5. The total number of arithmetic operations
needed to compute an ε-optimal solution to the Distribu-
tionally Robust MDP problem (1) using Algorithm 1 is
O
(
NA2.5S3.5 log(S) logm(ε−1)ε−1.5

)
, where m = 1 for

d = d2 and p ∈ {2,+∞}, d = d1 and p ∈ {1,+∞}, and
m = 3 for d = d∞ and p ∈ {1,+∞}.

Proof. We show here our proof for d = d2 and p ∈
{2,+∞}, and d = d1 and p ∈ {1,+∞}; the proof for
d = d∞ and p ∈ {1,+∞}, follows the same argument.

For our choice of ‖ · ‖X , ‖ · ‖Y , Bregman divergences and
step sizes we have (see Ben-Tal & Nemirovski (2001))

• RX = O(1), RY = O(
√
NA),

• ΘX = O(1),ΘY = O(NA),

• ΘX/τ = ΘY /σ =
√
Aλ‖v`‖2 = O

(√
AS
)
,

where we have used the norm equivalence between ‖ · ‖2
and ‖ · ‖∞ in RS in the last two lines. Therefore following
Theorem 1 we have that the duality gap (11) of the policy
returned by Algorithm 1 after T PD iterations is bounded

above by O
(
SA

T 2/3

)
. Each PD iteration for these choices

of d and p can be computed in O
(
NAS log(S) log(ε−1)

)
.

Note that we have to compute PD iterations for each
state s ∈ S; therefore, Algorithm 1 returns an ε-optimal
policy to the Distributionally Robust MDP problem in
O
(
NA2.5S3.5 log(S) log(ε−1)ε−1.5

)
.

Comparing Algorithm 1 to Value Iteration, we improve
upon the dependence on the problem size by a factor of
O(N2.5AS), at the cost of a ε−1.5 convergence rate in terms
of the accuracy ε. This is expected, as the advantage of
FOMs is that they significantly improve upon the cost of the
updates in terms of the dimensions of the problem. This is a
well-known, standard tradeoff, and FOMs have proved ex-
tremely efficient in other settings than MDPs, e.g., poker AI
and equilibrium computation (Kroer et al., 2018). Theoreti-
cally, we improve the convergence rate (compared to Value
Iteration) by a factor Ω(N2.5AS), which is large, even for
small numbers of kernels N , states S and actions A. The
improvement in terms of N is better than in terms of S and
A because the number of kernels N only plays a role for the
max-player; this is also the reason why we choose different
step sizes τ and σ in Algorithm 1.

Remark 6 (Epoch and weight scheme). The above results
are for epoch lengths T` = `2. By choosing larger values
T` = `q where q tends to infinity, our algorithm approaches
a complexity of O

(
NA2S3 log(S) logm(ε−1)ε−1

)
. Thus

it is possible to improve upon VI by a total factor of
O(N2.5A1.5S1.5) by choosing a large q. Additionally, we
have presented Algorithm 1 with linear weights, i.e. the
weight is t for the iterate (xt, (yti)i). Note that Algorithm 1
can be implemented with any (increasing) weight schemes;
we found that for a weight scheme of tp, p ≥ 0, the con-
vergence rate of Algorithm 1 does not depend of p, even
though numerically, p = 1 performs better than p = 0.

5. Numerical Experiments
In this section we compare the empirical performances of
our algorithm with state-of-the-art approaches. We focus on
d = d2 and we compare the running time of Algorithm 1 to
the classical Value Iteration algorithm VI, Gauss-Seidel VI
(GS-VI, Puterman (1994)), Anderson VI (Anderson, Geist &
Scherrer (2018)), and Accelerated VI (AVI, Goyal & Grand-
Clément (2019)) (see Appendix F for more details).

Empirical setup. We implement our algorithms in Python
3.7.3, using Gurobi 8.1.1 to solve any linear/quadratic op-
timization program involved. We run our simulations on a
laptop with 2.2 GHz Intel Core i7 and 8 GB of RAM. We
test our algorithm on three different sets of instances: a ma-
chine replacement problem, a forest management problem
and some random (Garnet) instances. The discount factor is
fixed at λ = 0.8. For each MDP instance, we generate the
sampled kernels ŷ1, ..., ŷN by considering N small random
(Garnet) perturbations around the “true” nominal kernel y0

(see Appendix F).

All figures in this section show the running times of the
algorithms before returning an ε-optimal policy with ε =
0.1. We stop Algorithm 1 when (DG) ≤ ε/2, where

max
µ∈D

C(x, µ)− min
x′∈Π

C(x′, µ) (DG)

is the duality gap of a pair of policy-density (π, µ). Note
that (DG) ≤ ε/2 is enough to ensure that the policy is
an ε-optimal policy for (1). We stop VI and variants when
‖v`−F (v`)‖∞ < 2λε(1−λ)−1, which guarantees that the
current policy is ε-optimal (Puterman, 1994). The running
times are averaged across 5 instances by changing the seeds
for sampling the N kernels around y0.

Initialization and warm-start. We initialize all algorithms
with v0 = 0. We evaluate F (v) using our convex refor-
mulation (see Appendix A). At epoch ` of VI and variants,
we warm-start each computation of F (v`) with the optimal
solution obtained from the previous epoch `−1. We present
details about the computation of (DG) in Appendix E.

Structured MDP instances. We consider two instances in-
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Figure 1: Comparison of Alg. 1 with four variants of Value Iteration on three MDP domains (increasing number of kernels).
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Figure 2: Comparison of Alg. 1 with four variants of Value Iteration on three MDP domains (increasing number of states).

spired from real-world applications, a machine replacement
problem studied by Delage & Mannor (2010), Wiesemann
et al. (2013) and Goyal & Grand-Clément (2018), and a for-
est management example from the Python package pymdp-
toolbox (Cordwell et al., 2015) inspired by Possingham &
Tuck (1997). In the machine replacement problem, the goal
is to design a replacement policy for a line of machines. The
states of the MDP represent age phases of the machine and
the actions represent different repair or replacement options.
In the forest management problem, the forest grows at every
period and the goal is to balance the revenue associated
with selling cut wood and the risk of wildfire. The transi-
tion kernels ŷ1, ..., ŷN represent historical data, obtained
from observations from previous years. In both instances,
even though the transition parameters can be estimated from
retrospective data sets, one often does not have access to
enough data to exactly assess the probability of a machine
breaking down when in a given condition, the rate of growth
of the forest, or the risk of wildfire. Additionally, the his-
torical data may contain errors; this warrants the use of a
robust model for finding good, stable machine replacement
and forest management policies. We present details on these
instances in Appendix G and Appendix H.

Random MDP instances. We also test our algorithm on
random, denser MDP instances. We use the Generalized

Average Reward Non-stationary Environment Test-bench,
or in short, Garnet MDPs (Archibald et al., 1995; Bhatnagar
et al., 2007). Garnet MDPs are a class of abstract but repre-
sentative finite MDPs that are easy to build and for which we
can control the connectivity of the underlying Markov chain
with a branching factor, nb, which represents the proportion
of next states available at every state-action pair (s, a). They
are a class of randomly constructed finite MDP’s serving
as a test-bench for RL algorithms (Tarbouriech & Lazaric,
2019; Piot et al., 2016; Jian et al., 2019). We consider
S = A, nb = 20% and random uniform rewards in [0, 10].

Increasing instance sizes. Our experiments evaluate the per-
formance of all algorithms by running them on increasingly-
larger instances. Our problems have three size parameters:
S and A, which affect the MDP size, and N , which affects
the size of the ambiguity sets. Because the runtimes of
the VI algorithms grow quickly in these parameters, we
perform our experiments by holding two out of three param-
eters fixed, while increasing the last one. When we consider
an increasing number of kernels (Figure 1), we keep S = 30
fixed. When we consider an increasing number of states, we
keep N = 30 fixed. For all instances, A = 30 for Garnet
MDPs, A = 2 for machine replacement MDPs, and A = 3
for forest management MDPs.
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Numerical results. We present the results of our numerical
study in Figure 1 and Figure 2. For very small instances
(e.g. S = 5 states, A = 2 actions, N = 30 observed
kernels), Algorithm 1 has similar performance as the other
four algorithms. When the number of states or the number
of kernels increases, the average convergence times of our
algorithm moderately increase, e.g. from 1.6 seconds for
N = 5, S,A = 30 to 120.2 seconds for N = 70, S,A =
30 (Figure 1c). However, Algorithm 1 scales significantly
better than the other methods based on IPM, and as the
instance sizes increases it outperforms all other methods.
We also see that for Garnet instances, the convergences
of all the algorithms are slower, since the MDP instances
are denser than for more structured examples and there are
more actions. As expected from our theoretical results in
the previous section, the running time of Algorithm 1 grows
linearly with N . Perhaps more surprisingly, the empirical
running times of the other algorithms also seem to grow
(almost) linearly with N . This may be due to the solver
(Gurobi 8.1.1) exploiting the particular problem structure of
the robust Bellman update (see Appendix A).
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A. Convex Reformulation for Bellman Update
We show here how to reformulate (3) into a convex program,
for Bs = Bp,s (the reformulation for Bs = B∞,s follows
directly). At every epoch of Value Iteration VI, we compute
F (v) for the current value vector v ∈ RS , where

F (v)s = min
xs∈∆(A)

max
ys∈Bs

A∑
a=1

xsa
(
csa + λ · y>sav

)
,∀ s ∈ S.

From convex duality we have, for any s ∈ S,

F (v)s = min
xs∈∆(A)

max
ys∈Bs

A∑
a=1

xsa
(
csa + λ · y>sav

)
= max

ys∈Bs

min
xs∈∆(A)

A∑
a=1

xsa
(
csa + λ · y>sav

)
. (14)

For y ∈ Bs, we can reformulate the inner minimization as

max γ

γ ∈ R,
csa + λy>sav ≥ γ,∀ a ∈ A.

Overall, we have proved that

F (v)s = max γ

γ ∈ R,y ∈ Bs,
csa + λy>sav ≥ γ,∀ a ∈ A.

(15)

Replacing Bs by B̃p,s we obtain

F (v)s = max γ

γ ∈ R,y1, ...,yN ∈ U ,

csa + λ
1

N

N∑
i=1

y>i,sav ≥ γ∀ a ∈ A,

1

N

N∑
i=1

d(yi, ŷi,s)
p ≤ θp.

(16)

Formulation (16) is a linear program with linear con-
straints (for d = d1, d∞ and p = 1), and one additional
quadratic constraint (for d = d2 and p = 2). Follow-
ing (Ben-Tal & Nemirovski, 2001), we can solve (16)
up to accuracy ε in a number of arithmetic operations in
O
(
N3.5S3.5A3.5 log(1/ε)

)
. We warm-start each of this

optimization problem with the optimal solution found in
the previous epoch of VI.

B. Proof of Theorem 1
We present here the detailed proof for Theorem 1. We
proceed in three steps:

• We justify the choice of the step-sizes σ, τ as

τ =
(√

Aλ‖v`‖2
)−1

, σ = N
√
A(λ‖v`‖2)−1.

• We prove upper bounds on the duality gap (11).

• We finally combine these upper bounds to obtain the
convergence rate of Theorem 1.

Choice of step-sizes. We define

L = sup
‖x‖2≤1,‖(y)i‖2≤1

∑
a∈A

xsaλ

N∑
i=1

1

N
y>i,sav

`.

At epoch ` we choose step sizes σ, τ such that

1√
στ

= L. (17)

From Chambolle & Pock (2016), this is enough to ensure
that x̄`s, (ȳ

`
i,s)i are O(1/`2)-optimal in computing F (v`),

where x̄`s, (ȳ
`
i,s)i are the weighted averages for the iterates

(xτ`+1, (yτ`+1,i)i), ..., (xτ`+`2 , (yτ`+`2,i)i),

with weights τ` + 1, ..., τ` + `2. Now note that, by using
Cauchy-Schwarz twice, we have

L =
λ√
N
‖v`‖2. (18)

Note that we could simply choose σ = τ =√
N
(
λ‖v`‖2

)−1
.However, since our convergence rate will

involve the term ΘX/τ + ΘY /σ, we try to equalize these
two terms. Under the condition (17), the best choice of
step sizes is therefore τ =

(√
ΘX/ΘY

)
L−1. Recall that

ΘX ,ΘY are the maximum of the respective Bregman diver-
gences (squared norm two) onto ∆(A) and B̃p,s. Therefore,
ΘX = O(1),ΘY = O(NA).This leads to

τ =
(√

Aλ‖v`‖2
)−1

, σ = N
√
A(λ‖v`‖2)−1.

Note that we are essentially adjusting the step sizes, taking
into account the difference of dimensions between ∆(A),
the decision space of the min-player, and B̃p,s ⊂ RN×A×S ,
the decision space of the max-player.

Upper bounds on duality gap (11) Note that Theorem
3.1 in Grand-Clément & Kroer (2021) only gives an upper
bound on (11) when N = 1, which reduces to the case of
robust MDP. However, note that we can extend this result to
distributionally robust MDPs by considering that Algorithm
1 is running N instances of the same algorithm for robust
MDPs, one instance per kernel yi. Here it is crucial to
reckon that:
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• This scales the constantsRY (maximum of ‖·‖Y on Y )
and ΘY (maximum of DY on Y ×Y ). This is because
for distributionally robust MDPs with nominal distri-
bution supported on N kernels, Y is now contained
in (∆(S))

N×A, compared to Y contained in (∆(S))
A

for robust MDPs; here recall that we denote by Y the
decision space of the max-player.

• This leaves unchanged the convergence rate of Algo-
rithm 1 in terms of number of PD iterations T , as this
convergence rate only depends (in terms of transition

kernels) of the expected value ys =
1

N

∑N
i=1 yi,s.

Therefore, after T PD iterations of Algorithm 1, the duality
gap (11) is upper bounded by

O

(
RXRY

(
ΘX

τ
+

ΘY

σ

) √
S√
N

(
λT

1/3

T 1/3
+

1

T 2/3

))
.

Note the additional 1/
√
N , compared to Theorem 3.1 from

Grand-Clément & Kroer (2021); this comes from the equal-
ity (18). Let us now simplify this upper bound. Note that

λT
1/3

T 1/3
+

1

T 2/3
= O

(
1

T 2/3

)
,

because of the exponential decay of the term λT
1/3

. Com-
bining the two previous simplifications, we obtain that after
T PD iterations, the duality gap (11) is upper bounded by

O

(
RXRY

(
ΘX

τ
+

ΘY

σ

) √
S√
N

1

T 2/3

)
.

C. Proof Proposition 4
In this section we focus on solving (12), dropping the index
s ∈ S, with the understanding that h = hs ∈ RA×S , ŷi =
ŷi,s ∈ U .

Proof for d = d2, p = 2. The proximal update becomes

min

N∑
i=1

〈yi,h〉+
1

2σ
‖yi − y′

i‖22

y1, ...,yN ∈ (∆(S))
A
,

1

N

N∑
i=1

‖yi − ŷi‖22 ≤ θ2.

If we dualize the second constraint with a Lagrange multi-
plier γ, we end up with computing NA Euclidean projec-
tions onto the simplex ∆(S), because the argmin of

y ∈ U 7→ 〈y,h〉+
1

2σ
‖y − y′‖22 +

γ

2
‖y − ŷi‖22

is the same as the argmin of

y ∈ U 7→ 1

2
‖y − σ

1 + σγ

(
1

σ
y′ + γŷi − h

)
‖22.

We therefore compute NA Euclidean projections onto
the simplex of size S, which can be performed in
O (NAS log(S)) arithmetic operations. We then need to
binary search over the Lagrange multiplier γ, resulting in a
complexity O

(
NAS log(S) log(ε−1

)
.

Proof for d = d1, p = 1. The proximal update becomes

min

N∑
i=1

〈yi,h〉+
1

2σ
‖yi − y′

i‖22

y1, ...,yN ∈ (∆(S))
A
,

1

N

N∑
i=1

‖yi − ŷi‖1 ≤ θ.

We introduce a Lagrange multiplier γ ≥ 0 for the second
constraint: we now solve

max
γ≥0
−γθ

+ min

N∑
i=1

〈yi,h〉+
1

2σ
‖yi − y′

i‖22 + γ‖yi − ŷi‖1

y1, ...,yN ∈ (∆(S))
A
.

We then introduce Lagrange multipliers (αi,a)i,a for each

constraint
∑S
s′=1 yi,a,s′ = 1 for each i = 1, ..., N and

a ∈ A:

max
γ≥0

max
(αi,a)i,a∈RN×A

−
∑
i,a

αi,a − γθ

+

N∑
i=1

A∑
a=1

S∑
s′=1

min
yi,a,s′≥0

(hi,a,s′ + αi,a)yi,a,s′

+
1

2σ
(yi,a,s′ − y′i,a,s′)2 + γ|yi,a,s′ − ŷi,a,s′ |.

Solving the inner minimization. Let us drop the index
(i, a, s′) and explain how to compute a closed-form solution
to the inner univariate minimization:

min
y≥0

(h+ α)y +
1

2σ
(y − y′)2 + γ|y − ŷ|.

We can distinguish three regions.

1. y > ŷ. The first-order conditions yield

(h+ α) + (1/σ)(y − y′) + γ = 0,

which implies y = y′ − σ(γ + h+ α). This is valid as
long as y′ − σ(γ + h+ α) > ŷ. Note that y′ − σ(γ +
h + α) > ŷ implies y′ − σ(γ + h + α) ≥ 0, since
ŷ ≥ 0.
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2. y < ŷ. The first-order conditions yield y = y′ −
σ(−γ+h+α), which is valid as long as y′− σ(−γ+
h+ α) < ŷ and y′ − σ(−γ + h+ α) ≥ 0.

Overall, we have

y =


y′ − σ(γ + h+ α) if

1

σ
(y′ − ŷ)− h− α > γ,

ŷ if | 1
σ

(y′ − ŷ)− h− α| ≤ γ,

(y′ − σ(−γ + h+ α))+ if
1

σ
(y′ − ŷ)− h− α < −γ.

(19)
Note that this is essentially the shrinkage-thresholding op-
erator, up to the last case and the x 7→ x+ function (which
stems from the non-negativity constraint).

Solving the maximization over α. For a fixed Lagrange
multiplier γ, our goal is now to solve

max
α∈R
−α+

S∑
s′=1

(hs′+α)ys′+
1

2σ
(ys′−y′s′)+γ|ys′− ŷs′ |,

(20)
where y follows (19). Let us rewrite (19) with the index s′

and split the thresholding at zero into two cases:

y =


y′ − σ(γ + h+ α) if (1/σ)(y′ − ŷ)− h− α > γ,

ŷ if |(1/σ)(y′ − ŷ)− h− α| ≤ γ,
(y′ + γ − h− α)+ if (1/σ)(y′ − ŷ)− h− α < −γ,
0 if (1/σ)y′s′ − hs′ − α < −γ.

For each s′ ∈ S there are three breakpoints where the be-
havior of ys′ changes with respect to the choice of α:

1. (1/σ)y′s′ − hs′ − α = −γ: ys′ becomes nonzero at a
rate of −σα,

2. (1/σ)(y′ − ŷ)− h− α = −γ: ys′ becomes constant
at ŷs′ ,

3. y(1/σ)(y′ − ŷ)− h− α = γ: ys′ grows above ŷs′ at
a rate −σα.

This yields the following algorithm.

1. We sort the breakpoints in decreasing order of α, which
takes time O(S log(S)).

2. At the first breakpoint, ys′ = 0 for all s′.

3. We keep a counter num active denoting how many
variables change with α at the current breakpoint, ini-
tialized at zero.

4. We keep a counter sum denoting the value of
∑
s′ ys′ if

we had set α equal to the current breakpoint, initialized
at zero.

5. We then iterate through the breakpoints (in decreasing
order). Let α1, α2 be the previous and current break-
points. At every breakpoint:

(a) set sum+ = σnum active · (α2 − α1).
(b) if sum > 1 then stop and go to 6.
(c) else, we update num active based on whether

the current variable starts or stops changing at α2,
and go to the next breakpoint.

6. From the mean value theorem, an optimal α∗ belongs
to the interval [α1, α2]. We find it by setting α =
α2 − (sum− 1)/(σnum active).

There are NA Lagrange multipliers (αia)i,a, and we
can compute each of them in O(S log(S)), given a La-
grange multiplier γ. We still need to use bisection to
compute γ∗. Overall we end up with a complexity of
O(NA2S3 log(ε−1)ε−1).

Remark 7. In the context of robust MDP (i.e. N=1), note
that Ho et al. (2018) gives an algorithm with complexity
O(S2A log(S2A)) to compute (3) with d = d1, p = 1. It
remains unclear to us if this algorithm extends to the case
N ≥ 2 and its complexity in this case.

Proof for d = d∞, p = 1. The FOM update becomes

min
1

N

N∑
i=1

〈yi,h〉+
1

2σ
‖yi − y′

i‖22

y1, ...,yN ∈ U ,

1

N

N∑
i=1

‖yi − ŷi‖∞ ≤ θ.

We introduce a Lagrange multiplier γ ∈ R for the binding
constraint, and our goal is now to solve

min

N∑
i=1

〈yi,h〉+
1

2σ
‖yi − y′

i‖22 + γ ·
N∑
i=1

‖yi − ŷi‖∞

y1, ...,yN ∈ U .

Note that this problem decomposes across i = 1, ..., N , so
that we can solve independently, for each i,

min 〈y,h〉+
1

2σ
‖y − y′

i‖22 + γ‖y − ŷi‖∞

y ∈ U .
(21)

To solve (21), we can use bisection to find a feasible α such
that γ‖y − ŷi‖∞ ≤ α. This leads to solve

min 〈y,h〉+
1

2σ
‖y − y′

i‖22

y ∈ (∆(S))A,

γ‖ya − ŷi,a‖∞ ≤ α,∀ a ∈ A.



First-Order Methods for Wasserstein Distributionally Robust MDPs

Note that this problem decomposes across each action a, so
that we only have to solve A problems of the form

min 〈yi,a,hia〉+
1

2σ
‖yi,a − y′

i,a‖22
yi,a ∈ ∆(S),

γ‖yi,a − ŷi,a‖∞ ≤ α.

This brings down to solving the problem of Euclidean
projection onto the simplex ∆(S) with box constraints,
which can be done in O(S log(S) log(ε−1) (by relaxing
the constraint y>i,ae = 1). Then the overall complexity to
compute an ε-approximation of the proximal update is in
O
(
NAS log(S) log3

(
ε−1)

))
.

D. Complexity Results for Type-∞
Wasserstein Ball

Background on type-∞ Wasserstein distance Xie
(2020), Bertsimas et al. (2019), Bertsimas et al. (2018)
consider ambiguity sets based on type-∞Wasserstein dis-
tance with application to two-state distributionally robust
optimization. Recent work suggests that distributionally
robust optimization based on type-∞ distance has some
computational advantages compared to DRO based on type-
p Wasserstein distance (Xie et al., 2020).

Optimality of Markovian policy Note that Yang (2017)
proves that for type p Wasserstein distance (with p < +∞),
an optimal policy can be found Markovian. We prove here
that the same holds for Wasserstein distance of p = +∞.
Let us define the value vector for each state s as

vs = min
x∈∆(A)

max
µs∈Ds

EπEy∼µs
[

+∞∑
t=0

λtcstat | s0 = s],

which represents the expected reward-to-go starting from
a state s. Note that s 7→ vs is well-defined because of the
s-rectangularity assumption (Wiesemann et al., 2013). The
Bellman equation (2) follows from the dynamic program-
ming principle. Now we have that

x 7→ max
µs∈Ds

Eys∼µs

[∑
a∈A

xsa
(
rsa + λy>sav

∗) |s0 = s

]

is convex (as the pointwise maximum of linear functions),
proper (because the costs are bounded), and upper semi-
continuous. Hence the minimization problem over x ∈
∆(A) is minimizing a closed proper convex function onto
the closed convex set ∆(A). Therefore an optimal solution
exists, i.e. there exists an optimal Markovian policy.

Proximal update. The proximal update on the max-
player becomes

min

N∑
i=1

〈yi,h〉+
1

2σ
‖yi − y′

i‖22

y1, ...,yN ∈ U ,
d(yi, ŷi) ≤ θ,∀ i = 1, ..., N.

(22)

We note that this problem naturally decomposes along i =
1, ..., N , so that we only have to solve N subproblems of
the form

min 〈y,h〉+
1

2σ
‖yi − y′

i‖22
y ∈ U ,
d(y, ŷi) ≤ θ.

(23)

If we introduce a Lagrange multiplier γ for the last con-
straint, we note that we have to solve

min

N∑
i=1

〈y,h〉+
1

2σ
‖yi − y′

i‖22 + γ · d(y, ŷi)

y ∈ U .

(24)

It is straightforward to use the same methods as for the
proximal updates for p < +∞ and d = d1, d2, d∞, which
yields the following corollary of Proposition 4.

Corollary 8. 1. Let d = d2 and p = 2. The
proximal update (24) can be computed in
O
(
NAS log(S) log(ε−1)

)
arithmetics operations.

2. Let d = d1 and p = 1. The proximal update (24)
can be computed in O

(
NAS log(S) log(ε−1)

)
arith-

metics operations.

3. Let d = d∞ and p = 1. The proximal update (24)
can be computed in O

(
NAS log(S) log3(ε−1)

)
arith-

metics operations.

The corresponding convergence rates for Algorithm 1 with
p = +∞ are given in Theorem 5.

E. Computing the Duality Gap
Remember that the duality gap in (1) is defined as

max
µ∈D

C(x, µ)− min
x′∈Π

C(x′, µ).

Following Yang (2017), maxµ∈D C(x, µ) can be com-
puted by finding the fixed point of the following
operator, which is a contraction of factor λ: Fx(v)s =

maxµ∈Ds Ey∼µ

[∑A
a=1 xsa

(
csa + λy>v

)]
,∀ s ∈ S.

Moreover, computing minx′∈Π C(x′, µ) is equiv-
alent to solving the (nominal) MDP with fixed
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density µ ∈ D. This can be solved by it-
erating the following contraction: Fy(v)s =

minxs∈∆(A) Ey∼µ

[∑A
a=1 xsa

(
csa + λy>v

)]
,∀ s ∈ S.

We present in the next figure the running times to compute
(DG) up to ε = 0.25, using the numerical setup of our
numerical experiments for Garnet MDPs. We present our
results for λ = 0.8. We notice that computing (DG) quickly
becomes slow. Therefore, in our experiments we focus on
computing (DG) for S,A,N smaller than 70.
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Figure 3: Running times for computing the duality gap
(DG), for increasing number of kernels (while S,A = 10).
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Figure 4: States.

Figure 5: Running times for computing the duality gap
(DG), for increasing number of states (while N,A = 10).

We also note here that the duality gap is slower to compute
for d = d1 (where the Bellman update brings down to a large
linear program) than for d = d2 (where the Bellman update
brings down to a convex program with less variables than
for d = d1 but one additional quadratic constraints). Note
that in the case of d = d1,NAS additional variables have to
be introduced to model the absolute values |yi,a,s′ − ŷi,a,s′ |
for all i = 1, ..., N, a ∈ A, s′ ∈ S; this is probably what
causes the Bellman update with d = d2 to be faster, even if
it introduces a (single) quadratic constraint.

F. Details on Numerical Implementations
Estimating the Bellman operator. In order to obtain
F (v), we use the reformulation (16) and solve it using
Gurobi 8.1.1 for Python 3.7.3. Following Ben-Tal & Ne-
mirovski (2001), we can solve (16) up to accuracy ε in a
number of arithmetic operations in O

(
S3.5A3.5 log(1/ε)

)
.

For VI, AVI, Anderson and GSVI, we warm-start the com-
putation of F (v`) with the previous solution obtained from
solving F (v`−1).

Computing uncertainty sets. In order to obtain the N
transition kernels (ŷi)

N
i=1, we sample some random (Gar-

net) deviations around the true nominal kernel y0. In partic-
ular, we sample N Garnet MDP instances y1, ....,yN with
nb = 0.05 (very low level of connectivity), and we consider
ŷ1, ..., ŷN as

ŷi = 0.95y0 + 0.05yi, i = 1, ..., N.

This way, (ŷi)
N
i=1 represent N kernels, obtained as small

(random) errors from the true transition kernel y0. The
nominal kernel for the machine replacement and the forest
management instances are given in the next appendices.

For the machine replacement and the forest management
problems, we build an uncertainty set of the form (4) with
θ = 0.5. We choose to present our results for θ = 0.5
as they are representative of our results for other choices
(θ ∈ {0.1, 0.5, 1, 2}). As the Garnet MDPs have denser
transitions, we choose θ =

√
nbA as the radius for the

Wasserstein balls.

Accelerated Value Iteration. The algorithm AVI (Goyal
& Grand-Clément, 2018; Akian et al., 2020) is a simple
variation of VI, inspired from acceleration scheme from
convex optimization (Nesterov, 1983; 2013). In particular,
for any sequences of scalar (αs)s≥0 and (γs)s≥0 ∈ RN,
Accelerated Value Iteration (AVI) is defined as

v0,v1 ∈ RS ,

{
ht = vt + γt · (vt − vt−1) ,

vt+1 ← ht − αt (ht − F (ht)) ,
∀ t ≥ 1.

(AVI)
Following (Goyal & Grand-Clément, 2018), we choose step
sizes as

αs = α = 1/(1+λ), γs = γ =
(

1−
√

1− λ2
)
/λ, ∀s ≥ 1.

Gauss-Seidel Value Iteration. Gauss-Seidel Value Itera-
tion (GS-VI) is a popular asynchronous variant of VI (Put-
erman, 1994), where vt+1

s = maxa∈A miny∈Bp,s
csa + λ ·∑s−1

s′=1 ysas′v
t+1
s′ + λ ·

∑n
s′=s ysas′v

t
s′ .

Anderson Value Iteration. This algorithm (Geist &
Scherrer, 2018), inspired from quasi-Newton methods from
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convex optimization, updates vt+1 as a linear combination
of the last (m+ 1)-iterates F (vt), ..., F (vt−m):

vt+1 =

m∑
i=0

αiF (vt−m+i),

for some weights α0, ..., αm. The weights α ∈ Rm+1 are
updated at every iteration, see Algorithm 1 and Equation
(1) in (Geist & Scherrer, 2018) for further details. There
is no heuristics for choosing m; we choose m = 5 in our
numerical experiments.

G. Details on Machine Replacement Example
We present an example of this instance in Figure 6-7, where
there are 10 states: 8 states related to the condition of the
machine, and two repair states. The instances for larger
number of states are constructed in the same fashion by
adding some condition states for the machine. Below we
give details about the states, actions, transitions and rewards.

States. The machine replacement problem involves a ma-
chine whose set of possible conditions are described by S
states. The first S − 2 states are operative states. The states
1 to S − 2 model the condition of the machine, with 1 being
perfect condition and S − 2 being worst condition. The
last two states S − 1 and S are states representing when
the machine is being repaired. The initial distribution is
uniform across states.

Actions. There are two actions: repair and no repair.

Transitions. The transitions are detailed in Figures 6-7.
When the action is no repair, the machine is likely to de-
teriorates toward the state S − 2, or may stay in the same
condition. When the action is repair, the decision-maker
brings the machine to the states S − 1 and S − 2.

Rewards. There is a cost of 0 for states 1, ..., S−3; letting
the machine reach the worst operative state S−2 is penalized
with a cost of 20. The state S − 1 is a standard repair state
and has a cost of 2, while the last state S is a longer and
more costly repair state and has cost 10.

Figure 6: Nominal transition for action = repair in our
machine replacement MDP.

Figure 7: Nominal transition for action = no repair in our
machine replacement MDP.

H. Details on Forest Management Example
The state in the forest management example represents the
growth of the forest. The goal is to find the right balance
between maintaining the forest, making money by selling
cut wood. Every year, the forest may suffer from wildfires.
A complete description may be found at (Cordwell et al.,
2015). This is inspired from the application of dynamic
programming to optimal fire management (Possingham &
Tuck, 1997).

States. There are S states. The state 1 is the youngest
state for the forest. The forest can not grow beyond state S.
The initial distribution is uniform across states.

Actions. There are two actions, wait and cut & sell.

Transitions. If the forest is in a state s and the action is
wait, the next state is s+ 1 with probability 1−p (the forest
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grows) and 1 with probability p (a wildfire burns the forest
down). If the forest is in a state s and the action is cut &
sell, the next state is 1 with probability 1. The probability
of wildfire p is chosen at p = 0.1.

Rewards. There is a reward of 4 when the forest reaches
the oldest state (S) and the chosen action is wait. There is a
reward of 0 at every other state if the chosen action is wait.
When the action is cut & sell, the reward at the youngest
state s = 1 is 0, there is a reward of 1 in any other state
s ∈ {1, ..., S − 1}, and a reward of 2 in s = S. We convert
all rewards to cost by flipping the signs of the rewards.


