
Phasic Policy Gradient

A. Hyperparameters

Table 1. PPG-Specific Hyperparameters

N⇡ 32
E⇡ 1
EV 1
Eaux 6
�clone 1
MINIBATCHES PER AUX EPOCH PER N⇡ 16

Table 2. Other Hyperparameters

� .999
� .95
TIMESTEPS PER ROLLOUT 256
MINIBATCHES PER EPOCH 8
ENTROPY BONUS COEFFICIENT (�S) .01
PPO CLIP RANGE (✏) .2
REWARD NORMALIZATION? YES
LEARNING RATE 5⇥ 10�4

WORKERS 4
ENVIRONMENTS PER WORKER 64
TOTAL TIMESTEPS 100M
LSTM? NO
FRAME STACK? NO

We used the Adam optimizer (Kingma & Ba, 2014) in all experiments. We used a combination of NVIDIA V100 and
NVIDIA P100 GPUs.

We normalized rewards so that time-discounted returns had approximately unit variance. Specifically, we tracked an
approximation of the standard deviation of time-discounted returns and, at each time step, divided rewards by this standard
deviation. See code at https://github.com/openai/phasic-policy-gradient.

https://github.com/openai/phasic-policy-gradient

Phasic Policy Gradient

B. Shared vs Separate Networks

Figure 8. A comparison between two implementations of PPO on Procgen Benchmark. The baseline shares features between the policy
and value networks, while the ablation trains separate policy and value networks.

Phasic Policy Gradient

C. Auxiliary Phase Value Function Training

Figure 9. The performance of a variant of PPG which skips the optimization of Lvalue during the auxiliary phase, in favor of additional
optimization of Lvalue during the policy phase.

We now discuss the relative importance of optimizing Lvalue and Ljoint during the auxiliary phase. From Appendix B, we
know that Ljoint is crucial; without some optimization of this objective, there is no mechanism to share features between
the value function and the policy. Although it is convenient to optimize Lvalue during the auxiliary phase as well, it is
not strictly necessary. It is also viable to perform extra value function optimization during the policy phase (by increasing
EV), while removing the optimization of Lvalue from the auxiliary phase. A comparison between this variant and the PPG
baseline are shown in Figure 9. Although the PPG baseline has a slight advantage, we can see that the choice to optimize
Lvalue during the auxiliary phase is not an essential element of PPG.

Phasic Policy Gradient

D. PPO Sample Reuse

Figure 10. A comparison between different levels of sample reuse in PPO.

We sweep over the different values for sample reuse in PPO, from 1 to 6. Empirically, we find that a sample reuse of 3 is
optimal, given our other hyperparameter settings. As discussed in Section 3.2, the results with PPG suggest that the poor
performance of PPO with low sample reuse is due to the fact that the value function, not the policy, is being under-trained.

Phasic Policy Gradient

E. Additional Breakdowns by Environment

Figure 11. An environment specific breakdown of Figure 3. Performance with varying levels of policy sample reuse.

Figure 12. An environment specific breakdown of Figure 4. Performance with varying levels of value function sample reuse.

Phasic Policy Gradient

Figure 13. An environment specific breakdown of Figure 5. Performance with varying auxiliary phase frequency

Figure 14. An environment specific breakdown of Figure 6. The impact of replacing the clipping objective (Lclip) with a fixed KL penalty
objective (LKL)

Phasic Policy Gradient

Figure 15. An environment specific breakdown of Figure 7. A comparison between the default implementation of PPG which trains two
separate networks, and a single-network variant that mimics the same training dynamics by detaching the gradient when necessary. PPO
shown for reference.

