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Abstract
To tackle the curse of dimensionality in data anal-
ysis and unsupervised learning, it is critical to
be able to efficiently compute “simple” faithful
representations of the data that helps extract infor-
mation, improves understanding and visualization
of the structure. When the dataset consists of d-
dimensional vectors, simple representations of the
data may consist in trees or ultrametrics, and the
goal is to best preserve the distances (i.e.: dissim-
ilarity values) between data elements. To circum-
vent the quadratic running times of the most pop-
ular methods for fitting ultrametrics, such as av-
erage, single, or complete linkage, Cohen-Addad
et al. (2020) recently presented a new algorithm
that for any c ≥ 1, outputs in time n1+O(1/c2) an
ultrametric ∆ such that for any two points u, v,
∆(u, v) is within a multiplicative factor of 5c to
the distance between u and v in the “best” ul-
trametric representation. We improve the above
result and show how to improve the above guar-
antee from 5c to

√
2c + ε while achieving the

same asymptotic running time. To complement
the improved theoretical bound, we additionally
show that the performances of our algorithm are
significantly better for various real-world datasets.

1. Introduction
Simplifying, sparsifying or sketching datasets so as to retain
the most crucial information and preserve the quality of the
signal is a central question in machine learning, statistics and
data analysis. In this context, reducing the size of the dataset,
by for example reducing the dimension, has to be done in
such a way that the essential properties of the dataset are
preserved. An iconic example is the principal component
analysis which leads to a representation of the dataset in
a lower dimensional space that helps identify underlying
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cluster structures. Since the 50s, a large toolkit of metric
embedding techniques have been developed in a variety of
communities so as to “simplify” datasets while preserving
some relevant structure of the input dataset.

In this paper, we aim at computing embedding of high-
dimensional Euclidean data into ultrametrics1. Ultramet-
rics are simple hierarchical representations of metric spaces
which are particularly useful in clustering settings when
very little is known about the data (i.e.: if the target number
of clusters is unknown). They could for example be used for
finding hierarchical clustering, unveiling global hierarchical
structure over data elements (such as phylogenic trees), or
as visualization tools (the reader may refer to the extensive
work of Carlsson & Mémoli (2010)).

The most popular approaches for computing ultrametrics
are arguably the linkage algorithms, average-linkage, single-
linkage, Ward’s method and complete-linkage. These meth-
ods build a hierarchical clustering by iteratively merging the
clusters at minimum distance, and only differ by their defi-
nitions of cluster distance. Unfortunately, for all the above
algorithms, finding the closest clusters incurs a quadratic
running time for somewhat high dimensional inputs (i.e.:
Ω(log n)-dimensional inputs). This is a major roadblock
even when dealing with moderate size datasets (as shown
in the experiments, going above 50 000 points dataset is
infeasible for regular computers) and so designing efficient
ultrametric embeddings has been an important research prob-
lem.

In this paper, we follow the approach of Farach et al. (1995);
Cohen-Addad et al. (2020) and measure the quality of
an ultrametric by how much it distorts the distances be-
tween the input vectors. Namely, we aim at designing
an ultrametric ∆ such that for each pair of points a, b,
||a − b||2 ≤ ∆(a, b) ≤ α||a − b||2 for the smallest pos-
sible α (we defer the reader to Section 2 for a formal defi-
nition). This indeed approximately preserves the hierarchi-
cal structure of the data: Given three points p1, p2, p3, if
||p1 − p2||2 < α||p1 − p3||2, then ∆(p1, p2) ≤ ∆(p1, p3)
and so the natural distance ordering is thus approximately
preserved. The problem of computing the optimal ultra-
metric for the above objective function, which we refer

1An ultrametric (X, d) is a metric space where for each
x, y, z ∈ X , ∆(x, y) ≤ max(∆(x, z)(, z, y))



Improving Ultrametrics Embeddings Through Coresets

to as BUF∞ following Cohen-Addad et al. (2020) nota-
tion, can be solved in time O(n2d+ n2 log n) Farach et al.
(1995). Cohen-Addad et al. (2020) completed their result
by showing that assuming some complexity hypothesis, no
subquadratic algorithm exists. Unfortunately, a quadratic
running time is also the main roadblock for all the cur-
rent linkage algorithms. Hence, Cohen-Addad et al. (2020)
turned to designing subquadratic approximation algorithms
for the problem and described an algorithm running in time
O(nd + n1+1/c2+o(1)) that returns a 5c-approximation to
the optimum ultrametric.

1.1. Our Results

We provide a simple algorithm, that for any γ > 1, returns
a (
√

2γ + ε)-approximation for BUF∞ in time O(nd +

n1+1/γ2+o(1)), improving on the approximation guarantee
by a factor at least 3.53 while achieving the same asymptotic
running time.

Theorem 1. For any γ > 1, ε > 0, there is an algorithm
that produces a (

√
2γ + ε)-approximation in time

O

(
n ·
(
n1/γ2+o(1) + d · ( log 1/ε

ε2
+

log n

ε
) +

log 1/ε

ε4.5

))
for Euclidean instances of BUF∞ of dimension d.

Empirical results To show that the improvement of the
approximation guarantee by a factor 5√

2+ε
∼ 3.535 − ε

is indeed significant, we implemented our algorithm and
analyzed its performances on four classic datasets (IRIS,
SHUTTLE, MICE, PENDIGITS). We compared the results
with classic linkage algorithms (single, complete, average),
Ward’s method from the Scikit-learn library Pedregosa et al.
(2011) and from the FastCluster library Müllner (2013), the
algorithm of Cohen-Addad et al. (2020), and the optimum al-
gorithm of Farach et al. (1995). We show that our algorithm
indeed produces a significantly better ultrametric (in terms
of the BUF∞ objective) than the algorithm of Cohen-Addad
et al. (2020) (from 2 to 3 times better) while achieving a
comparable running time on the largest dataset (i.e.: SHUT-
TLE). Our algorithm is also much faster than single linkage
on datasets containing at least 10000 points.

1.2. Related Work

The landmark work of Carlsson & Mémoli (2010) on ul-
trametric embedding, hierarchical clustering and linkage
algorithms has helped better understand the structure of the
outputs produced by the linkage algorithms. The connection
between ultrametric and hierarchical clustering, as phrased
for example by Dasgupta (2015), has been thoroughly ex-
plored in Cohen-Addad et al. (2019; 2017). In particular,
Cohen-Addad et al. (2019); Moseley & Wang (2017) proved

that average-linkage yields a constant-factor approximate so-
lution to the dual of Dasgupta’s objective function. This line
of research has been pushed forward in successive works
(see e.g.:(Roy & Pokutta, 2016; Charikar & Chatziafratis,
2017; Cohen-Addad et al., 2017; Charikar et al., 2019; 2018;
Alon et al., 2020; Chatziafratis et al., 2020), see also (Bal-
can et al., 2008; Chami et al., 2020)). A major difference
between these works and ours is that we are focused on
designing an ultrametric to approximate distances or dis-
similarity between the input elements, namely finding a
good ultrametric embedding, while they are interested in
producing a hierarchical clustering tree with “good” clus-
tering properties (measured in terms of a different objective
function).

Related papers also include Cochez & Mou (2015) and
Abboud et al. (2019) which aims at providing linkage al-
gorithms that only approximately merge the closest clus-
ters. These works are essentially focused on providing ap-
proximate guarantees on the distances between the clusters
merged (e.g.: the clusters merged are at distance at most α
times the closest distance). Unfortunately, these approaches
are somewhat incomparable to ours since the output is not
guaranteed to be an ultrametric.

1.3. Technical Overview

The approach of Farach et al. (1995); Cohen-Addad et al.
(2020) consists in computing a Minimum Spanning Tree
(MST) T and sorting the edges of the MST by their cut
weight values (we will come back to this notion below).
The edge e of T with the largest cut weight w will form
the root of the ultrametric and points in different connected
components of T −e will be at distance w in the ultrametric.
The algorithm then proceeds recursively on each connected
component of T − e, hence defining an ultrametric.

There are two computational bottlenecks in the above algo-
rithm description: (1) the MST computation, and (2) the
computation of the cut weights of the edges of the MST.
Computing the MST of a set of n points in Euclidean space
of dimension Ω(log n) is a major open problem and there is
no subquadratic algorithm known. Hence, (Cohen-Addad
et al., 2020) resorted to use an approximate minimum span-
ning tree (with some additional properties that we describe
in the next sections) and we follow the same approach
here. This approach leads to compute a γ-approximate
MST in time n1+1/γ2+o(1). To improve over the algo-
rithm of (Cohen-Addad et al., 2020), both in theory and
in practice, one must thus improve on the cut weight com-
putation. Given an edge e of an MST T , the cut weight
of e is given by the maximum distance between points of
different connected components of T − e. This is essen-
tially a bichromatic diameter problem – which cannot be
solved exactly in subquadratic time assuming some popular
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complexity hypothesis. (Cohen-Addad et al., 2020) show
how to efficiently obtain a 5-approximation of this value
by simply keeping track of an estimate of the diameter of
each connected component and combining these estimates
with the maximum distance from an arbitrary point of one
side to the points of the other side. While better than 5-
approximation linear-time algorithms for the bichromatic
diameter are known, (Cohen-Addad et al., 2020) made the
choice of using the above simple algorithm. Arguably, the
main reason for this is that the entire algorithm requires to
perform in total n− 1 bichromatic diameter computations
to compute the cut weights of all the edges of the MST
and so, the algorithm must be able to re-use information
from different bichromatic diameter computations to run
in subquadratic time. In other words, a bichromatic diam-
eter computation must run in average over all bichromatic
diameter computation in time O(n1/γ2+o(1)) to match the
claimed bound. We show how to achieve this while ensur-
ing an approximation guarantee of

√
2 + ε, matching the

best known approximation bound for a single bichromatic
computation, and improving over the 5-approximation of
(Cohen-Addad et al., 2020).

Our key technical insight is that one can use constant-size
core-sets (small summaries of the input that preserve some
specific properties) for estimating the minimum enclosing
ball (up to a (1 + ε) multiplicative factor on the radius
of this ball). Equipped with this, we show how one can
approximate the bichromatic diameter problem within a
factor

√
2 + ε while maintaining the core-set efficiently

over the different bichromatic diameter computations. This
bound is the best known so far for the bichromatic diameter
problem and so improving on this will require to come up
with a significantly different algorithm.

2. Preliminaries
An ultrametric space (X,∆) is a metric space where the tri-
angle inequality is strengthened to the so-called ultrametric
inequality:

∀x, y, z ∈ X,∆(x, y) ≤ max(∆(x, z),∆(z, y)).

If X is finite, a convenient way to represent such an ultra-
metric space is via a rooted tree T together with a weight
function w : T → R+ such that

• there is a one-to-one correspondence between the
leaves of T and the set X ,

• the weight of any leaf is zero,

• the weights are decreasing along any path from the root
to a leaf.

The ultrametric space induced by (T,w) is given by

∆(x, y) = w(LCA(x, y))

where LCA(x, y) is the least common ancestor of x and y
in the tree T . It can be shown that any finite ultrametric
space can be represented in this way.

2.1. Ultrametric embedding

We denote by `2 : (x, y) → R+ the metric of a Euclidean
space. If e = (x, y) is an edge, then we will write `2(e)
as a shortcut for `2(x, y). Our goal is to find interesting
embeddings of a Euclidean space into an ultrametric space,
meaning essentially that we want the distances in the ul-
trametric space to be as close as possible to the original
distances. To this end, we consider the BEST ULTRAMET-
RIC FIT problem (BUF∞), defined as follows:

• INPUT: (X, `2) a set of points in some Euclidean
space.

• OUTPUT: an ultrametric (X,∆) such that: ∀x, y ∈
X, `2(x, y) ≤ ∆(x, y) ≤ α · `2(x, y), for the absolute
minimal value α.

An ultrametric ∆̂ is said to be a γ-approximation of the best
ultrametric if for any pair of points x, y we have `2(x, y) ≤
∆̂(x, y) ≤ γ · α · `2(x, y).

2.2. Approximation algorithm from (Cohen-Addad
et al., 2020)

In this section, we overview an approximation algorithm
from Cohen-Addad et al. (2020) which can be implemented
to run in time O(nd+ n1+1/γ2

) and for which the output is
guaranteed to be a 5·γ-approximation of the best ultrametric.
We build on this result and improve it to get a (

√
2 + ε) · γ

approximation algorithm. Before diving into the algorithm,
we need to define a few more notions.

Let T be a spanning tree over the set of points X . Without
loss of generality assume2 the edges have different weights.
For an edge e = (x, y) ∈ T , we denote by L(e) (respec-
tively R(e)) the connected component containing x (respec-
tively y) in T \ {e′ ∈ T | `2(e′) ≤ `2(e)}.

The cut weight CW(e) of an edge e ∈ T is defined as the
maximal distance between a point in L(e) and a point in
R(e); in symbols:

CW(e) = max
x∈L(e)
y∈R(e)

`2(x, y).

2Removing this assumption generates small technicalities that
we prefer to avoid for clarity.
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Given a spanning tree T together with a weight function
w : T → R, a Cartesian tree of (T,w) is a weighted rooted
tree defined as follows: if |T | = 1 then its Cartesian tree is
the unique vertex associated with a zero weight; otherwise
the root of the Cartesian tree corresponds to an edge e of
maximal weight, and its two children are obtained induc-
tively as Cartesian trees of the two connected components
of T \ {e}.

Algorithm 1 is proven to output a γ · δ-approximation of the
best ultrametric.

Algorithm 1 γ · δ-approximation for BUF∞
1: Compute a γ-approximated MST T over the set of

points
2: Compute a δ-estimate ĈW(·) of the cut weights with

respect to T .
3: Return a Cartesian tree of (T, ĈW(·)).

In (Cohen-Addad et al., 2020), the authors show how to
implement, for Euclidean spaces

• Step 1 in time O(nd+ n1+1/γ2

) by constructing a γ-
spanner via locality sensitive hash families (Har-Peled
et al., 2013),

• Step 2 in time O(nd+ n log n) for δ = 5 by tweaking
a disjoint-set data structure.

Step 3 is easy and can be done in time O(n log n) using
again a disjoint-set data structure.

Here we build on this work and improve Step 2. We show
how to improve the approximation factor from δ = 5 to
δ =
√

2 + ε for this step. We keep the same structure of the
algorithm and do not change Steps 1 and 3.

3. Improved approximation algorithm for the
cut weights

We work with a set X of points in a Euclidean space of

dimension d. Set Λ =
max

x,y∈X
`2(x,y)

min
x,y∈X
x6=y

`2(x,y) . We denote by B(c, r)

the ball of center c and radius r. Given a set of points S, the
minimum enclosing ball, denoted by MEB(S), is the unique
ball containing S with minimum radius. Given ε > 0, an
ε-core-set of S is a set C ⊆ S for which S ⊆ B(c, (1 + ε)r)
where B(c, r) = MEB(C), meaning in particular that r is
a (1 + ε)-approximation of the actual radius of MEB(S).
Maybe surprisingly, every set has a core-set of size O(1/ε);
this quantity depends neither on the number of points nor
on the space dimension. We recall the construction since
we will need to modify it for our stronger result.

Algorithm 2 Core-set computation
1: Pick p arbitrarily in P .
2: Set C = {p} and B(c, r) = B(p, 0)
3: while ∃x ∈ P such that `2(c, x) > (1 + ε)r do
4: Find a farthest point x ∈ S from c and add it to C
5: Compute B(c, r) = MEB(C)
6: end while
7: Return B(c, r) and C

It is proven in (Badoiu & Clarkson, 2003) that Algorithm 2
always outputs a core-set C of size at most 2/ε when the
computations of the minimum enclosing balls MEB(C) are
exact; it is shown in (Kumar et al., 2003) that a minimum
enclosing ball MEB(C) can be computed with arbitrary
precision ε′ in time O(|C|d+ |C|3.5 log(1/ε′)) arithmetic
operations. The while operation is iterated exactly |C| times;
each such iteration costs nd for checking the condition and
at most |C|d+ |C|3.5 log(1/ε′) for computing the minimum
enclosing ball. This leads to a running time of O(|C|nd+
|C|2d + |C|4.5 log(1/ε′). Using |C| ≤ n and |C| = O( 1

ε )

gives a running time of O(ndε + 1
ε4.5 log 1

ε ) for Algorithm 2.

Their bound on the size of the core-set is based on the
following property.
Lemma 1 ((Badoiu et al., 2002)). At each iteration of Al-
gorithm 2, the radius of MEB(C) increases by a factor at
least (1 + ε2/16).

3.1. A (
√

2 + ε)-approximation algorithm

This section is devoted to the following theorem.
Theorem 2. There exists an algorithm for computing a
(
√

2 + ε)-approximation of the cut-weights running in time

O

(
n · d · ( log Λ

ε2
+

log n

ε
) + n · 1

ε4.5
log

1

ε

)
Here is a high-level description of Algorithm 3: It maintains
a partition of X in a disjoint-set data structure U . For each
set S ∈ U of this, it keeps track of an ε-core-set CORE(S)
over S and its minimum enclosing ball B(cS , rS).

At the beginning of the process, it constructs a set for each
point in X . Then, it consider the edges of the MST in
increasing order of length (recall that we want to estimate
the cut weights of these edges). When at edge e = (x, y),
it looks at the two sets Sx and Sy of U containing x and y
respectively. Suppose w.l.o.g that Sx is bigger than Sy; then
the cut weight of e is estimated using the following formula

ĈW(e) = (1 + ε) · rSx
+ max
z∈Sy

`2(cSx
, z).

Claim 1. The above formula is such that

CW(e) ≤ ĈW(e) ≤ (
√

2 + ε) · CW(e)
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Algorithm 3 Cut-weights approximation
1: for all x ∈ X do
2: Create the set {x} with c{x} = x, r{x} = 0,

CORE({x}) = {x}
3: end for
4: for e = (x, y) ∈ T , taken in increasing order of `2(e)

do
5: Sx ← FIND(x)
6: Sy ← FIND(y)
7: If |Sx| < |Sy|, invert the roles of x and y
8: L← maxz∈Sy `2(cSx , z)

9: ĈW(e)← (1 + ε) · rSx
+ L

10: S ← UNION(Sx, Sy)
11: CORE(S)← CORE(Sx)
12: cS , rS ← cSx , rSx

13: if L > (1 + ε) · rSx
then

14: UPDATE(S, x)
15: end if
16: end for
17: Return (ĈW(e))e∈T

Algorithm 4 UPDATE(S, x)

1: if |CORE(S)| > 20/ε then
2: CORE(S)← {x}
3: B(cS , rS)← B(x, 0)
4: end if
5: while ∃z ∈ S with `2(cS , z) > (1 + ε)rS do
6: Add a farthest point z ∈ S from cS to CORE(S)
7: Compute B(cS , rS) = MEB(CORE(S))
8: end while

Proof. Suppose p1, p2 are two points respectively in Sx
and Sy with `2(p1, p2) = CW(e). By the triangle inequal-
ity we have that `2(p1, p2) ≤ `2(p1, cSx) + `2(cSx , p2).
We then use the facts that `2(p1, cSx) ≤ (1 + ε) · rSx –
since CORE(Sx) is an ε-core-set – and that `2(cSx

, p2) ≤
maxz∈Sy

`2(cSx
, z) to conclude for the first inequality. For

the second inequality, let q = arg maxz∈Sy
`2(cSx

, z). Con-
sider then the hyperplane H orthogonal to −−→cSx

q going
through cSx and let V be the region of the space partitioned
by H not containing q. By a basic property of the mini-
mum enclosing ball (Kumar et al., 2003, Lemma 2), there
is a point q′ ∈ Sx in the intersection of V and the bound-
ary of MEB(CORE(Sx)); q′ is thus at distance rSx

from
cSx

. By definition CW(e) ≥ `2(q, q′). Since q′ is in V we

get that `2(q, q′) ≥
√
r2
Sx

+ `2(cSx
, q)2 (with equality if q′

lies in H). Overall, ĈW(e)
CW(e) ≤

(1+ε)·rSx+`2(cSx ,q)√
r2Sx

+`2(cSx ,q)
2

. Finally,

applying the Cauchy-Schwarz inequality to the numerator

yields

ĈW(e)

CW(e)
≤
√

(1 + ε)2 + 12 ≤
√

2 + ε,

as desired.

We then merge Sx and Sy using the standard disjoint-set
algorithm. The core-set of S = Sx ∪ Sy is build by updat-
ing the core-set of Sx as follows: if every point in Sy is
already in the ball B(cSx

, (1 + ε)rSx
), we set CORE(S) =

CORE(Sx) (and, consistently, B(cS , rS) = B(cSx
, rSx

)).
Otherwise, we start with CORE(S) = CORE(Sx) and we
iteratively add to this set the farthest point from the center
of MEB(CORE(S)) until we obtain an ε-core-set in S, as
in Algorithm 2. An analysis of this algorithm in (Badoiu &
Clarkson, 2003, Proof of Lemma 2.1) gives the following
bound.

Lemma 2 ((Badoiu & Clarkson, 2003)). The while loop in
Algorithm 4 terminates after at most 2

ε iterations.

In order to keep the size of the core-sets small enough, we
further reset it to a singleton before the update if its size is
more than a given threshold (namely 20/ε). Together with
Lemma 2, this ensures that the core-sets have size O(1/ε).

Claim 2. The overall running time of this algorithm is
O
(
n · d · ( log Λ

ε2 + logn
ε ) + n · 1

ε4.5 log 1
ε

)
Proof. The complexity of the operations related to the
disjoint-set data structure (namely “create a set”, “find” and
“union”) has a total running time of O(n log n) when a stan-
dard implementation is used.

Sorting the edges of the tree T according to their length
is done in O(nd + n log n) time. Computing L at a given
iteration is done in time d · |Sy| = d · min(|Sx|, |Sy|) by
querying the distances between cSx

and every point in Sy;
thus the contribution of this parts to the running time of the
whole algorithm is O(n · log n · d).

Given an edge e ∈ T , denote by k(e) the number of itera-
tions of the while loop in Algorithm 4 when treating this
edge (so k(e) = 0 if at this stepL ≤ (1+ε)·rSx ). Let Sx(e),
Sy(e) and S(e) = Sx(e) ∪ Sy(e) be the corresponding sets
at this iteration.

We know from Lemma 2 that k(e) ≤ 2/ε, so the number of
times MEB(.) is called is

∑
e∈T k(e) = O(n/ε). Further,

since |C| = O(1/ε) each MEB can be computed in time
O(dε + 1

ε3.5 log 1
ε ), The total time spent computing minimal

enclosing balls is therefore O(n · ( dε2 + 1
ε4.5 log 1

ε ))

It remains to estimate the time spent to search for the farthest
points in the while loop. The running time of this loop
(excluding MEB(.)) at Step e is of the order of d · |S(e)| ·
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k(e), which in total gives:

d ·
∑
e∈T
|S(e)| · k(e) = d ·

∑
z∈X

∑
e∈T |z∈S(e)

k(e) (1)

We close the proof by showing that for every z ∈ X , the
sum k :=

∑
e∈T |z∈S(e) k(e) is upper bounded byO( log Λ

ε2 +
logn
ε ).

To see this, let us fix z ∈ X and consider e1, . . . , e` the
edges from {e ∈ T s.t. z ∈ S(e)}, taken in order of appear-
ance. We need to estimate k :=

∑`
i=1 k(ei). Let ri and Ci

be the final values of rS(ei) and CORE(S(ei)) at the end of
Step ei.

For a given Step ei, we consider three scenarios. (1) If
z ∈ Sx(ei) and |Ci−1| ≤ 20/ε, then it holds that
|Ci| − |Ci−1| = k(ei). (2) If z ∈ Sx(ei) and at this step
CORE(S) is reset to {x} (because |CORE(Sx(ei))| > 20/ε),
then |Ci| − |Ci−1| ≤ k(ei) − |Ci−1| ≤ −18/ε by
Lemma 2. (3) If z ∈ Sy(ei), we use the general bound
|Ci| − |Ci−1| ≤ 22/ε.

Writing n1, n2 and n3 the number of time each of these
scenarios respectively happen, and k1 the sum of k(ei) over
the n1 indices corresponding to scenario (1), we therefore
have

0 ≤ |Cn−1| − |C0| ≤ k1 − n2 ·
18

ε
+ n3 ·

22

ε
.

so n2 ≤ k1 · ε/18 + 2n3. Note that Scenario (3) happens at
most log n times since in this case S(ei) doubles (at least)
in size because S(ei−1) = Sy(ei) and S(ei) = Sx(ei) ∪
Sy(ei) (and recall that |Sy(ei)| ≤ |Sx(ei)|). It follows that

n2 + n3 ≤ k1 · ε/18 + 3 log n. (2)

Let us now look at the variations of ri. Since ri is an ε-
approximation of the radius of MEB(S(ei)) and S(ei−1) ⊆
S(ei), we always have ri/ri−1 ≥ 1/(1 + ε). In the case of
scenario (1), we have instead ri/ri−1 ≥ (1 + ε2/16)k(ei)

by Lemma 1. In total, this yields

r`
r2

=
∏̀
i=3

ri
ri−1

≥ (1 + ε2/16)k1−1

(1 + ε)n2+n3
.

Bounding r`/r2 by Λ and taking the log,

log Λ ≥ (k1 − 1) · log(1 +
ε2

16
)− (n2 + n3) log(1 + ε),

and further k1 ≤ (n2 +n3)(16/ε+o(1/ε))+O(log Λ/ε2).
Using (2) to bound n2 + n3, we obtain k1 = O(log n/ε+
log Λ/ε2).

We are now ready to estimate k. It follows from Lemma 2
that k ≤ k1 + 2/ε · (n2 + n3) ≤ 10/9 · k1 + 6/ε · log n =
O(log n/ε+ log Λ/ε2) by (2) and the inequality above.

Theorem 2 follows from Claim 1 and Claim 2.

3.2. Removing the dependency in Λ

In this section, we propose an algorithm whose complexity
does not depend on Λ by proving the following theorem.

Theorem 3. There exists an algorithm that computes a
(
√

2 + ε)-approximation of the cut-weights in time

O

(
n · d · ( log 1/ε

ε2
+

log n

ε
) + n · 1

ε4.5
log

1

ε

)
.

The idea is to forget all points but one that were in the
minimum enclosing balls of radius small enough. More pre-
cisely, we maintain the same data structure as before and we
also keep track of a “threshold” TH(z) for any point z ∈ X
together with, for each set S ∈ U a representative mem-
ber of S that we denote by p(S). At the beginning, we set
TH(x) =∞ and p({x}) = x for every x ∈ X . Thresholds
and representative members are updated as follows: when
Sx and Sy are merged into S = Sx ∪ Sy , we set TH(p(Sy))
to be the radius rS and we define p(S) := p(Sx).

For a set S of the disjoint-set data structure, we denote
by S′ the points of S that were removed, and let S∗ =
S \ S′. When the threshold is small enough compared to
the radius of the minimum enclosing balls in which a point
z is contained, then we “forget” the point, meaning that we
remove this point from S∗. More precisely: If a point z ∈ S
is such that TH(z) ≤ rS · ε4 ·

1
1+2ε then we forget the point z.

The main change in the algorithm lies in the update function
(Algorithm 4) at Steps 5 and 6 where we look for z with
`2(cS , z) > (1 + ε) · rS in S∗ instead of S, thus giving a
smaller running time.

Lemma 3. At any moment of the algorithm, if B(c∗, r∗) =
MEB(S∗), then for every x ∈ S, there is a point y ∈ S∗
with `2(x, y) ≤ εr∗.

Proof. Suppose we are at Step e0 and that the lemma is
satisfied for every earlier step. Let E = {e ∈ T |S(e) ⊆
S(e0)} and M = max{rS(e)|e ∈ E}.

Claim 3. For any point x ∈ S′, there exists y ∈ S∗ such
that

`2(x, y) ≤M · ε
2

Let S(e1), . . . , S(e`) = S be the successive sets from U
containing x and define yi = p(S(ei)) their representative
members, and y0 = p(S(e0)). Let j be the minimum index
so that p(S(ej)) is in S∗ (observe that j > 0 because x ∈ S′
and j exists since TH(p(S)) = ∞. Now consider the ball
B = B(cS(ej), (1 + 2ε)rS(ej)), where cS(ej) and rS(ej) are
the center and radius computed at Step ej . Since cS(ej)

and rS(ej) are constructed by Algorithm 4 using points of
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S∗, we have S∗(ej) ⊆ B(cS(ej), (1 + ε)rS(ej)). Further,
since the lemma is satisfied at the earlier Step ej , we have
S(ej) ⊆ B. As a consequence, x and yj are in B because
they are in S(ej). So `2(x, yj) ≤ 2(1 + 2ε) · rS(ej).

It remains to estimate rS(ej). By construction, the threshold
of yj−1 = p(S(ej−1)) is TH(yj−1) = rS(ej). Since yj−1 ∈
S′, the threshold TH(yj−1) is at most ε

4(1+2ε)rS(e′) for some
e′ ∈ E, and therefore rS(ej) ≤ ε

4(1+2ε)M since rS(e′) ≤
M . It follows that `2(x, yj) ≤ εM

2 and since yj ∈ S∗, it
concludes the proof of the claim.

It is clearly enough to prove the following claim to conclude
for the lemma.

Claim 4. M/2 ≤ r∗

To see this, let r the radius of the minimum enclosing ball
of S. Observe that r ≥ M because M is the radius of the
minimum enclosing of a subset of S. The previous claim
shows that any point in S′ is at distance (ε/2)M ≤ εr from
a point in S∗. Therefore, B(c∗, r∗ + εM/2) contains S, so
r ≤ r∗ + εM/2. It follows that r∗ ≥M(1− ε/2) ≥M/2
if ε ≤ 1. This concludes the proof of the claim.

Lemma 3 shows that the modified algorithm gives a (1+ε)2

approximation of the minimum enclosing balls of S based
on the core-set of S∗ (we lose a factor (1 + ε) from the
core-sets and the same factor from S to S∗). Therefore the
cut weights are still approximated within a factor of

√
2+ε′

for a well chosen ε′ = 2ε+ o(ε).

Claim 5. The overall running time of this algorithm is
O
(
n · d · (− log ε

ε2 + logn
ε ) + n · 1

ε4.5 log 1
ε

)
.

Sketch of the proof. The main difference with the previous
section is that the cost of the update (1) is instead estimated
by

d ·
∑
e∈T
|S∗(e)| · k(e).

We rewrite the sum as |T |+
∑
e∈T |S∗(e) \ {p(S)}| · k(e).

The term |T | is bounded by n so contribute to a factor of
nd to the total running time. To give an upper bound on the
sum, we follow the same strategy as in proof of Claim 2 and
first rewrite it as

∑
z∈X

∑
e∈T |z∈S∗(e)\{p(S)} k(e). Now

observe that a point z contributes to this sum from a Step e
when r := rS(e) is assigned to TH(z) (i.e., when z stops
to be the representative member of its set) until it is re-
moved from S∗, which happens when the radius of rS(e′)

for S(e′) containing z goes above R := 4(1 + 2ε) TH(z)
ε .

Note that, R/r = 4 (1+2ε)
ε . A similar analysis as in the

proof of Claim 2, where R/r = O( 1
ε ) plays the role of Λ

gives that

∑
e∈T |z∈S∗(e)\{p(S)}

k(e) = O(
log n

ε
+
− log ε

ε2
),

this is sufficient to conclude.

Theorem 3 follows from Lemma 3 and Claim 5.

4. Experiments
We performed experiments to compare our implementation
of Algorithm 1 using core-sets to standard agglomerative
clustering algorithms (Ward, Single, Centroid). Our imple-
mentation is coded using the Cython extension for Python
and relies on the C++ library miniball based on the algo-
rithm in (Fischer et al., 2003) through its Cython binding
cyminiball to compute MEBs.

4.1. Performance evaluations

We evaluated the algorithm’s computation time and distor-
tion. To make the distortions comparable, we rescaled the
ultrametrics by the largest number so that the resulting ul-
trametrics is smaller or equal to the Euclidean distance on
the points of the dataset. Practically, this boils down to es-
timating the distortion as maxu 6=v

∆(u,v)
`2(u,v)/minu 6=v

∆(u,v)
`2(u,v) ,

where ∆ stands for the ultrametrics distance and the min
and the max are taken on all pairs of distinct points of the
dataset. Note that for our algorithm, the min part is always
equal to 1 since this ultrametrics is an upper bound on the
Euclidean distance that is tight on sub-trees of size 2 or less.

Table 1. The datasets used in our experiments

size dimension

IRIS 150 4
MICE 1080 82

PENDIGITS 10992 16
SHUTTLE 58000 9

The running time and distortion on four classic datasets
(IRIS, MICE, PENDIGITS, SHUTTLE, see Table 1 for a
complete description, all datasets are from the UCI ML
repository (Dua & Graff, 2017)) are reported on Table 2.
The test have been made on a laptop with 8GB of memory
and a processor Intel i5-8265U with frequency 1.60GHz.
The distortion and time reported are an average over 100
measurements. CoreSet is our algorithm, using the param-
eter ε = 0.2 for core-sets. CKL is our implementation of
Algorithm 1 in (Cohen-Addad et al., 2020), that therefore
differs from CoreSet only on Step 2. Ward , Single , Com-
plete , Average and Centroid are the implementation of the
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Ward, single linkage, complete linkage, average linkage and
centroid linkage algorithms in existing Python libraries. We
first used the Scikit-learn library. The functions of Scikit-
learn run out of memory on the bigger dataset (SHUTTLE),
so we added the very well optimized fastcluster library to
the experiment.

Our algorithm gives results of variable quality. It showed a
standard deviation on the distortion of 13% (of the mean)
for MICE, 11% for PENDIGITS and 22% for SHUTTLE.
Note that the standard linkage algorithms are deterministic.

Table 2. Time and distortion comparison with classic clustering
algorithms.

MICE PENDIGITS SHUTTLE
dist T (s) dist T (s) dist T (s)

CoreSet 15.13 0.056 27.26 0.41 106.8 5.44
CKL 38.20 0.022 82.58 0.25 379.9 4.11

Ward (scikit-learn) 59.30 0.043 433.78 4.63 -
Ward (fastcluster) 0.074 1.83 7311 25.06

Single (scikit-learn) 4.92 0.049 13.86 1.36 -
Single (fastcluster) 0.045 0.94 29.9 26.4

Centroid (fastcluster) 8.98 0.083 33.09 1.82 183 30.2
Complete (scikit-learn) 11.8 0.038 33.84 4.53 -
Average (scikit-learn) 9.7 0.037 27.52 4.70 -

As we can see on Table 2, our algorithm CoreSet is mod-
erately slower than CKL while always producing a signif-
icantly better distortion, from 2 to 3 times better. On the
largest dataset, SHUTTLE, our algorithm is only ∼ 25%
slower.

In order to evaluate further how the algorithms scale on
larger datasets, we ran the algorithms over synthetic datasets
sampled from a uniform distribution. Table 3 contains the
running times for 105 points in dimension 100 and for 106

points in dimension 50. For these datasets, we did not com-
pute the distortions since evaluating them takes unreason-
ably long computation times (quadratic time in the number
of points when using constant-time LCA queries).

Table 3. Running time overs N random points in dimension d

N = 105, d = 100 N = 106, d = 50

CKL 4.9s 42s
CoreSet 3.8s 58s

Ward (fastcluster) 2141s ≥ 10h
Single (fastcluster) 842s ≥ 10h

Centroid (fastcluster) 1364s ≥ 10h

4.2. Evaluation of the cut-weight algorithm alone

The result of Algorithm 1 is highly dependent on the qual-
ity of the γ-approximated MST computed in the first step,
that is given by a stochastic algorithm with various possible
implementations. In order to compare our new cut-weight
estimation alone with existing cut-weight procedures, we
measured the distortion given by Algorithm 2 when the ex-

act MST is given on Step 1 instead of the γ-approximated
MST. We performed the comparison on classic datasets
(IRIS, MICE, PENDIGITS). The result are reported on Ta-
ble 4. ExactCoreSet stands for this modified algorithm,
where ε is the approximation parameters for the bounding
balls, as used in Algorithm 2. ExactCKL stands for the al-
gorithm described in (Cohen-Addad et al., 2020), where the
approximated MST has also been replaced by an exact one.
Opt is the algorithm giving the optimal distortion (Farach
et al., 1995).

Table 4. Distortion when minimum spanning trees are used

IRIS MICE PENDIGITS

ExactCKL 11.19 9.14 27.77
ExactCoreSet (ε = 1) 9.33 5.66 16.56

ExactCoreSet (ε = 0.2) 8.49 5.43 14.65
ExactCoreSet (ε = 10−4) 8.49 5.35 14.20

Opt 8.07 4.92 13.86

References
Abboud, A., Cohen-Addad, V., and Houdrouge, H. Sub-

quadratic high-dimensional hierarchical clustering. In
Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-
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