
Correlation Clustering in Constantly Many Parallel Rounds

A. Additional Experiments
In this section, we provide various statistics regarding the performance and solutions produced by the algorithms. Figure 2
presents the distribution of the cluster sizes. We observe that the size of the clusters are smaller in OURALGO compared to
the baselines. Evidently, this is due to the fact that OURALGO produces only dense clusters, as opposed to CLUSTERW and
PPIVOT which often produce very sparse clusters. Table 4 indicates that the datasets for which the clusters produced by
CLUSTERW and PPIVOT are the sparsest are the datasets for which the distributions of the cluster sizes differ the most
between OURALGO and CLUSTERW (or PPIVOT).

Table 4 presents the number of MPC rounds required by each algorithm, the number of clusters in each solution and the
number of existing intra-cluster edges for each solution. We observe that OURALGO requires a fixed number of MPC
rounds that is significantly smaller (up to a factor 90) compared to CLUSTERW and PPIVOT. Moreover, while OURALGO
produces solutions with more clusters compared to CLUSTERW and PPIVOT, the produced clusters are much denser than
those produced by CLUSTERW and PPIVOT.

dblp uk it
#rounds #clusters in-edges #rounds #clusters in-edges #rounds #clusters in-edges

OURALGO-0.05 33 723,511 1.000 33 22,999,216 0.955 33 36,467,636 0.972
OURALGO-0.1 33 720,229 0.999 33 22,764,081 0.933 33 34,244,835 0.957
OURALGO-0.2 33 704,489 0.996 33 22,228,865 0.895 33 31,042,932 0.735

CLUSTERW-0.9 725 382,491 0.516 1441 12,778,648 0.461 1837 22,457,586 0.287
PPIVOT-0.9 1160 386,275 0.537 2280 12,944,056 0.452 2610 22,675,174 0.316

twitter webbase
#rounds #clusters in-edges #rounds #clusters in-edges

OURALGO-0.05 33 34,981,120 0.990 33 106,613,511 0.988
OURALGO-0.1 33 34,980,638 0.990 33 103,908,793 0.957
OURALGO-0.2 33 34,978,139 0.973 33 99,049,622 0.866

CLUSTERW-0.9 1876 24,572,801 0.077 1721 68,800,036 0.346
PPIVOT-0.9 2580 24,701,912 0.068 2510 69,394,341 0.331

Table 4. This table presents the number of MPC rounds (#rounds), number of clusters (#clusters) and the fraction of intra-cluster edges
found in each solution (in-edges).

B. Missing Proofs from Section 3
B.1. Proof of Fact 3.2

Proof of (1). Without loss of generality, assume that d(u) ≤ d(v). We have |N(u)4N(v)| ≥ d(v) − d(u). Then, by
Definition 3.1, d(v)− d(u) ≤ |N(u)4N(v)| ≤ iβ · d(v). This now implies d(u) ≥ (1− iβ)d(v), as desired.

Proof of (2). For i = 1, ..., k − 1 we have by (1):

d(vi) ≤
d(vi+1)

1− β
≤ ... ≤ d(vk)

(1− β)k−i
≤ d(vk)

(1− β)4
≤ k

k − 1
· d(vk) ,

since (1− β)4 ≥ (1− 1
20)4 > 4

5 ≥
k−1
k . Now we iterate the triangle inequality:

|N(v1)4N(vk)| ≤
k−1∑
i=1

|N(vi)4N(vi+1)|

<

k−1∑
i=1

β ·max(d(vi), d(vi+1))

≤ (k − 1) · β · k

k − 1
· d(vk)

≤ k · β ·max(d(v1), d(vk)) .

Correlation Clustering in Constantly Many Parallel Rounds

Cluster size bucket (lower-end)

#c
lu

st
er

s
(lo

g
sc

al
e)

1.00E+0

1.00E+1

1.00E+2

1.00E+3

1.00E+4

1.00E+5

1 2 4 8 16 32 64 128 256

OurAlgo-0.05 ClusterWild-0.9 ParallelPivot-0.9

dblp - cluster size distribution

Cluster size bucket (lower-end)

#c
lu

st
er

s
(lo

g
sc

al
e)

1.00E+1

1.00E+3

1.00E+5

1.00E+7

1 2 4 8 16 32 64 128 256 512 1024 2048

OurAlgo-0.05 ClusterWild-0.9 ParallelPivot-0.9

uk - cluster size distribution

Cluster size bucket (lower-end)

#c
lu

st
er

s
(lo

g
sc

al
e)

1.00E+1

1.00E+3

1.00E+5

1.00E+7

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

OurAlgo-0.05 ClusterWild-0.9 ParallelPivot-0.9

it - cluster size distribution

Cluster size bucket (lower-end)

#c
lu

st
er

s
(lo

g
sc

al
e)

1.00E+1

1.00E+3

1.00E+5

1.00E+7

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

OurAlgo-0.05 ClusterWild-0.9 ParallelPivot-0.9

twitter - cluster size distribution

Cluster size bucket (lower-end)

#c
lu

st
er

s
(lo

g
sc

al
e)

1.00E+1

1.00E+3

1.00E+5

1.00E+7

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

OurAlgo-0.05 ClusterWild-0.9 ParallelPivot-0.9

webbase - cluster size distribution

Figure 2. The cluster size distributions produced by the algorithms OURALGO-0.05, CLUSTERW-0.9, and PPIVOT-0.9 on all datasets
that we considered.

Proof of (3). Without loss of generality, assume that d(u) ≤ d(v). Then

|N(u) ∩N(v)| = |N(v)| − |N(v) \N(u)|
≥ |N(v)| − |N(u)4N(v)|
≥ (1− iβ)d(v).

B.2. Proof of Lemma 3.3

Lemma 3.3. Suppose that 5β + 2λ < 1. Let CC be a connected component of G̃. Then, for every u, v ∈ CC:

(a) if u and v are heavy, then distG̃(u, v) ≤ 2,

Correlation Clustering in Constantly Many Parallel Rounds

(b) distG̃(u, v) ≤ 4,
(c) distG(u, v) ≤ 2,
(d) if u or v is heavy, then u and v are in 4-weak agreement.

Proof. For (a), suppose by contradiction that there are heavy u, v ∈ CC with distG̃(u, v) > 2; pick such u, v with minimum
distG̃(u, v). If distG̃(u, v) ≥ 5, let P = 〈u, u′, u′′, ..., v〉 be a shortest u-v path in G̃; since there are no edges in G̃ with
both endpoints being light, either u′ or u′′ must be heavy, and the pair (u′, v) or (u′′, v) contradicts the minimality of the
path (u, v) (as we have distG̃(u′′, v) > 2).

On the other hand, if distG̃(u, v) ≤ 4, then by Fact 3.2 (2) u and v are in 5-weak agreement, and by Fact 3.2 (3) we have
|N(u)∩N(v)| ≥ (1− 5β)d(v). Note that a heavy vertex can lose at most a λ fraction of its neighbors in G in Line 1 of the
algorithm, and it loses no neighbors in Line 3; thus |N(v) \N G̃(v)| ≤ λd(v) and similarly for u. Assume without loss of
generality that d(v) ≥ d(u). Then we have

|N G̃(u) ∩N G̃(v)| ≥ |N(u) ∩N(v)| − |N(u) \N G̃(u)| − |N(v) \N G̃(v)| ≥ (1− 5β − 2λ)d(v) > 0 ,

i.e., u and v have a common neighbor in G̃, and thus, distG̃(u, v) ≤ 2.

For (b), let P be a shortest u-v path in G̃. Define the vertex u′ to be u if u is heavy and to be u’s neighbor on P if u is light;
in the latter case, u′ is heavy since there are no edges in G̃ with both endpoints being light. Define v′ similarly. Since u′ and
v′ are heavy, we have distG̃(u, v) ≤ 1 + distG̃(u′, v′) + 1 ≤ 4.

For (c), note that by (b) and Fact 3.2 (2), u and v are in 5-weak agreement; by Fact 3.2 (3), they have at least (1−5β)d(v) > 0
common neighbors in G.

To prove (d), we proceed similarly as for (b). We consider two cases: both u and v are heavy; only one u or v is heavy. In
the first case, by (a) and Fact 3.2 (2) we even have that u and v are in 3-weak agreement. In the second case, one of the
vertices is light; without loss of generality, assume u is light. In that case, u is adjacent to a heavy vertex u′, as there are no
edges between light vertices. Since by (a) v and u′ are at distance 2, it implies that v and u are at distance 3. Since each
edge (x, y) in CC means that x and y are in agreement, by Fact 3.2 (2) we have that v and u are in 4-weak agreement.

B.3. Proof of Lemma 3.4

Lemma 3.4. Let CC be a connected component of G̃ such that |CC| ≥ 2. Then, for each vertex u ∈ CC we have that

d(u,CC) ≥ (1− 8β − λ)|CC|.

Proof. Assume that CC is a non-trivial connected component, i.e., CC has at least two vertices. Let x be a heavy vertex in
CC. Observe that such a vertex x always exists by the construction of our algorithm – edges having both light endpoints are
removed in Line 3 of Algorithm 1.

Remark: While CC refers to a connected component in the sparsified graph G̃, note that N(·) and d(·) refer to neighborhood
and degree functions with respect to the input graph G rather than with respect to G̃.

First, from Lemma 3.3 (d), we have that any two vertices in CC, one of which is heavy, are in 4-weak agreement. In
particular, this also holds for x and any other vertex u ∈ CC. As defined in Section 2, recall that N(x,CC)

def
= N(x) ∩CC.

Since x is a heavy vertex, it has at most a λ-fraction of its neighbors N(x) outside CC, and so from Fact 3.2 (3) we have

|N(x,CC) ∩N(u)| ≥ (1− 4β)d(x)− λd(x) = (1− 4β − λ)d(x). (2)

Observe that this also implies
|N(u,CC)| ≥ (1− 4β − λ)d(x). (3)

Next, we want to upper-bound the number of vertices in CC \N(x), which will enable us to express |CC| as a function of
d(x). To that end, note that Equation (2) implies a lower bound on the number of edges between the neighbors of x in CC,
denoted by N(x,CC), and the vertices in CC other than N(x), denoted by CC \N(x), as follows:

|E(N(x,CC), CC \N(x))| ≥ |CC \N(x)| · (1− 4β − λ)d(x), (4)

Correlation Clustering in Constantly Many Parallel Rounds

where E(Y, Z) is the set of edges between sets Y and Z. On the other hand, since d(u) ≤ d(x)
1−4β for each u ∈ CC by

Fact 3.2 (1) and since u and x are in 4-weak agreement, we have that u has at most 4β d(x)
1−4β neighbors outside N(x). Hence,

we derive

|E(N(x,CC), CC \N(x))| ≤ |N(x,CC)| · 4βd(x)

1− 4β
≤ d(x) · 4βd(x)

1− 4β
.

Combining the last inequality with Equation (4) yields

|CC \N(x))| ≤ 4βd(x)

(1− 4β) · (1− 4β − λ)
≤ 4βd(x)

1− 8β − λ
,

which further implies

|CC| = |CC \N(x)|+ |N(x,CC)| ≤
(

1 +
4β

1− 8β − λ

)
d(x) =

1− 4β − λ
1− 8β − λ

d(x).

Now together with Equation (3), we establish

|N(u,CC)| ≥ (1− 8β − λ)|CC|,

as desired.

B.4. Proof of Lemma 3.5

Lemma 3.5. Let CC be a connected component in G̃. Assume that 8β + λ ≤ 1/4. Then, the cost of keeping CC as a
cluster in G is no larger than the cost of splitting CC into two or more clusters.

Proof. Towards a contradiction, consider a split of CC into k ≥ 2 clusters C1, . . . , Ck whose cost is less than the cost of
keeping CC as a single cluster. Moreover, consider the cheapest such split of CC. Let δ def

= 8β + λ. We consider two cases:
when each cluster in {C1, . . . , Ck} has size at most (1− 2δ)|CC| vertices, and the complement case.

It holds that |Ci| ≤ (1 − 2δ)|CC| for each i. By Lemma 3.4, each vertex v ∈ Ci for each cluster Ci has at least
(1 − δ)|CC| − |Ci| ≥ δ|CC| neighbors in CC \ Ci. Hence, splitting CC in the described way cuts at least δ|CC|

2

2 “+”

edges. On the other hand, also by Lemma 3.4, CC has at most δ|CC|
2

2 “-” edges. Hence, it does not cost less to split CC in
the described way.

There exists a cluster C? such that |C?| > (1− 2δ)|CC|. Let Ci 6= C? be one of the clusters CC is split into. Clearly,
we have |Ci| < 2δ|CC|. Since, by Lemma 3.4, each vertex v ∈ Ci has at least (1− δ)|CC| “+” edges inside CC, it implies
that v has more than (1− 3δ)|CC| “+” edges to C?. On the other hand, there are at most δ|CC| “-” edges from v to C?.
Hence, as long as 1− 3δ ≥ δ, it implies that it is cheaper to merge C? with Ci than to keep them split. This contradicts our
assumption that the split into those k clusters results in the minimum cost.

Observe that the condition 1− 3δ ≥ δ is equivalent to 8β + λ ≤ 1/4, which holds by our assumption.

B.5. Proof of Lemma 3.6

Lemma 3.6. Let G′ be a non-complete5 graph obtained from G by removing any “+” edge {u, v} (i.e., changing it into a
“neutral” edge) where u and v belong to different connected components of G̃. Then, our algorithm outputs a solution that is
optimal for the instance G′.

Proof. It is suboptimal for a single cluster to contain vertices from different connected components; indeed, breaking such a
cluster up into connected components would improve the objective function (all edges between connected components are
negative). Therefore any optimal solution must either be equal to our solution or it should split some cluster in our solution.
The claim follows, by Lemma 3.5, because subdividing a connected component of G′ (equivalently of G̃) does not improve
the objective function.

5We remark that everywhere else in the paper, correlation clustering instances are always complete graphs.

Correlation Clustering in Constantly Many Parallel Rounds

B.6. Proof of Lemma 3.7

Lemma 3.7. The number of edges deleted in Line 1 of our algorithm that are not cut in O is at most 2
β ·OPT.

Proof. Our proof is based on a charging argument. Each edge as in the statement will distribute fractional debt to edges (or
non-edges) that O pays for, in such a way that (1) each edge as in the statement distributes debt worth at least 1 unit, and (2)
each edge/non-edge that O pays for is assigned at most 2

β units of debt, (3) edges/non-edges that O does not pay for are
assigned no debt.

Let (u, v) be an edge as in the statement (its endpoints are not in agreement). That is, we have |N(u)4N(v)| >
β · max(d(u), d(v)), and u, v belong to the same cluster in O. Then, for each w ∈ |N(u)4N(v)|, O pays for one of
the edges/non-edges (u,w), (v, w). (If w is in the same cluster as u, v, then O pays for the one of (u,w), (v, w) that is a
non-edge; and vice versa). So (u, v) can assign 1

β·max(d(u),d(v)) units of debt to that edge/non-edge. This way, properties (1)
and (3) are clear.

We verify property (2). Fix an edge/non-edge (a, b) thatO pays for. It is only charged by adjacent edges. Each edge adjacent
to a, of which there are d(a) many, assigns at most 1

β·d(a) units of debt; this gives 1
β units in total. The same holds for edges

adjacent to b; together this yields 2
β units.

B.7. Proof of Lemma 3.8

Lemma 3.8. The number of edges deleted in Line 3 of our algorithm that are not cut inO is at most
(

1
β + 1

λ + 1
βλ

)
·OPT.

Proof. We use a similar charging argument as in the proof of Lemma 3.7, with the difference that each edge/non-edge that
O pays for will be assigned at most 1

β + 1
λ + 1

βλ units of debt (rather than at most 2
β).

Let (u, v) be an edge as in the statement. For each endpoint y ∈ {u, v}, we proceed as follows. As y is light, there are edges
(y, v1), ..., (y, vλ·d(y)) whose endpoints are not in agreement. For each i = 1, ..., λ · d(y), proceed as follows:

• If (y, vi) is not cut by O, then, as in the proof of Lemma 3.7, (y, vi) has at least β · max(d(y), d(vi)) adjacent
edges/non-edges for whom O pays. Each of these edges/non-edges is of the form (vi, w) or (y, w). We will have
the edge (u, v) charge 1

2βλd(vi)d(y) units of debt, which we will call blue debt, to the former ones (those of the form
(vi, w)), and 1

2βλd(y)2 units of debt, which we will call red debt, to the latter ones (those of the form (y, w)).6

• If (y, vi) is cut by O, then O pays for (y, vi). We will have the edge (u, v) charge 1
2λd(y) units of debt, which we will

call green debt, to (y, vi).

Let us verify property (1). In the first case, each of these edges/non-edges is charged at least 1
2βλd(y) max(d(y),d(vi))

units of
debt, and since there are at least β ·max(d(y), d(vi)) of them, the total (blue or red) debt charged is at least 1

2λd(y) per each
y ∈ {u, v} and each i = 1, ..., λ · d(y). This much total (green) debt is also charged in the second case. Since there are 2
choices for y and then λ · d(y) choices for i, in total the edge (u, v) assigns at least 1 unit of debt. Property (3) is satisfied
by design.

We are left with verifying property (2). Fix an edge/non-edge (a, b) that O pays for. It can be charged by its adjacent edges
(red or green debt), as well as those at distance two (blue debt). Let us consider these cases separately.

Adjacent edges (red/green debt): let us first look at edges adjacent to a (we will get half of the final charge this way). That
is, a is serving the role of y above; it can serve that role for at most d(a) debt-charging edges (serving the role of (u, v),
where a = y ∈ {u, v}).

• Red debt: each of these debt-charging edges charges (a, b) at most λ · d(a) times (once per i = 1, ..., λ · d(y)), and
each charge is for 1

2βλd(a)2 units of debt. This gives 1
2βλd(a)2 · λd(a) · d(a) = 1

2β units of debt.

• Green debt: each of these debt-charging edges charges (a, b) at most once (if it happens that (a, b) = (y, vi) for some
i), and each charge is for 1

2λd(a) units of debt. This gives 1
2λ units of debt.

6Notice that the latter edges/non-edges might be charged many times by the same y (for different i).

Correlation Clustering in Constantly Many Parallel Rounds

We get the same amount from edges adjacent to b (b serving the role of y). In total, we get a debt of 1
β + 1

λ .

Blue debt: (a, b) is serving the role of (vi, w) above. Let us first look at a serving the role of vi (we will get half of the final
charge this way). Then a neighbor of a must be serving the role of y. There are at most d(a) possible y’s, and at most d(y)
possible edges (u, v) for each y (those with y ∈ {u, v}). Recall that each charge was for 1

2βλd(vi)d(y) = 1
2βλd(a)d(y) units

of debt; per y, this sums up (over edges (u, v)) to at most 1
2βλd(a)d(y) · d(y) = 1

2βλd(a) total units, and since there are at
most d(a) many y’s, the total debt is at most 1

2βλ . We get the same amount from b serving the role of vi. In total, we get a
debt of 1

βλ .

B.8. Proof of Remark 3.10

Remark 3.10. For fixed values of β and λ, the above analysis is tight, in the sense that the term 1
βλ is necessary.

Proof. Let us assume for simplicity that β = λ; otherwise the example can be adapted. Consider the following instance:
two disjoint cliques A1, A2 of size (1 − β)d each, with a subset X1 ⊆ A1 and a subset X2 ⊆ A2, both of size βd, fully
connected to each other.

The optimal solution is to have two clusters (A1 and A2). The cost is (βd)2 (cutting the edges between X1 and X2).

However, our algorithm will first delete the edges between A1 \X1 and X1 (any two vertices from these respective sets are
not in agreement, as the X1-vertex has βd extra neighbors in X2), between X1 and X2, and between A2 \X2 and X2.7

Then every vertex in the graph becomes light. Thus in Line 3 we delete all edges, making G̃ an empty graph. Finally, we
return the singleton partitioning as the solution. Its cost is (βd)2 + 2 ·

(
(d(1−β))2

2

)
≈
(

1
β2 − 2

β + 2
)
·OPT.

B.9. Proof of Lemma 3.11

Lemma 3.11. For any constant δ > 0, there exists an MPC algorithm that, given a signed graph G = (V,E+), in O(1)
rounds for all pairs of vertices {u, v} ∈ E+ outputs “Yes” if u and v are in 0.8-weak agreement, and outputs “No” if u and
v are not in agreement. Letting n = |V |, this algorithm succeeds with probability 1− 1/n, uses nδ memory per machine,
and uses a total memory of Õ(|E+|).

To prove Lemma 3.11, we will use the following well-known concentration inequalities.

Theorem B.1 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking values in [0, 1]. Let X def
=∑k

i=1Xi. Then, the following inequalities hold:

(a) For any δ ∈ [0, 1] if E [X] ≤ U we have

P [X ≥ (1 + δ)U] ≤ exp
(
−δ2U/3

)
.

(b) For any δ > 0 if E [X] ≥ U we have

P [X ≤ (1− δ)U] ≤ exp
(
−δ2U/2

)
.

Lemma B.2. Let u and v be two vertices. If Algorithm 2 returns “Yes”, then for a ≥ 600 with probability at least (1−n−3)
it holds that u and v are in agreement. (Conversely, the algorithm outputs “No” with probability at least (1− n−3) if u and
v are not in agreement.)

Proof. We now upper-bound the probability that u and v are not in agreement, but Algorithm 2 returns “Yes”.

Assume that u and v are not in agreement. Then
E [Xu,v] > τ,

where τ is defined in Algorithm 2. (As a reminder, Xu,v is defined in Equation (1).) Algorithm 2 passes the test on Line 5
with probability

P [Xu,v ≤ 0.9τ]
Theorem B.1(b)

≤ exp

(
−1/100 · a · log n

2

)
,

7As an aside, note that by now, the algorithm has paid around
(
1 + 2

β

)
·OPT, showing that Lemma 3.7 by itself is also tight for

Line 1.

Correlation Clustering in Constantly Many Parallel Rounds

where we used that d(u)/j ≥ 1. For a ≥ 600, the last expression is upper-bounded by n−3.

Lemma B.3. Let u and v be two vertices that are in 0.8-weak agreement. Then, for a ≥ 600 with probability at least
(1− n−3) Algorithm 2 outputs “Yes”.

Proof. We have
E [Xu,v] ≤ 0.8 · τ,

where τ is defined in Algorithm 2. Hence, Algorithm 2 outputs “No” with probability

P [Xu,v > 0.9 · τ]
Theorem B.1(a)

≤ exp

(
−1/64 · a · log n

3

)
,

where we used that d(u)/j ≥ 1. For a ≥ 600, the last expression is upper-bounded by n−3.

The implementation part of Lemma 3.11 follows by our discussion in Section 3.2 and by having a = O(1). The claim on
probability success follows by using Lemmas B.2 and B.3 and applying a union bound over all |E+| ≤ n2 pairs of vertices.

