Riemannian Convex Potential Maps: Supplementary Material

A. Manifold Operations

We briefly describe manifold operations, on a Riemannian
manifold M with metric g, used in this paper. Specifically,
we define the exponential map exp and the intrinsic mani-
fold distance d r4.

Exponential map. Letz € M, v € T, M and consider
the unique geodesic y : [0, 1] — M such that (0) = x and
+'(0) = v. The exponential map at z, exp,, : T, M — M,
is defined as

exp,(v) = v(1). (26)

Intrinsic distance.
[0,1] = M as

Define the length of a curve ~

1
L(y) = / I ), d, @7)

where [|7/(¢)||, means taking the norm of the velocity +'(t)
at T, ;)M with respect to the metric g of the manifold M.
Then, the intrinsic distance d ¢ between z,y € M is:

dpm(z,y) = igf L(v) (28)

where the inf is over curves 7 : [0, 1] — M where v(0) =
x and y(1) = y. If M is complete (see e.g., Hopf-Rinow
Theorem) the intrinsic distance is realized by a geodesic.

Sphere. On the n-sphere 8™, the exponential map and the
intrinsic distance are provided as closed-form expressions.
Ifx,ye S"andv € T, 5",

exp, (v) = @ cos([[o]) + H%II sin(fof) - (29)
dsn (z,y) = arccos(zy), (30)

where ||-|| is the standard Euclidean norm.

Product manifolds. We now consider operations on prod-
uct manifolds of the form M = M; x ... x M;. The
squared intrinsic distance is simply

diq(@,y) = diy, (z1,00) + ...+ dh, (i) GD

Here 2 = (x1,...,%;), and z; € M, j € [l] (and simi-
larly for y). The exponential map on the product manifold is
the cartesian product of exponential maps on the individual
manifolds. An instantiation of such product that will be
considered in experiments is the torus S L S'. In that case,
we can use eqs. (29) and (30) to get the exponential map
and squared intrinsic distance in closed-form.

B. Proof of c-concavity of the multi-layer
potential

Proof. The proof is by induction. Constant functions are
c-concave, hence 1) is c-concave. Also, 11 = (1 — wp)do
is c-concave by the assumption of convexity of the space
of c-concave functions. Next, assuming ¥_1(z) is c-
concave, o(1_1) is also c-concave (because o preserves
c-concavity), and ¢ () is c-concave because convex combi-
nations of c-concave functions are c-concave. In conclusion,
p = P is c-concave O

C. Additional experimental and
implementation details

C.1. Synthetic Sphere

We conducted a hyper-parameter search over the parameters
in table 3 to find the flows used in our demonstrations and ex-
periments. We report results from the best hyper-parameters
obtained by randomly sampling the space of parameters.
The « values are initialized from U [0tmin, Qmin + Qrange]-
Also, 7, corresponds to the softing coefficient of the soft-
min operation of discrete c-concave potentials, and 75 to the
softing coefficient of the soft-min operation in the identity
initialization (see sects. 5.1 and 5.3).

Table 3. Hyper-parameter sweep for our sphere results

Adam
learning rate [10-%, 10~
51 [0.1,0.3,0.5,0.7,0.9]
B [0.1,0.3,0.5,0.7, 0.9, 0.99, 0.999]

Flow Hyper-parameters

Nb. of Components y; [50, 1000]

Omin [1075, 10]

Qrange (1073, 1]

Y [0.01,0.05, 0.1, 0.5]

Y2 [None, 0.01, 0.05, 0.1, 0.5]

We now verify empirically whether the RPCM define dif-
feomorphisms in practice. We compute Jacobian log-
determinants of the flow trained on the 4-modal density
taken from Rezende et al. (2020) for 10° points uniformly



Riemannian Convex Potential Maps

Figure 8. Jacobian log-determinants for points uniformly sampled
on the sphere.

Original Density Binarized Density

Figure 9. Binarized density of the sphere checkerboard

sampled on the sphere, and observe that all these are positive
(see fig. 8).

Binarized checkerboard density. We found it difficult
to visualize the learned density of our model on the checker-
board because a few regions have unusually high values that
mess up the ranges of the colormap. For visualization pur-
poses, we binarize the density values by taking the portion
of the density greater than the uniform density. Figure 9
shows the original and binarized densities of our models.

C.2. Torus

Model. We provide details on the model used in the torus
demonstration. The RCPM is composed of 6 single-layer
blocks of 200 components, and the softing parameter is
set to 0.5. Adam’s learning rate is set to 6e~* and /3 to
(0.9,0.99).

Data. The target density is of a form inspired by the target
densities in Rezende et al. (2020)):

=
p(01,02) = 3 Zpi(91702) (32)
im1

pi(61,602) x exp [cos(fy — a%) + cos(62 — az)] (33)

where a; = [4.18,6.7), az = [4.18,4.7), a3 = [4.18,2.7],
and 01,6, € [0, 27].

C.3. Continental Drift

Mapping estimation. We continue with details on the
model used in the mapping estimation setting of the conti-
nental drift case study. The RCPM is composed of 7 blocks
containing each 3 layers with 200 components, and the soft-
ing coefficient is set to 0.2. Adam’s learning rate is set to
2e~3 and B = (0.9,0.99).

Transport geodesics. We now discuss the transport
geodesics setting. The RCPM is composed of a single block
(hence allowing to recover the optimal transport geodesics)
containing 3 layers with 200 components, and the softing
coefficient is set to v = 0.2. Adam’s learning rate is set to
2¢~3 and 8 = (0.9,0.99).

Density estimation. Finally, we provide details on the
model used in the density estimation setting. The RCPM is
composed of 6 single-layer blocks containing each 400 com-
ponents, and the softing coefficient is set to 6e 2. Adam’s
learning rate is set to 2e % and 3 = (0.9, 0.99).

Data. The earth densities are obtained by leveraging
the code from https://github.com/cgarciae/
point—cloud-mnist—2D to turn Mollweide earth im-
ages into spherical point clouds, converting to Euclidean
coordinates, and applying kernel density estimation to
such point clouds both for visualization, and to get log-
probabilities when they are required (e.g., in the mapping
estimation setting, where access to log-probabilities from
the base — old earth — is needed to train the model).


https://github.com/cgarciae/point-cloud-mnist-2D
https://github.com/cgarciae/point-cloud-mnist-2D

	1 Introduction
	2 Related Work
	3 Background
	3.1 Normalizing flows
	3.2 c-convexity and concavity
	3.3 Riemannian Optimal Transport

	4 Riemannian Convex Potential Maps As mentioned in ss:c-convexity,ss:mccan, both c-convex and c-concave can be used; we follow mccann2001polar and use c-concavity in the theory and derivations here.
	4.1 Discrete c-concave functions
	4.2 RCPM architecture
	4.3 Universality of RCPM

	5 On Implementing and Training RCPMs
	5.1 Variants of RCPM
	5.2 Learning
	5.3 Smoothing via the soft-min operation
	5.4 Discussion

	6 Experiments
	6.1 Synthetic Sphere Experiments
	6.2 Torus
	6.3 Case Study: Continental Drift The source maps of fig:earth,fig:geodesicearth,fig:densestearth are © 2020 Colorado Plateau Geosystems Inc.

	7 Conclusion
	A Manifold Operations
	B Proof of c-concavity of the multi-layer potential
	C Additional experimental and implementation details
	C.1 Synthetic Sphere
	C.2 Torus
	C.3 Continental Drift


