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Abstract
Particle Filtering (PF) methods are an established
class of procedures for performing inference in
non-linear state-space models. Resampling is a
key ingredient of PF, necessary to obtain low vari-
ance likelihood and states estimates. However,
traditional resampling methods result in PF-based
loss functions being non-differentiable with re-
spect to model and PF parameters. In a varia-
tional inference context, resampling also yields
high variance gradient estimates of the PF-based
evidence lower bound. By leveraging optimal
transport ideas, we introduce a principled differ-
entiable particle filter and provide convergence
results. We demonstrate this novel method on a
variety of applications.

1. Introduction
In this section we provide a brief introduction to state-space
models (SSMs) and PF methods. We then illustrate one
of the well-known limitations of PF (Kantas et al., 2015):
resampling steps are required in order to compute low-
variance estimates, but these estimates are not differentiable
w.r.t. to model and PF parameters. This hinders end-to-end
training. We discuss recent approaches to address this prob-
lem in econometrics, statistics and machine learning (ML),
outline their limitations and our contributions.

1.1. State-Space Models

SSMs are an expressive class of sequential models, used in
numerous scientific domains including econometrics, ecol-
ogy, ML and robotics; see e.g. (Chopin & Papaspiliopoulos,
2020; Douc et al., 2014; Doucet & Lee, 2018; Kitagawa &
Gersch, 1996; Lindsten & Schön, 2013; Thrun et al., 2005).
SSM may be characterized by a latent X -valued Markov
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process (Xt)t≥1 and Y-valued observations (Yt)t≥1 satis-
fying X1 ∼ µθ(·) and for t ≥ 1

Xt+1|{Xt = x} ∼ fθ(·|x), Yt|{Xt = x} ∼ gθ(·|x), (1)

where θ ∈ Θ is a parameter of interest. Given observations
(yt)t≥1 and parameter values θ, one may perform state in-
ference at time t by computing the posterior of Xt given
y1:t := (y1, ..., yt) where

pθ(xt|y1:t−1) =

∫
fθ(xt|xt−1)pθ(xt−1|y1:t−1)dxt−1,

pθ(xt|y1:t) =
gθ(yt|xt)pθ(xt|y1:t−1)∫
gθ(yt|xt)pθ(xt|y1:t−1)dxt

,

with pθ(x1|y0) := µθ(x1).

The log-likelihood `(θ) = log pθ(y1:T ) is then given by

`(θ) =

T∑
t=1

log pθ(yt|y1:t−1),

with pθ(y1|y0) :=
∫
gθ(y1|x1)µθ(x1)dx1 and for t ≥ 2

pθ(yt|y1:t−1) =

∫
gθ(yt|xt)pθ(xt|y1:t−1)dxt.

The posteriors pθ(xt|y1:t) and log-likelihood pθ(y1:T ) are
available analytically for only a very restricted class of SSM
such as linear Gaussian models. For non-linear SSM, PF
provides approximations of such quantities.

1.2. Particle Filtering

PF are Monte Carlo methods entailing the propagation
of N weighted particles (wit, X

i
t)i∈[N ], here [N ] :=

{1, ..., N}, over time to approximate the filtering distribu-
tions pθ(xt|y1:t) and log-likelihood `(θ). Here Xi

t ∈ X
denotes the value of the ith particle at time t and wt :=
(w1

t , ..., w
N
t ) are weights satisfying wit ≥ 0,

∑N
i=1 w

i
t = 1.

Unlike variational methods, PF methods provide consis-
tent approximations under weak assumptions as N → ∞
(Del Moral, 2004). In the general setting, particles are sam-
pled according to proposal distributions qφ(x1|y1) at time
t = 1 and qφ(xt|xt−1, yt) at time t ≥ 2 prior to weighting
and resampling. One often chooses θ = φ but this is not
necessarily the case (Le et al., 2018; Maddison et al., 2017;
Naesseth et al., 2018).
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Algorithm 1 Standard Particle Filter

1: Sample Xi
1

i.i.d.∼ qφ(·|y1) for i ∈ [N ]

2: Compute ωi1 =
pθ(X

i
1,y1)

qφ(Xi1|y1)
for i ∈ [N ]

3: ˆ̀(θ)← 1
N

∑N
i=1 ω

i
1

4: for t = 2, ..., T do
5: Normalize weights wit−1 ∝ ωit−1,

∑N
i=1 w

i
t−1 = 1

6: Resample X̃i
t−1 ∼

∑N
i=1 w

i
t−1δXit−1

for i ∈ [N ]

7: Sample Xi
t ∼ qφ(·|X̃i

t−1, yt) for i ∈ [N ]

8: Compute ωit =
pθ(X

i
t ,yt|X̃

i
t−1)

qφ(Xit |X̃it−1,yt)
for i ∈ [N ]

9: Compute p̂θ(yt|y1:t−1) = 1
N

∑N
i=1 ω

i
t

10: ˆ̀(θ)← ˆ̀(θ) + log p̂θ(yt|y1:t−1)
11: end for
12: Return: log-likelihood estimate ˆ̀(θ) = log p̂θ(y1:T )

A generic PF is described in Algorithm 1 where
pθ(x1, y1) := µθ(x1)gθ(y1|x1) and pθ(xt, yt|xt−1) :=
fθ(xt|xt−1)gθ(yt|xt). Resampling is performed in step 6 of
Algorithm 1; it ensures particles with high weights are repli-
cated and those with low weights are discarded, allowing
one to focus computational efforts on ‘promising’ regions.
The scheme used in Algorithm 1 is known as multinomial
resampling and is unbiased (as are other traditional schemes
such as stratified and systematic (Chopin & Papaspiliopou-
los, 2020)), i.e.

E
[

1
N

∑N
i=1ψ(X̃i

t)
]

= E
[∑N

i=1w
i
tψ(Xi

t)
]
, (2)

for any ψ : X → R. This property guarantees exp(ˆ̀(θ)) is
an unbiased estimate of the likelihood exp(`(θ)) for any N .

Henceforth, let X = Rdx , θ ∈ Θ = Rdθ and φ ∈ Φ = Rdφ .
We assume here that θ 7→ µθ(x), θ 7→ fθ(x

′|x) and
θ 7→ gθ(yt|x) are differentiable for all x, x′ and t ∈ [T ]
and θ 7→ `(θ) is differentiable. These assumptions are sat-
isfied by a large class of SSMs. We also assume that we
can use the reparameterization trick (Kingma & Welling,
2014) to sample the particles; i.e. we have Γφ(y1, U) ∼
qφ(x1|y1),Ψφ(yt, xt−1, U) ∼ qφ(xt|xt−1, yt) for some
mappings Γφ,Ψφ differentiable w.r.t. φ and U ∼ λ, λ
being independent of φ.

1.3. Related Work and Contributions

Let U be the set of all random variables used to sample
and resample the particles. The distribution of U is (θ, φ)-
independent as we use the reparameterization trick1. How-
ever, even if we sample and fix U = u, resampling involves
sampling from an atomic distribution and introduces discon-
tinuities in the particles selected when θ, φ vary.

1For example, multinomial resampling relies on N uniform
random variables.

(a) Kalman Filter

(b) Standard PF

(c) Differentiable PF

Figure 1. Left: Log-likelihood `(θ) and PF estimates ˆ̀(θ;φ,u) for
linear Gaussian SSM, given in Section 5.1, with dθ = 2 dx = 2,
and T = 150, N = 50. Right: ∇θ`(θ) and∇θ ˆ̀(θ;φ,u).

For dx = 1, Malik & Pitt (2011) make θ 7→ ˆ̀(θ;φ,u)
continuous w.r.t. θ by sorting the particles and then sam-
pling from a smooth approximation of their cumulative
distribution function. For dx > 1, Lee (2008) proposes
a smoother but only piecewise continuous estimate. De-
Jong et al. (2013) returns a differentiable log-likelihood
estimate ˆ̀(θ;φ,u) by using a marginal PF (Klaas et al.,
2005), where importance sampling is performed on a col-
lapsed state-space. However, the proposal distribution typ-
ically used in the marginal PF is the mixture distribution
qφ(xt) := 1

N

∑N
i=1 qφ(xt|X̃i

t−1, yt) from which one can-
not sample smoothly in general. As a consequence they
instead suggest using a simple Gaussian distribution for
qφ(xt), which can lead to poor estimates for multimodal pos-
teriors. Moreover, in contrast to standard PF, this marginal
PF cannot be applied in scenarios where the transition den-
sity can be sampled from (e.g. using the reparameterization
trick) but not evaluated pointwise (Murray et al., 2013), as
the importance weight would be intractable.
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In the context of robot localization, a modified resampling
scheme has been proposed in (Karkus et al., 2018; Ma et al.,
2020a;b) referred to as ‘soft-resampling’ (SPF). SPF has
parameter α ∈ [0, 1] where α = 1 corresponds to reg-
ular PF resampling and α = 0 is essentially sampling
particles uniformly at random. The resulting PF-net is
said to be differentiable but computes gradients that ignore
the non-differentiable component of the resampling step.
Jonschkowski et al. (2018) proposed another PF scheme
which is said to be differentiable but simply ignores the non-
differentiable resampling terms and proposes new states
based on the observation and some neural network. This ap-
proach however does not propagate gradients through time.
Finally, Zhu et al. (2020) propose a differentiable resam-
pling scheme based on transformers but they report that the
best results are achieved when not backpropagating through
it, due to exploding gradients. Hence no fully differentiable
PF is currently available in the literature (Kloss et al., 2020).

PF methods have also been fruitfully exploited in Vari-
ational Inference (VI) to estimate θ, φ (Le et al., 2018;
Maddison et al., 2017; Naesseth et al., 2018). As
EU[exp

(
ˆ̀(θ;φ,U)

)
] = exp(`(θ)) is an unbiased estimate

of exp(`(θ)) for any N,φ for standard PF, then one has
indeed by Jensen’s inequality

`ELBO(θ, φ) := EU[ˆ̀(θ;φ,U)] ≤ `(θ). (3)

The standard ELBO corresponds to N = 1 and many varia-
tional families for approximating pθ(x1:T |y1:T ) have been
proposed in this context (Archer et al., 2015; Krishnan et al.,
2017; Rangapuram et al., 2018). The variational family in-
duced by a PF differs significantly as `ELBO(θ, φ)→ `(θ)
as N →∞ and thus yields a variational approximation con-
verging to pθ(x1:T |y1:T ). This attractive property comes at
a computational cost; i.e. the PF approach trades off fidelity
to the posterior with computational complexity. While un-
biased gradient estimates of the PF-ELBO (3) can be com-
puted, they suffer from high variance as the resampling
steps require having to use REINFORCE gradient estimates
(Williams, 1992). Consequently, Hirt & Dellaportas (2019);
Le et al. (2018); Maddison et al. (2017); Naesseth et al.
(2018) use biased gradient estimates which ignore these
terms, yet report improvements asN increases over standard
VI approaches and Importance Weighted Auto-Encoders
(IWAE) (Burda et al., 2016).

The contributions of this paper are four-fold.

• We propose the first fully Differentiable Particle Filter
(DPF), which unlike (DeJong et al., 2013), can use gen-
eral proposal distributions. DPF provides a differentiable
estimate of `(θ), see Figure 1-c, and more generally dif-
ferentiable estimates of PF-based losses. Empirically, in
a VI context, DPF-ELBO gradient estimates also exhibit
much smaller variance than those of PF-ELBO.

• We provide quantitative convergence results on the dif-
ferentiable resampling scheme and establish consistency
results for DPF.
• We show that existing techniques provide inconsistent

gradient estimates and that the non-vanishing bias can be
very significant, leading practically to unreliable parame-
ter estimates.
• We demonstrate that DPF empirically outperforms recent

alternatives for end-to-end parameter estimation on a
variety of applications.

Proofs of results are given in the Supplementary Material.

2. Resampling via Optimal Transport
2.1. Optimal Transport and the Wasserstein Metric

Since Optimal Transport (OT) (Peyré & Cuturi, 2019; Vil-
lani, 2008) is a core component of our scheme, the basics
are presented here. Given two probability measures α, β on
X = Rdx the squared 2-Wasserstein metric between these
measures is given by

W2
2 (α, β) = min

P∈U(α,β)
E(U,V )∼P

[
||U − V ||2

]
, (4)

where U(α, β) the set of distributions on X × X with
marginals α and β, and the minimizing argument of (4)
is the OT plan denoted POT. Any element P ∈ U(α, β)
allows one to “transport” α to β (and vice-versa) i.e.

β(dv) =

∫
P(du, dv) =

∫
P(dv|u)α(du).

For atomic probability measures αN =
∑N
i=1 aiδui and

βN =
∑N
j=1 bjδvj with weights a = (ai)i∈[N ], b =

(bj)j∈[N ], and atoms u = (ui)i∈[N ], v = (vj)j∈[N ], one
can show that

W2
2 (αN , βN ) = min

P∈S(a,b)

∑N
i=1

∑N
j=1 ci,jpi,j , (5)

where any P ∈ U(αN , βN ) is of the form

P(du, dv) =
∑
i,j pi,jδui(du)δvj (dv),

ci,j = ||ui − vj ||2, P = (pi,j)i,j∈[N ] and S(a,b) is the
following set of matrices

S(a,b) =
{
P ∈ [0, 1]N×N :

N∑
j=1

pi,j = ai,

N∑
i=1

pi,j = bj
}
.

In such cases, one has

P(dv|u = ui) =
∑
j a
−1
i pi,jδvj (dv). (6)

The optimization problem (5) may be solved through lin-
ear programming. It is also possible to exploit the dual
formulation

W2
2 (αN , βN ) = max

f ,g∈R(C)
atf + btg, (7)
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where f = (fi), g = (gi), C = (ci,j) andR(C) = {f ,g ∈
RN |fi + gj ≤ ci,j , i, j ∈ [N ]}.

2.2. Ensemble Transform Resampling

The use of OT for resampling in PF has been pioneered by
Reich (2013). Unlike standard resampling schemes (Chopin
& Papaspiliopoulos, 2020; Doucet & Lee, 2018), it relies
not only on the particle weights but also on their locations.

At time t, after the sampling step (Step 7 in Algo-
rithm 1), α(t)

N = 1
N

∑N
i=1 δXit is a particle approxima-

tion of α(t) :=
∫
qφ(xt|xt−1, yt)pθ(xt−1|y1:t−1)dxt−1

and β
(t)
N =

∑
witδXit is an approximation of β(t) :=

pθ(xt|y1:t). Under mild regularity conditions, the OT plan
minimizingW2(α(t), β(t)) is of the form POT(dx, dx′) =
α(t)(dx)δT(t)(x)(dx′) where T(t) : X → X is a determin-
istic map; i.e if X ∼ α(t) then T(t)(X) ∼ β(t). It is shown
in (Reich, 2013) that one can one approximate this trans-
port map with the ‘Ensemble Transform’ (ET) denoted T

(t)
N .

This is found by solving the OT problem (5) between α(t)
N

and β(t)
N and taking an expectation w.r.t. (6), that is

X̃i
t = N

∑N
k=1 p

OT
i,k X

k
t := T

(t)
N (Xi

t), (8)

where we slightly abuse notation as T
(t)
N is a function of

X1:N
t . Reich (2013) uses this update instead of using X̃i

t ∼∑N
i=1 w

i
tδXit . This is justified by the fact that, as N →

∞, T(t)
N (Xi

t) → T(t)(Xi
t) in some weak sense (Reich,

2013; Myers et al., 2021). Compared to standard resampling
schemes, the ET only satisfies (2) for affine functions ψ.

This OT approach to resampling involves solving the linear
program (4) at cost O(N3 logN) (Bertsimas & Tsitsiklis,
1997). This is not only prohibitively expensive but moreover
the resulting ET is not differentiable. To address these
problems, one may instead rely on entropy-regularized OT
(Cuturi, 2013).

3. Differentiable Resampling via
Entropy-Regularized Optimal Transport

3.1. Entropy-Regularized Optimal Transport

Entropy-regularized OT may be used to compute a trans-
port matrix that is differentiable with respect to inputs and
computationally cheaper than the non-regularized version,
i.e. we consider the following regularized version of (5) for
some ε > 0 (Cuturi, 2013; Peyré & Cuturi, 2019)

W2
2,ε(αN , βN ) = min

P∈S(a,b)

N∑
i,j=1

pi,j

(
ci,j + ε log

pi,j
aibj

)
. (9)

The function minimized in (9) is strictly convex and hence
admits a unique minimizing argument POT

ε = (pOT
ε,i,j).

W2
2,ε(αN , βN ) can also be computed using the regularized

dual; i.e. W2
2,ε(αN , βN ) = maxf ,g DOTε(f ,g) with

DOTε(f ,g) := atf + btg − εatMb (10)

where (M)i,j := exp
(
ε−1(fi + gj − ci,j)

)
−1 and f ,g are

now unconstrained. For the dual pair (f∗,g∗) maximizing
(10), we have∇f ,gDOTε(f ,g)|(f∗,g∗) = 0. This first-order
condition leads to

f∗i = Tε(b,g∗,Ci:), g∗i = Tε(a, f∗,C:i), (11)

where Ci: (resp. C:i) is the ith row (resp. column) of C.
Here Tε : RN × RN × RN → RN denotes the mapping

Tε(a, f ,C:,i) = −ε log
∑
k

exp
{

log ak+ε−1 (fk − ck,i)
}
.

One may then recover the regularized transport matrix as

pOT
ε,i,j = aibj exp

(
ε−1(f∗i + g∗j − ci,j)

)
. (12)

The dual can be maximized using the Sinkhorn algorithm
introduced for OT in the seminal paper of Cuturi (2013).
Algorithm 2 presents the implementation of Feydy et al.
(2019) where the fixed point updates based on Equation (11)
have been stabilized.

Algorithm 2 Sinkhorn Algorithm

1: Function Potentials(a,b,u,v)
2: Local variables: f ,g ∈ RN
3: Initialize: f = 0, g = 0
4: Set C← uut + vvt − 2uvt

5: while stopping criterion not met do
6: for i ∈ [N ] do
7: fi ← 1

2 (fi + Tε(b,g,Ci:))
8: gi ← 1

2 (gi + Tε(a, f ,C:i))
9: end for

10: end while
11: Return f ,g

The resulting dual vectors (f∗,g∗) can then be differentiated
for example using automatic differentiation through the
Sinkhorn algorithm loop (Flamary et al., 2018), or more
efficiently using “gradient stitching” on the dual vectors at
convergence, which we do here (see Feydy et al. (2019) for
details). The derivatives of POT

ε are readily accessible by
combining the derivatives of (11) with the derivatives of
(12), using automatic differentiation at no additional cost.

3.2. Differentiable Ensemble Transform Resampling

We obtain a differentiable ET (DET), denoted T
(t)
N,ε, by

computing the entropy-regularized OT using Algorithm 3
for the weighted particles (Xt,wt, N ) at time t

X̃i
t = N

∑N
k=1 p

OT
ε,i,kX

k
t := T

(t)
N,ε(X

i
t). (13)
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Algorithm 3 DET Resampling

1: Function EnsembleTransform(X,w, N )
2: f ,g← Potentials(w, 1

N 1,X,X)
3: for i ∈ [N ] do
4: for j ∈ [N ] do
5: pOT

ε,i,j = wi
N exp

(
fi+gj−ci,j

ε

)
6: end for
7: end for
8: Return X̃ = NPOT

ε X

Compared to the ET, the DET is differentiable and can be
computed at cost O(N2) as it relies on the Sinkhorn algo-
rithm. This algorithm converges quickly (Altschuler et al.,
2017) and is particularly amenable to GPU implementation.

The DPF proposed in this paper is similar to Algorithm 1
except that we sample from the proposal qφ using the repa-
rameterization trick and Step 6 is replaced by the DET.
While such a differentiable approximation of the ET has
previously been suggested in ML (Cuturi & Doucet, 2014;
Seguy et al., 2018), it has never been realized before that
this could be exploited to obtain a DPF. In particular, we
obtain differentiable estimates of expectations w.r.t. the fil-
tering distributions with respect to θ and φ and, for a fixed
“seed” U = u 2, we obtain a differentiable estimate of the
log-likelihood function θ 7→ ˆ̀

ε(θ;φ,u).

Like ET, DET only satisfies (2) for affine functions ψ.
Unlike POT, POT

ε is sensitive to the scale of Xt. To
mitigate this sensitivity, one may compute δ(Xt) =√
dx maxk∈[dx] stdi(Xi

t,k) for Xt ∈ RN×dx and rescale C
accordingly to ensure that ε is approximately independent
of the scale and dimension of the problem.

4. Theoretical Analysis
We show here that the gradient estimates of PF-based losses
ignoring gradients terms due to resampling are not consis-
tent and can suffer from a large non-vanishing bias. On
the contrary, we establish that DPF provides consistent and
differentiable estimates of the filtering distributions and log-
likelihood function. This is achieved by obtaining novel
quantitative convergence results for the DET.

4.1. Gradient Bias from Ignoring Resampling Terms

We first provide theoretical results on the asymptotic bias of
the gradient estimates computed from PF-losses, by drop-
ping the gradient terms from resampling, as adopted in (Hirt
& Dellaportas, 2019; Jonschkowski et al., 2018; Karkus

2Here U denotes only the set of θ, φ-independent random vari-
ables used to generate particles as, contrary to standard PF, DET
resampling does not rely on any additional random variable.

et al., 2018; Le et al., 2018; Ma et al., 2020b; Maddison
et al., 2017; Naesseth et al., 2018). We limit ourselves
here to the ELBO loss. Similar analysis can be carried out
for the non-differentiable resampling schemes and losses
considered in robotics.

Proposition 4.1. Consider the PF in Algorithm 1 where
φ is distinct from θ then, under regularity conditions, the
expectation of the ELBO gradient estimate ∇̂θ`ELBO(θ, φ)
ignoring resampling terms considered in (Le et al., 2018;
Maddison et al., 2017; Naesseth et al., 2018) converges as
N →∞ to

E[∇̂θ`ELBO(θ, φ)]→
∫
∇θ log pθ(x1, y1) pθ(x1|y1)dx1

+
T∑
t=2

∫
∇θ log pθ(xt, yt|xt−1) pθ(xt−1:t|y1:t)dxt−1:t

whereas Fisher’s identity yields

∇θ`(θ) =

∫
∇θ log pθ(x1, y1) pθ(x1|y1:T )dx1

+
T∑
t=2

∫
∇θ log pθ(xt, yt|xt−1) pθ(xt−1:t|y1:T )dxt−1:t.

Hence, whereas we have ∇θ`ELBO(θ, φ) → ∇θ`(θ) as
N → ∞ under regularity assumptions, the asymptotic
bias of ∇̂θ`ELBO(θ, φ) only vanishes if pθ(xt−1:t|y1:t) =
pθ(xt−1:t|y1:T ); i.e. for models where the Xt are indepen-
dent. When yt+1:T do not bring significant information
about Xt given yt:T , as for the models considered in (Le
et al., 2018; Maddison et al., 2017; Naesseth et al., 2018),
this is a reasonable approximation which explains the good
performance reported therein. However, we show in Sec-
tion 5 that this bias can also lead practically to inaccurate
parameter estimation.

4.2. Quantitative Bounds on the DET

Weak convergence results for the ET have been established
in (Reich, 2013; Myers et al., 2021) and the DET in (Seguy
et al., 2018). We provide here the first quantitative bound for
the ET (ε = 0) and DET (ε > 0) which holds for any N ≥
1 by building upon results of (Li & Nochetto, 2021) and
(Weed, 2018). We use the notation ν(ψ) :=

∫
ψ(x)ν(dx)

for any measure ν and function ψ.

Proposition 4.2. Consider atomic probability measures
αN =

∑N
i=1 aiδY i with ai > 0 and βN =

∑N
i=1 biδXi ,

with support X ⊂ Rd. Let β̃N =
∑N
i=1 aiδX̃iN,ε

where

X̃N,ε = ∆−1POT
ε X for ∆ = diag(a1, ..., aN ) and POT

ε

is the transport matrix corresponding to the ε-regularized
OT coupling, POT,N

ε , between αN and βN . Let α, β be two
other probability measures, also supported on X , such that
there exists a unique λ-Lipschitz optimal transport map T
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between them. Then for any bounded 1-Lipschitz function
ψ, we have∣∣∣βN (ψ)− β̃N (ψ)

∣∣∣ ≤ 2λ1/2E1/2
[
d1/2 + E

]1/2
+ max{λ, 1} [W2(αN , α) +W2(βN , β)] , (14)

where d := supx,y∈X |x − y| and E = W2(αN , α) +

W2(βN , β) +
√

2ε logN.

If W2(αN , α),W2(βN , β) → 0 and we choose εN =
o(1/ logN) the bound given in (14) vanishes with N →∞.
This suggested dependence of ε on N comes from the en-
tropic radius, see Lemma C.1 in the Supplementary and
(Weed, 2018), and is closely related to the fact that entropy-
regularized OT is sensitive to the scale of X. Equiva-
lently one may rescale X by a factor logN when com-
puting the cost matrix. In particular when αN and βN
are Monte Carlo approximations of α and β, we expect
W2(αN , α),W2(βN , β) = O(N−1/d) with high probabil-
ity (Fournier & Guillin, 2015).

4.3. Consistency of DPF

The parameters θ, φ are here fixed and omitted from no-
tation. We now establish consistency results for DPF,
showing that both the resulting particle approximations
β̃
(t)
N = 1

N

∑N
i=1 δX̃it

of β(t) = p(xt|y1:t) and the cor-
responding log-likelihood approximation log p̂N (y1:T ) of
log p(y1:T ) are consistent. In the interest of simplicity, we
limit ourselves to the scenario where the proposal is the tran-
sition, q = f , so ω(xt−1, xt, yt) = g(yt|xt), known as the
bootstrap PF and study a slightly non-standard version of it
proposed in (Del Moral & Guionnet, 2001); see Appendix D
for details. Consistency is established under regularity as-
sumptions detailed in the Supplementary. Assumption B.1
is that the space X ⊂ Rd has a finite diameter d. Assump-
tion B.2 implies that the proposal mixes exponentially fast
in the Wasserstein sense at a rate κ, which is reasonable
given compactness, and essential for the error to not accu-
mulate. Assumption B.3 assumes a bounded importance
weight function i.e. g(yt|xt) ∈ [∆,∆−1], again not un-
reasonable given compactness. Assumption B.4 states that
at each time step, the optimal transport problem between
α(t) and β(t) is solved uniquely by a deterministic, globally
Lipschitz map. Uniqueness is crucial for the quantitative
stability results provided in the following proposition.

Proposition 4.3. Under Assumptions B.1, B.2, B.3 and B.4,
for any δ > 0, with probability at least 1 − 2δ over the
sampling steps, for any bounded 1-Lipschitz ψ, for any
t ∈ [1 : T ], the approximations of the filtering distributions
and log-likelihood computed by the bootstrap DPF satisfy

|β̃(t)
N (ψ)− β(t)(ψ)| ≤ G

(t)
ε,δ/T,N,d (λ(c, C, d, T,N, δ)) ,

∣∣∣∣log
p̂N (y1:T )

p(y1:T )

∣∣∣∣ ≤ κ

∆
max
t∈[1:T ]

Lip [g(yt | ·)]

×
T∑
t=1

G
(t)
ε,δ/T,N,d (λ(c, C, d, T,N, δ)) ,

for λ(c, C, d, T,N, δ) =

√
f−1d

(
log(CT/δ)

cN

)
where c, C

are finite constants independent of T, and Lip[f ] is the
Lipschitz constant of the function f, and G

(t)
N,ε, fd defined

in Appendix D are two functions such that if we set εN =
o(1/ logN) then we have in probability

|β̃(t)
N (ψ)− β(t)(ψ)| → 0,

∣∣∣∣log
p̂N (y1:T )

p(y1:T )

∣∣∣∣→ 0.

The above bounds are certainly not sharp. A glimpse into the
behavior of the above bounds in terms of T can be obtained
through careful consideration of the quantities appearing in
Proposition D.1 in the supplement. In particular, for κ small
enough, it suggests that the bound on the error of the log-
likelihood estimator grows linearly with T as for standard
PF under mixing assumptions. Sharper bounds are certainly
possible, e.g. using a L1 version of Theorem 3.5 in (Li &
Nochetto, 2021). It would also be of interest to weaken the
assumptions, in particular, to remove the bounded space
assumption although it is very commonly made in the PF
literature to obtain quantitative bounds; see e.g. (Del Moral,
2004; Douc et al., 2014). Although this is not made explicit
in the expressions above, there is an exponential dependence
of the bounds on the state dimension dx. This is unavoidable
however and a well-known limitation of PF methods.

Finally note that DPF provides a biased estimate of
the likelihood contrary to standard PF, so we can-
not guarantee that the expectation of its logarithm,
`ELBO
ε (θ, φ) := EU[ˆ̀ε(θ;φ,U)]. is actually a valid ELBO.

However in all our experiments, see e.g. Section 5.1,
|`ELBO
ε (θ, φ) − `ELBO(θ, φ)| is significantly smaller than

`(θ)−`ELBO(θ, φ) so `ELBO
ε (θ, φ) < `(θ). Hence we keep

the ELBO terminology.

5. Experiments
In Section 5.1, we assess the sensitivity of the DPF to the
regularization parameter ε. All other DPF experiments pre-
sented here use the DET Resampling detailed in Algorithm 3
with ε = 0.5, which ensures stability of the gradient calcula-
tions while adding little bias to the calculation of the ELBO
compared to standard PF. Our method is implemented in
both PyTorch and TensorFlow, the code to replicate the ex-
periments as well as further experiments may be found at
https://github.com/JTT94/filterflow.

https://github.com/JTT94/filterflow


Differentiable Particle Filtering

5.1. Linear Gaussian State-Space Model

We consider here a simple two-dimensional linear Gaussian
SSM for which the exact likelihood can be computed exactly
using the Kalman filter

Xt+1|{Xt = x} ∼ N (diag(θ1 θ2)x, 0.5I2) ,

Yt|{Xt = x} ∼ N (x, 0.1I2).

We simulate T = 150 observations using θ = (θ1, θ2) =
(0.5, 0.5), for which we evaluate the ELBO at θ =
(0.25, 0.25), θ = (0.5, 0.5), and θ = (0.75, 0.75). More
precisely, using a standard PF with N = 25 particles, we
compute the mean and standard deviation of 1

T (ˆ̀(θ;U)−
`(θ)) over 100 realizations of U. The mean is an estimate
of the ELBO minus the true log-likelihood (rescaled by
1/T ). We then perform the same calculations for the DPF
using the same number of particles and ε = 0.25, 0.5, 0.75.
As mentioned in Section 3.2 and Section 4.3, the DET re-
sampling scheme is only satisfying Equation (2) for affine
functions ψ so the DPF provides a biased estimate of the
likelihood. Hence we cannot guarantee that the expectation
of the corresponding log-likelihood estimate is a true ELBO.
However, from Table 1, we observe that the difference be-
tween the ELBO estimates computed using PF and DPF is
negligible for the three values of ε. The standard deviation
of the log-likelihood estimates is also similar.

Table 1. Mean & std of 1
T
(ˆ̀(θ;U)− `(θ))

θ1, θ2 0.25 0.5 0.75

PF mean -1.13 -0.93 -1.05
std 0.20 0.18 0.17

DPF (ε = 0.25) mean -1.14 -0.94 -1.07
std 0.20 0.18 0.19

DPF (ε = 0.5) mean -1.14 -0.94 -1.08
std 0.20 0.18 0.18

DPF (ε = 0.75) mean -1.14 -0.94 -1.08
std 0.20 0.18 0.18

5.2. Learning the Proposal Distribution

We consider a similar example as in (Naesseth et al., 2018)
where one learns the parameters φ of the proposal using the
ELBO for the following linear Gaussian SSM:

Xt+1|{Xt = x} ∼ N (Ax, Idx) , (15)
Yt|{Xt = x} ∼ N (Idy,dxx, Idy ), (16)

with A = (0.42|i−j|+1)1≤i,j≤dx , Idy,dx is a dy × dx ma-
trix with 1 on the diagonal for the dy first rows and zeros
elsewhere. For φ ∈ Rdx+dy , we consider

qφ(xt|xt−1, yt) = N (xt|∆−1φ (Axt−1 + Γφyt) ,∆φ),

with ∆φ = diag(φ1, . . . , φdx) and a dx × dy matrix
Γφ = diagdx,dy (φ1, . . . , φdx) with φi on the diagonal for
dx first rows and zeros elsewhere. The locally optimal pro-
posal p(xt|xt−1, yt) ∝ g(yt|xt)f(xt|xt−1) in (Doucet &
Johansen, 2009) corresponds to φ = 1, the vector with unit
entries of dimension dφ = dx + dy .

For dx = 25, dy = 1, M = 100 realizations of T = 100
observations using (15)-(16), we learn φ on each realization
using 100 steps of stochastic gradient ascent with learning
rate 0.1 on the `ELBO(φ) using regular PF with biased gradi-
ents as in (Maddison et al., 2017; Le et al., 2018; Naesseth
et al., 2018) and `ELBO(φ) with four independent filters us-
ing DPF. We use N = 500 for regular PF and N = 25 for
DPF so as to match the computational complexity. While
p(xt|xt−1, yt) is not guaranteed to maximize the ELBO,
our experiments showed that it outperforms optimized pro-
posals. We therefore report the RMSE of φ − 1 and the
average Effective Sample Size (ESS) (Doucet & Johansen,
2009) as proxy performance metrics. On both metrics, DPF
outperforms regular PF. The RMSE over 100 experiments
is 0.11 for DPF vs 0.22 for regular PF while the average
ESS after convergence is around 60% for DPF vs 25% for
regular PF. The average time per iteration was around 15
seconds for both DPF and PF.

5.3. Variational Recurrent Neural Network (VRNN)

A VRNN is an SSM introduced by (Chung et al., 2015)
to improve upon LSTMs (Long Short Term Memory net-
works) with the addition of a stochastic component to the
hidden state, this extends variational auto-encoders to a se-
quential setting. Indeed let latent state be Xt = (Rt, Zt)
where Rt is an RNN state and Zt a latent Gaussian variable,
here Yt is a vector of binary observations. The VRNN is
detailed as follows. RNNθ denotes the forward call of an
LSTM cell which at time t emits the next RNN state Rt+1

and output Ot+1. Eθ, hθ, µθ, σθ are fully connected neu-
ral networks; detailed fully in the Supplementary Material.
This model is trained on the polyphonic music benchmark
datasets (Boulanger-Lewandowski et al., 2012), whereby
Yt represents which notes are active. The observation se-
quences are capped to length 150 for each dataset, with each
observation of dimension 88. We chose latent states Zt and
Rt to be of dimension dz = 8 and dr = 16 respectively so
dx = 24. We use qφ(xt|xt−1, yt) = fθ(xt|xt−1).

(Rt+1, Ot+1) = RNNθ(Rt, Y1:t, Eθ(Zt)),
Zt+1 ∼ N (µθ(Ot+1), σθ(Ot+1)),

p̂t+1 = hθ(Eθ(Zt+1), Ot+1),

Yt|Xt ∼ Ber(p̂t).

The VRNN model is trained by maximizing `ELBO
ε (θ) us-

ing DPF. We compare this to the same model trained by
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Table 2. ELBO ± Standard Deviation evaluated using Test Data.

MUSEDATA JSB NOTTINGHAM

DPF −7.59±0.01 −7.67±0.08 −3.79±0.02

PF −7.60±0.06 −7.92±0.13 −3.81±0.02

SPF −7.73±0.14 −8.17±0.07 −3.91±0.05

Figure 2. ELBO during training, evaluated on Test Data for JSB.

maximizing `ELBO(θ) computed with regular PF (Maddi-
son et al., 2017) and also trained with ‘soft-resampling’
(SPF) introduced by (Karkus et al., 2018) and described
in Section 1.3, SPF is used here with parameter α = 0.1.
Unlike regular resampling, SPF partially preserves a gradi-
ent through the resampling step, however SPF still involves
a non-differentiable operation, again resulting in a biased
gradient. SPF also produces higher variance estimates as
the resampled approximation is not uniformly weighted,
essentially interpolating between PF and IWAE. Each of the
methods are performed with N = 32 particles. Although
DET is computationally more expensive than the other re-
sampling schemes, the computational times of DPF, PF, and
SPF are very similar due to most of the complexity com-
ing from neural network operations. The learned models
are then evaluated on test data using multinomial resam-
pling for comparable ELBO results. Due to the fact that
our observation model is Ber(p̂t), this recovers the negative
log-predictive cross-entropy.

Figure 2 and Table 2 illustrate the benefit of using DPF
over regular PF and SPF for the JSB dataset. Although
DPF remains competitive compared to other heuristic ap-
proaches, the difference is relatively minor for the other
datasets. We speculate that the performance of the heuristic
methods is likely due to low predictive uncertainty for the
next observation given the previous one.

5.4. Robot Localization

Consider the setting of a robot/agent in a maze (Jon-
schkowski et al., 2018; Karkus et al., 2018). Given the
agent’s initial state, S1, and inputs at, one would like
to infer the location of the agent at any specific time

given observations Ot. Let the latent state be denoted
St = (X

(1)
t , X

(2)
t , γt) where (X

(1)
t , X

(2)
t ) are location co-

ordinates and γt the robot’s orientation. In our setting obser-
vations Ot are images, which are encoded to extract useful
features using a neural network Eθ, where Yt = Eθ(Ot).
This problem requires learning the relationship between the
robot’s location, orientation and the observations. Given
actions at = (v

(1)
t , v

(2)
t , ωt), we have

St+1 = Fθ(St, at) + νt, νt
i.i.d.∼ N (0,ΣF ),

Yt = Gθ(St) + εt, εt
i.i.d.∼ N (0, σ2

GIed),

where ΣF = diag(σ2
x, σ

2
x, σ

2
θ) and the relationship between

state St and image encoding Yt may be parameterized by
another neural network Gθ. We consider here a simple
linear model of the dynamics

F (St, at) =

X(1)
t + v

(1)
t cos(γt) + v

(2)
t sin(γt)

X
(2)
t + v

(1)
t sin(γt)− v(2)t cos(γt)

γt + ωt

 .
Dθ denotes a decoder neural network, mapping the encoding
back to the original image. Eθ, Gθ and Dθ are trained using
a loss function consisting of the PF-estimated log-likelihood
L̂PF; PF-based mean squared error (MSE), L̂MSE; and auto-
encoder loss, L̂AE, given per-batch as in (Wen et al., 2020):

L̂MSE :=
1

T

T∑
t=1

||X∗t −
N∑
i=1

witX
i
t ||2, L̂PF := − 1

T
ˆ̀(θ),

L̂AE :=

T∑
t=1

||Dθ(Eθ(Ot))−Ot||2,

whereX?
t are the true states available from training data and∑N

i=1 w
i
tX

i
t are the PF estimates of E[Xt|y1:t]. The auto-

encoder / reconstruction loss L̂AE ensures the encoder is
informative and prevents the case whereby networksGθ, Eθ
map to a constant. The PF-based loss terms L̂MSE and L̂PF

are not differentiable w.r.t. θ under traditional resampling
schemes.

We use the setup from (Jonschkowski et al., 2018) with data
from DeepMind Lab (Beattie et al., 2016). This consists of
3 maze layouts of varying sizes. We have access to ‘true’
trajectories of length 1, 000 steps for each maze. Each step
has an associated state, action and observation image, as de-
scribed above. The visual observationOt consists of 32×32
RGB pixel images, compressed to 24× 24, as shown in Fig-
ure 3. Random, noisy subsets of fixed length are sampled at
each training iteration. To illustrate the benefits of our pro-
posed method, we select the random subsets to be of length
50 as opposed to length 20 as chosen in (Jonschkowski et al.,
2018). Training details in terms of learning rates, number of
training steps and neural network architectures for Eθ, Gθ
and Dθ are given in the Appendices.
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Figure 3. Left: Particles (X(1),i
t , X

(2),i
t ) (green), PF estimate of

E[Xt|y1:t] (blue), true state X∗
t (red). Right: Observation, Ot.

We compare our method, DPF, to regular PF used in (Mad-
dison et al., 2017) and Soft PF (SPF) used in (Karkus et al.,
2018; Ma et al., 2020a;b), whereby the soft resampling is
used with α = 0.1. As most of the computational complex-
ity arises from neural network operations, DPF is of similar
overall computational cost to SPF and PF. As shown in Table
3 and Figure 4, DPF significantly outperforms previously
considered PF methods in this experiment. The observation
model becomes increasingly important for longer sequences
due to resampling and weighting operations. Indeed, as
shown in Figure 5, the error is small for both models at the
start of the sequence, however the error at later stages in the
sequence is visibly smaller for the model trained using DPF.

Table 3. MSE and ± Standard Deviation evaluated on Test Data:
Lower is better

MAZE 1 MAZE 2 MAZE 3

DPF 3.55±0.20 4.65±0.50 4.44±0.26

PF 10.71±0.45 11.86±0.57 12.88±0.65

SPF 9.14±0.39 10.12±0.40 11.42±0.37

(a) Maze 1 (b) Maze 2 (c) Maze 3

Figure 4. MSE of PF (red), SPF (green) and DPF (blue) estimates,
evaluated on test data during training.

(a) Standard PF (b) Differentiable PF

Figure 5. Illustrative Example: PF estimate of path compared to
true path (black) on a single 50-step trajectory from test data.

6. Discussion
This paper introduces the first principled, fully differentiable
PF (DPF) which permits parameter inference in state-space
models using end-to-end gradient based optimization. This
property allows the use of PF routines in general differen-
tiable programming pipelines, in particular as a differen-
tiable sampling method for inference in probabilistic pro-
gramming languages (Dillon et al., 2017; Ge et al., 2018;
van de Meent et al., 2018).

For a given number of particles N , existing PF methods ig-
noring resampling gradient terms have computational com-
plexity O(N). Training with these resampling schemes
however is unreliable and performance cannot be improved
by increasing N as gradient estimates are inconsistent and
the limiting bias can be significant. DPF has complexity
O(N2) during training. However, this cost is dwarfed when
training large neural networks. Additionally, once the model
is trained, standard PF may be ran at complexityO(N). The
benefits of DPF are confirmed by our experimental results
where it was shown to outperform existing techniques, even
when an equivalent computational budget was used. More-
over, recent techniques have been proposed to speed up the
Sinkhorn algorithm (Altschuler et al., 2019; Scetbon & Cu-
turi, 2020) at the core of DPF and could potentially be used
here to reduce its complexity.

Regularization parameter ε was not fine-tuned in our exper-
iments. In future work, it would be interesting to obtain
sharper quantitative bounds on DPF to propose principled
guidelines on choosing ε, further improving its performance.
Finally, we have focused on the use of the differentiable
ensemble transform to obtain a differentiable resampling
scheme. However, alternative OT approaches could also
be proposed such as a differentiable version of the second
order ET presented in (Acevedo et al., 2017), or techniques
based on point cloud optimization (Cuturi & Doucet, 2014;
Peyré & Cuturi, 2019) relying on the Sinkhorn divergence
(Genevay et al., 2018) or the sliced-Wasserstein metric. Al-
ternative non-entropic regularizations, such as the recently
proposed Gaussian smoothed OT (Goldfeld & Greenewald,
2020), could also lead to DPFs of interest.
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Probability and Statistics, volume 37, pp. 155–194, 2001.

Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan,
S., Moore, D., Patton, B., Alemi, A., Hoffman, M., and
Saurous, R. A. Tensorflow distributions. arXiv preprint
arXiv:1711.10604, 2017.

Douc, R., Moulines, E., and Stoffer, D. Nonlinear Time Se-
ries: Theory, Methods and Applications with R Examples.
CRC press, 2014.

Doucet, A. and Johansen, A. M. A tutorial on particle
filtering and smoothing: Fifteen years later. Handbook of
Nonlinear Filtering, 12:656–704, 2009.

Doucet, A. and Lee, A. Sequential Monte Carlo methods.
Handbook of Graphical Models, pp. 165–189, 2018.
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Peyré, G. and Cuturi, M. Computational optimal transport.
Foundations and Trends R© in Machine Learning, 11(5-6):
355–607, 2019.

Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella,
L., Wang, Y., and Januschowski, T. Deep state space
models for time series forecasting. In Advances in Neural
Information Processing Systems, pp. 7785–7794, 2018.

Reich, S. A nonparametric ensemble transform method for
Bayesian inference. SIAM Journal on Scientific Comput-
ing, 35(4):A2013–A2024, 2013.

Scetbon, M. and Cuturi, M. Linear time Sinkhorn diver-
gences using positive features. In Advances in Neural
Information Processing Systems, 2020.

Seguy, V., Damodaran, B. B., Flamary, R., Courty, N., Ro-
let, A., and Blondel, M. Large-scale optimal transport
and mapping estimation. In International Conference on
Learning Representations, 2018.

Thrun, S., Burgard, W., and Fox, D. Probabilistic Robotics.
MIT Press, 2005.

van de Meent, J.-W., Paige, B., Hongseok, Y., and Wood,
F. An introduction to probabilistic programming. arXiv
preprint arXiv:1809.10756, 2018.

Villani, C. Optimal Transport: Old and New, volume 338.
Springer Science & Business Media, 2008.

Weed, J. An explicit analysis of the entropic penalty in linear
programming. In Proceedings of the 31st Conference On
Learning Theory, 2018.

Wen, H., Chen, X., Papagiannis, G., Hu, C., and Li, Y. End-
to-end semi-supervised learning for differentiable particle
filters. arXiv preprint arXiv:2011.05748, 2020.



Differentiable Particle Filtering

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3-4):229–256, 1992.

Zhu, M., Murphy, K., and Jonschkowski, R. Towards dif-
ferentiable resampling. arXiv preprint arXiv:2004.11938,
2020.


