Relative Deviation Margin Bounds

Corinna Cortes! Mehryar Mohri!? Ananda Theertha Suresh !

Abstract

We present a series of new and more favorable
margin-based learning guarantees that depend on
the empirical margin loss of a predictor. We give
two types of learning bounds, in terms of either
the Rademacher complexity or the empirical £ -
covering number of the hypothesis set used, both
distribution-dependent and valid for general fam-
ilies. Furthermore, using our relative deviation
margin bounds, we derive distribution-dependent
generalization bounds for unbounded loss func-
tions under the assumption of a finite moment.
We also briefly highlight several applications of
these bounds and discuss their connection with
existing results.

1. Introduction

Margin-based learning bounds provide a fundamental tool
for the analysis of generalization in classification (Vap-
nik, 1998; 2006; Schapire et al., 1997; Koltchinskii and
Panchenko, 2002; Taskar et al., 2003; Bartlett and Shawe-
Taylor, 1998; Cortes et al., 2014; Kuznetsov et al., 2014;
Cortes et al., 2017). These are guarantees that hold for real-
valued functions based on the notion of confidence margin.
Unlike worst-case bounds based on standard complexity
measures such as the VC-dimension, margin bounds pro-
vide optimistic guarantees: a strong guarantee holds for
predictors that achieve a relatively small empirical margin
loss, for a relatively large value of the confidence margin.
More generally, guarantees similar to margin bounds can be
derived based on notion of a luckiness (Shawe-Taylor et al.,
1998; Koltchinskii and Panchenko, 2002).

Notably, margin bounds do not have an explicit dependency
on the dimension of the feature space for linear or kernel-
based hypotheses. They provide strong guarantees for large-
margin maximization algorithms such as Support Vector Ma-
chines (SVM) (Cortes and Vapnik, 1995), including when
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they are used with positive definite kernels such as Gaus-
sian kernels, for which the dimension of the feature space
is infinite. Similarly, margin-based learning bounds have
helped derive significant guarantees for AdaBoost (Freund
and Schapire, 1997; Schapire et al., 1997). More recently,
margin-based learning bounds have been derived for feed-
forward artificial neural networks (NNs) (Neyshabur et al.,
2015; Bartlett et al., 2017) and convolutional neural net-
works (CNNs) (Long and Sedghi, 2020).

An alternative family of tighter learning guarantees is that of
relative deviation bounds (Vapnik, 1998; 2006; Anthony and
Shawe-Taylor, 1993; Cortes et al., 2019). These are bounds
on the difference of the generalization and the empirical
error scaled by the square-root of the generalization error
or empirical error, or some other power of the error. The
scaling is similar to dividing by the standard deviation since,
for smaller values of the error, the variance of the error of a
predictor roughly coincides with its error. These guarantees
translate into very useful bounds on the difference of the
generalization error and empirical error whose complexity
terms admit the empirical error as a factor.

This paper presents relative deviation margin bounds. These
are new learning bounds that combine the benefit of stan-
dard margin bounds and that of standard relative deviation
bounds, thereby resulting in tighter margin-based guaran-
tees (Section 5.2). Our bounds are distribution-dependent
and valid for general hypothesis sets. They can be viewed as
“second-order” margin-based guarantees. For a sample size
m, they are based on an interpolation between a \}R—term
that includes the square-root of the empirical margin loss
as a factor and another term in % In particular, when the
empirical margin loss is zero, the bound only admits the %n
fast rate term.

As an example, our learning bounds provide tighter guaran-
tees for margin-based algorithms such as SVM and boosting
than existing ones. We give two new families of relative
deviation bounds, both distribution-dependent and valid for
general hypothesis sets. Additionally, both families of guar-
antees hold for an arbitrary o-moment, with o € (1, 2]. The
guarantees for general a-moments admit interesting appli-
cations in other areas. We describe one such application
to deriving generalization guarantees for unbounded loss
functions in Section 5.1.
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Our first family of margin bounds are expressed in terms
of the empirical ¢.,-covering number of the hypothesis set
(Section 3). We show how these empirical covering numbers
can be upper-bounded to derive empirical fat-shattering
guarantees. One benefit of these resulting guarantees is that
there are known upper bounds on the covering numbers for
various standard hypothesis sets, which can be leveraged to
derive explicit bounds.

Our second family of margin bounds are expressed in terms
of the Rademacher complexity of the hypothesis set used
(Section 4). Here, our learning bounds are first expressed in
terms of a peeling-based Rademacher complexity term we in-
troduce. Next, we give a series of upper bounds on this com-
plexity measure, first simpler ones in terms of Rademacher
complexity, next in terms of empirical /2-covering numbers,
and finally in terms of the so-called maximum Rademacher
complexity. In particular, we show that a simplified version
of our bounds yields a guarantee similar to the maximum
Rademacher margin bound of Srebro et al. (2010), but for a
general c-moment.

We then use our families of margin bounds for c-moments
to provide generalization guarantees for unbounded loss
functions (Section 5.1). We also illustrate these results by
deriving explicit bounds for various standard hypothesis sets
in Section 5.2.

1.1. Contributions and Previous Work

We now further highlight our contributions and compare
them to related previous work.

{.-covering based bounds: A version of our main result
for empirical /.,-covering number bounds in the special
case a.=2 was postulated by Bartlett (1998) without a proof.
The author suggested that the proof could be given by com-
bining various techniques with the results of Anthony and
Shawe-Taylor (1993) and Vapnik (1998; 2006). However,
as pointed out by Cortes et al. (2019), the proofs given by
Anthony and Shawe-Taylor (1993) and Vapnik (1998; 2006)
are incomplete and rely on a key lemma that is not proven
by these authors. In a distinct line of research, Zhang (2002)
presented finer covering number-based bounds for linear
classifiers. These are not relative deviation bounds but the
author postulated that his techniques could be modified, us-
ing Bernstein-type concentration bounds, to obtain relative
deviation ¢.,-covering number bounds for linear classifiers.
However, a careful inspection suggests that this is not a
straightforward exercise and obtaining such bounds in fact
requires techniques such as those we develop in this pa-
per, or, perhaps, somewhat similar ones. Our contribution:
We provide a self-contained proof based on a margin-based
symmetrization argument. Our proof technique uses a new
symmetrization argument that is different from those of
Bartlett (1998) and Zhang (2002).

Rademacher complexity bounds: Using ideas from local
Rademacher complexity (Bartlett et al., 2005), Rademacher
complexity bounds were given by Srebro et al. (2010). How-
ever their bounds are based on the so-called maximum
Rademacher complexity, which depends on the worst pos-
sible sample and is therefore independent of the underly-
ing distribution. Our contribution: We provide the first
distribution-dependent relative deviation margin bounds,
in terms of a peeling-based Rademacher complexity. The
proof is based on several new ingredients, including a new
symmetrization result, an upper bound in terms of a normal-
ized Rademacher process, and a peeling-based argument.
We also show that, as a by-product of our guarantees, the
distribution-independent bounds of Srebro et al. (2010) can
be recovered, albeit with a more general « € (1,2].

Generalization bounds for unbounded loss functions:
Standard relative deviation bounds do not hold for com-
monly used loss functions that are unbounded, such as
cross-entropy. Cortes et al. (2019) provided zero-one rela-
tive deviation bounds which they used to derive guarantees
for unbounded losses, in terms of the discrete dichotomies
generated by the hypothesis class, under the assumption of
a finite moment of the loss. Our contribution: We present
the first generalization bounds for unbounded loss functions
in terms of covering numbers and Rademacher complex-
ity, which are optimistic bounds that, in general, are more
favorable than the previous known bounds of Cortes et al.
(2019), under the same finite moment assumption. Doing
so further required us to derive relative deviation margin
bounds for a general a-moment (« € (1, 2]), in contrast with
previous work, which only focused on the special case o = 2.
The need for guarantees for unbounded loss functions with
bounded a-moments with o < 2 comes up in several sce-
narios, for example in the context of importance-weighting
(Cortes, Mansour, and Mohri, 2010).

Recently, relative deviation margin bounds for the special
case of linear classifiers were studied by Grgnlund et al.
(2020). Both the results and the proof techniques in that
work are specific to the case of linear hypotheses. In con-
trast, our bounds hold for any general hypothesis set and
recover the bounds of Grgnlund et al. (2020) for the special
case of linear classifiers, up to logarithmic factors. Fur-
thermore, our proofs, while more general, are also sim-
pler. Moreover, in contrast with these bounds, our guar-
antees are expressed in terms of Rademacher complexity
and are therefore distribution-dependent. Relative devia-
tion PAC-Bayesian bounds were also derived by McAllester
(2003) for linear hypothesis sets. It is known, however, that
Rademacher complexity learning bounds are finer guaran-
tees: as shown by Kakade et al. (2008) and Foster et al.
(2019)[Appendix H], they can be used to derive more favor-
able PAC-Bayesian guarantees than previously known ones
(McAllester, 2003).
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2. Preliminaries

In this section, we introduce the main definitions and nota-
tion used in our analysis and prove two symmetrization-type
lemmas for a relative deviation between the expected binary
loss and empirical margin loss.

We consider an input space X and a binary output space
Y ={-1,+1} and a hypothesis set I of functions mapping
from X to R. We denote by D a distribution over Z = X x Y
and denote by R(h) the generalization error and by Rg(h)
the empirical error of a hypothesis h € H:

‘R( ) z:(w,y)N‘D[ yh(x)sO]y
R h = ]E ]_/ b Pl
S( ) z:(w,y)NS[ yh(x)s()]

where we write z ~ S to indicate that z is randomly drawn
from the empirical distribution defined by .S. Given p > 0,
we similarly defined the p-margin loss and empirical p-
margin loss of h € H:

RP h) = E 1
( ) z=(:1:,y)~‘D[ yh(w)<p]7
RP h = E 1 .
S( ) z=(:1:,y)~$'[ yh(:v)<p]

We will sometimes use the shorthand x* to denote a sample

of m points (z1,...,2Z,) € X™.

The relative margin deviation for a hypothesis h € J{ is the
ratio of the difference between the generalization error of
h and its empirical margin loss, and the c-moment of the
generalization error, 1 < o < 2:

R(h) - Rg(h)

modulo a constant term 7 > 0 used to guarantee the positiv-
ity of denominator, which can be chosen to be arbitrarily
small. For R(h) small, the variance R(h)(1 - R(h)) is
close to R(h). Thus, for a = 2, the ratio can be viewed as a
normalization of the difference between the generalization
error of h and its empirical margin loss obtained by dividing
(approximately) by the standard deviation.

The problem we consider is to derive high-probability upper
bounds for the supremum over h € J{ of the relative margin
deviation of h. This will result in our relative deviation
margin bounds. We will be mainly interested in the case
a = 2. But, as we shall see in Section 5.1, the case v € (1,2)
is crucial since it allows us to derive new covering number-
based learning guarantees for unbounded loss functions
when the a-moment of the loss is bounded only for some
value «v € (1,2).

The following is our first symmetrization lemma in terms of
empirical margin losses. As already mentioned, the param-
eter 7 > 0 is used to ensure a positive denominator so that
the relative deviations are mathematically well defined.
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Figure 1. Illustration of different choices of function ¢ for p =
0.25.

Lemma 1. Fix p > 0 and 1 < o < 2 and assume that
mea=1 > 1. Then, for any e, T > 0, the following inequality
holds:

R(h) + 7
P su RSI(h) - Eg(h)
S0 et /1 Rr(h) + Ry (h) + %]

S~93"‘[h59{

<4

> €.

The proof is presented in Appendix A. It consists of extend-
ing the proof technique of Cortes et al. (2019) for standard
empirical error to the empirical margin case and of using the
binomial inequality (Greenberg and Mohri, 2013, Lemma 9).
The lemma helps us bound the relative deviation in terms of
the empirical margin loss on a sample S and the empirical
error on an independent sample S, both of size m.

We now introduce some notation needed for the presentation
and discussion of our relative deviation margin bound. Let
¢:R — R, be a function such that the following inequality
holds for all x € R:

laco < () < 1aep.

As an example, we can choose ¢(z) = 1,.,/2 as in the
previous sections. For a sample z = (x,y), let g(2) =

d(yh(x)). Then,
1yh(m)<0 < g(Z) < 1yh(z)<p- (1

Let the family G be defined as follows: G = {z = (z,y) —
d(yh(x)):h € H} and let R(g) = E,.n[g(z)] denote the
expectation of g and Rg(g) = E..g[g(z)] its empirical
expectation for a sample S. There are several choices for
function ¢, as illustrated by Figure 1. For example, ¢(x)
can be chosen to be 1<, or 1.,/ (Bartlett, 1998). ¢ can
also be chosen to be the so-called ramp loss:

1 ifx<0
(@) =11-2 ifze[0,p]
0 if x> p,
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or the smoothed margin loss chosen by (Srebro et al., 2010):

1 ifz <0
O(w) = 4 =gl it e [0, p]
0 ifz>p.

Fix p > 0. Define the p-truncation function §,:R —
[~p.+p) by B,(u) = max{u, ~p}Lyzo + min{u, +p}L,s0.
for all w € R. For any h € }, we denote by h, the p-
truncation of h, h, = 5,(h), and define 3, = {h,: h € H}.

For any family of functions F, we also denote by
Noo(F,€,27") the empirical covering number of F over
the sample (z1,...,2,,) and by C(F,¢,27") a minimum
empirical cover. Then, the following symmetrization lemma
holds.

Lemma 2. Fix p > 0and 1 < a < 2. Then, the following
inequality holds:

]P) “ Esr(h) - Rg(h)
5,5~Dm | pegc “\/%[Es’(h) + Rg(h) * %]

> €

e Rs () - Rs(g)
95 {/L[Rs (g) + Rs(g) + L]

Furtherfor 9(2) = Lyn(z)<pj2, using the shorthand X =
C(H,, 2,5 uS"), the following holds:

>e€l.

. Ry (h) - R(h)
SRR (LR (h) + RG (h) + 4]

R2(h) - R2(h)
ss' Dm heiK \/ Rg,(h +R7(h)+*]

w\h

>e€l.

\:

The proof consists of using Inequality 1, it is given in Ap-
pendix A. The first result of the lemma gives an upper bound
for a general choice of functions g, that is for an arbitrary
choices of the ® loss function. This inequality will be used
in Section 4 to derive our Rademacher complexity bounds.
The second inequality is for the specific choice of & that
corresponds to p/2-step function. We will use this inequality
in the next section to derive ¢.,-covering number bounds.

3. Relative Deviation Margin Bounds —
Covering Numbers

In this section, we present a general relative deviation
margin-based learning bound, expressed in terms of the
expected empirical covering number of }(,. The learning
guarantee is thus distribution-dependent. It is also very
general since it is given for any 1 < « <2 and an arbitrary
hypothesis set.

Theorem 1 (General relative deviation margin bound). Fix
p>0and 1 < a < 2. Then, for any hypothesis set 3 of
Sfunctions mapping from X to R and any T > 0, the following
inequality holds:

R(h) - Rg(h) | 6]

_m2(a 1)62
<4 E [N (g_(:p> 2 1771)] explfﬁl :

S~Dm |:hsﬂ-f
@2 D 2m =

The proof is given in Appendix B. As mentioned earlier, a
version of this result for a = 2 was postulated by Bartlett
(1998). The result can be alternatively expressed as follows,
taking the limit 7 — 0.

Corollary 1. Fix p > 0 and 1 < a < 2. Then, for any
hypothesis set H of functions mapping from X to R, with
probability at least 1 - ¢, the following inequality holds for
all h € H:

R(h) - R(h)

a+ 10 ]E./\/ %,7
<2 QVQR(h\J ¢ (”z(im

a

)]+1og6.

Note that a smaller value of a (« closer to 1) might be
advantageous for some values of R(h), at the price of a
worse complexity in terms of the sample size. For o = 2,
the result can be rewritten as follows. In the following, we
use N o as a shorthand for E[ N (H,, £, 27™)].

Corollary 2. Fix p > 0. Then, for any hypothesis set H of
Sfunctions mapping from X to R, with probability at least
1 -6, the following inequality holds for all h € H.:

_ gL No
R(h) - R%(h) <2 Rg(h) +4ﬁ.

Proof. Let a, b, and ¢ be defined as follows: a = R(h),
o 22™)), 2 o
b= RE(h), and ¢ = EENROL G Eost gy

for a = 2, the 1nequahty of Corollary 1 can be rewritten as

a<b+2/ca.

This implies that (v/a — \/c)? < b + ¢ and hence \/a <
Vb+c++/c. Therefore, a < b+2c+2\/(b+c)e < b+
4¢ + 2+/cb. Substituting the values of a, b, and ¢ yields the
bound. O

The guarantee just presented provides a tighter margin-based
learning bound than standard margin bounds since the dom-
inating term admits the empirical margin loss as a factor.
Standard margin bounds are subject to a trade-off: a large
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value of p reduces the complexity term while leading to a
larger empirical margin loss term. Here, the presence of
the empirical loss factor favors this trade-off by allowing a
smaller choice of p. The bound is distribution-dependent
since it is expressed in terms of the expected covering num-
ber and it holds for an arbitrary hypothesis set 3.

The learning bounds just presented hold for a fixed value
of p. They can be extended to hold uniformly for all values
of p € [0, 1], at the price of an additional log log-term. We
illustrate that extension for Corollary 1.

Corollary 3. Fix 1 < a < 2. Then, for any hypothesis set H
of functions mapping from X to R and any p € (0,7], with
probability > 1 — 0, the following inequality holds for all
heX:

log N o + log (710&(52’"/”))

R(h) < R&(h)+2%5 3/R(h)

2(a-1)
m a

Proof. For k > 1, let py = /2% and 6;, =
Pk, by Corollary 1 and the union bound,

§/k?. For all such

R(h) < R’“‘(h)+2 ba Y/ R(h) \} e
By the union bound, the error probability is most Y, dy =
§¥x(1/k?) < 6. For any p € (0,7], there exists a k such
that p € (pg, px_1]. For this k, p < px_1 = r/2¥71. Hence,
k <logy(2r/p). By the definition of margin, for all i € 3,
Rp’“(h) < R” (h) Furthermore, as py = pr-1/2 > p/2,

log N oo +log 3 +2log k

Noo(Hyp, B, 27™) < Noo(H, &,23™). Hence, for all p €
(0,71,
log N oo + log M
R(h) < R? (h)+2 Se Y R(h) 2(a(1) )
m- «
This concludes the proof. O

Our previous bounds can be expressed in terms of the fat-
shattering dimension, as illustrated below. Recall that, given
~v > 0, a set of points U = {uy,...,uy} is said to be -
shattered by a family of real-valued functions J if there
exist real numbers (71, ..., 7., ) (witnesses) such that for all
binary vectors (b1, ...,by,) € {0,1}™, there exists h € I

such that:
>7r; + if b, = 1;
h(z) { ity i !
<r;— otherwise.
The fat-shattering dimension fat. (3() of the family J{ is the

cardinality of the largest set y-shattered set by J{ (Anthony
and Bartlett, 1999).

Corollary 4. Fix p > 0. Then, for any hypothesis set H of
functions mapping from X to R with d = fat 2 (3), with
probability at least 1 — 6, the following holdsfor all h € H:

R(h) < R4 (h) + 23 /Rﬂ(h)%+%”,

2cem

where A, = 1+dlog,(2¢*m) log, +log % sandc=1T.

Proof. By (Bartlett, 1998, Proof of theorem 2), we have

2
1ogmaX[J\/ (H,, 2,27™)] < 1+d' log,(2¢°m) log, c;,m

where d' = fat » (¥,) < fat 2 (3) = d. Upper bounding
the expectation by the maximum completes the proof. [

We will use this bound in Section 5.2 to derive explicit
guarantees for several standard hypothesis sets.

4. Relative Deviation Margin Bounds —
Rademacher Complexity

In this section, we present relative deviation margin bounds
expressed in terms of the Rademacher complexity of the
hypothesis sets. As with the previous section, these bounds
are general: they hold for any 1 < o < 2 and arbitrary
hypothesis sets.

As in the previous section, we will define the family G by
G ={¢p(yh(zx)):h € H}, where ¢ is a function such that

laco < @(x) < 1pep.

For a set G and a set of samples z{", the empirical
Rademacher complexity is defined as

R (9) = ICF;J [SI:?]? % Zaig(zi)] .

We further allow G to be dependent on the samples.

The proof of our main result in this section admits the fol-
lowing three main ingredients: (1) a symmetrization lemma
to relate the relative margin deviation term to a symmetrized
quantity with empirical terms only (Lemmas 1 and 2); (2)
relating the problem of bounding that symmetrized quan-
tity to that of bounding a normalized Rademacher process
(Lemma 3); (3) bounding that normalized Rademacher pro-
cess in terms of Rademacher complexity using an adapted
peeling technique.

4.1. Rademacher Complexity-Based Margin Bounds

We first relate bounding the symmetrized relative devi-

ations to bounding the normalized Rademacher process
o yioig(zi)

su
Poes /T e o)

)
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Lemma 3. Fix 1 < a < 2. Then, the following inequality
holds:

B0 -Rste)

P
8,8"~Dm™ | geg ‘\’/%[Rs'(g) +Rs(g) + 5]

<2 P sup % it 9i9() > ¢
Do | geg i/%[zy; g(z) +1] 2V/2

The proof is given in Appendix C. It consists of introducing
Rademacher variables and deriving an upper bound in terms
of the first m points only.

Now, to bound the normalized Rademacher process term,
the technique adopted in previous work has consisted of
fixing 2" and applying Hoeffding’s bound to the ratio

Ly oig(z)

§/ w[Z1 (9(2i))+1]
Taylor, 1993; Cortes et al., 2019). This is then followed by
a union bound, which results in shattering coefficients or
covering numbers, and an expectation over z{".

for a fixed g € § (Anthony and Shawe-

Instead, for a fixed 21", we will seek to directly bound the
normalized Rademacher process term via a uniform conver-
gence bound. Doing so is not straightforward due to the com-
plex denominator. Thus, we first peel G according to the val-
ues of the main term in the denominator ~ 37 g(2;) + ~:
m m
we partition G into sets Gy (2]") for which this average

.. k k+1_
value is in [2—, -l
m

]. This reduces bounding the nor-
malized Rademacher process term to that of bounding the
Rademacher process terms supgcg, (.m) Ly oig(z).
Now, to bound these terms, using McDiarmid’s inequality
would result in too loose terms. This is essentially because
the proxy term for the variance in McDiarmid’s inequality is
a quantity of the form Y1, |A;g||%,. We use an alternative
bounded difference inequality (van Handel, 2016, Theorem
3.18) with a proxy term of the form || ¥, A;g|2 instead,
which helps us leverage the property of G5 (2{") and also
provide a finer one-sided inequality. This results, for each
Rademacher process term supg.g, (.m) Ly oig(z), in
a bound expressed in terms of the Rademacher complexity
of G (27"). A union bound over the sets S5 (27") and an
expectation over z{" conclude the proof.

With this background, we now detail the peeling argument,
that is we partition G into subsets Gy, give a learning bound
for each Gi, and then take a weighted union bound. For
any non-negative integer k with 0 < k < log, m, let G (277)
denote the family of hypotheses defined by

Gu(2) = {g €G:2F < (ig(zi)) +1< 2’”1}.
i=1

Using the above inequality and a peeling argument, we
show the following upper bound expressed in terms of
Rademacher complexities.

Lemmad. Fix1 < a<2and 2" € Z™. Then, the following
inequality holds:

m

%Z:'Zl 0:9(2:) -

P|sup >€

79 /LIS (9(2)) + 1]
llogym] [ 2532 (Sr(z™)) 2

<2 Z expl ok+5 - - 642k(1—2/a)

k=0 m2-2/a

s

m

The proof is given in Appendix C. Instead of applying Ho-
effding’s bound to each term of the left-hand side for a fixed
¢ and then using covering and the union bound to bound the
supremum, here, we seek to bound the supremum over §
directly. To do so, we use a bounded difference inequality
that leads to a finer result than McDiarmid’s inequality.

Let t,,(G) be defined as the following peeling-based
Rademacher complexity of G:

2032 m
sup log LMINED"L [exp (m 9‘{,,;(3;;(21 ) )] ] .

0<k<log,(m)

Then, the following is a margin-based relative deviation
bound expressed in terms of t,,(5), that is in terms of
Rademacher complexities.

Theorem 2. Fix 1 < o < 2. Then, with probability at least
1 -0, for all hypothesis h € H, the following inequality
holds:

R(h) - Rg(h)

() +loglogm +log 6717
< 16v/3 /Ry | m(9) +loglogm +log 5

m

Combining the above lemma with Theorem 2 yields the
following.

Corollary 5. Fix 1 < a < 2 and let G be defined as above.
Then, with probability at least 1 -9, for all hypothesis h € H,

where Ay, =, (G) + loglogm + log %.

The above result can be extended to hold for all o simulta-
neously.

Corollary 6. Let G be defined as above. Then, with proba-
bility at least 1 - 6, for all hypothesis h € H and o € (1,2],

16logm -3
R(h)-R4(h) < 32v32 /R (h) tm(g”:f 5 ] .
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4.2. Upper Bounds on Peeling-Based Rademacher
Complexity

We now present several upper bounds on t,,,(§) and show
how this can help recover previously known quantities. We
provide proofs for all the results in Appendix D. For any hy-
pothesis set G, we denote by Sg («1") the number of distinct
dichotomies generated by G over that sample:

Sg(21") = Card({(g(z1),---,9(zm)): g € S})-
We note that we do not make any assumptions over the range
of G.

Lemma 5. If the functions in G take values in {0,1}, then
the following upper bounds hold for the peeling-based
Rademacher complexity of G:

1
n(9) < 5 log E [Sg()].

Combining the above result with Corollary 5, improves the
relative deviation bounds of (Cortes et al., 2019, Corollary

2) for av < 2. In particular, we improve the \/E.m [Sg (2]")]
term in their bounds to (IEZ{n [Sg (z{")])l_l/a, which is sig-
nificant for v < 2.

We next upper bound the peeling-based Rademacher com-
plexity in terms of covering numbers.

Lemma 6. For a set of hypotheses G,

n(9) < oo 5, [ {191

sup
0<k<log,(m)

where
1 1 =
fk(’z{nag):16[1+/\/%log/\/é(gk(’z{n)v\/zev'z;n)de]

One can further simplify the above bound using the
smoothed margin loss from (Srebro et al., 2010). Let the
worst case Rademacher complexity be defined as follows.

R () = sup R,, (H).
2"

Lemma 7. Let g be the smoothed margin loss from (Srebro
et al., 2010, Section 5.1), with its second moment bounded
by (7%/4p?). Then, v,,,(S) is upper bounded by

2

[4779?{2“(9{)]2[ .

3 3[ 2mm
(p?[m)

2
[,\Tn] - IOgE A:|:| .
Ry (30) PR (30)

Proof. Recall that the smoothed margin loss of Srebro et al.

(2010) is given by

1 if yh(z) <0
g(yh(x)) = { Hemh@Ie) ¢ yp () € [0, p]
0 if yh(x) > p.

Upper bounding the expectation by the maximum gives:

m%(%(z{”)))]

tm(9) < Sup log S%p [CXp ( Sks

m?R2 (5(7))

< supsup k5

m
k27

Let G, (21") = {9 € Yt g(z)+1 < 2’”1}. Since
9k (21") € Gi.(z™),

m* R (G1(="))

T < supsu
m(g) kp z;np 2k+5

Now, R,,,(G,.(2™)) coincides with the local Rademacher
complexity term defined in (Srebro et al., 2010, Section 2).

Thus, by (Srebro et al., 2010, Lemma 2.2), R (93, (=)) is

Rumex (30)
upper bounded by
16w [ 2k+1 3 m 3 2mm
_— 2log? | =———|-log? | ———||,
p Vom R (00] LoT(00)
which concludes the proof. O

Combining Lemma 7 with Corollary 5 yields the following
bound, which is a generalization of (Srebro et al., 2010,
Theorem 5) holding for all « € (1, 2].

Corollary 7. For any § > 0, with probability at least 1 — 6,
the following inequality holds for all o € (0,1] and all
heX:

R(h) - Ro(h) < 32V25/Ro(h) B = + 2(32) 757 By,

where B, is the upper bound on v, (G) in Lemma 7.

5. Applications

In this section, we discuss two applications of our relative
deviation margin bounds. We first show how they can be
used to obtain generalization guarantees for unbounded loss
functions. Next, we describe the application of our bounds
to several specific hypothesis sets and show they can recover
some recent results. In Appendix F, we further discuss other
potential applications of our learning guarantees.

5.1. Generalization Bounds for Unbounded Loss
Functions

Standard generalization bounds hold for bounded loss func-
tions. Many loss functions frequently used in applications,
such as the cross-entropy loss, are unbounded, when used
with standard hypothesis sets. For the more general and
more realistic case of unbounded loss functions, a number
of different results have been presented in the past, under dif-
ferent assumption on the family of functions. This includes
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learning bounds assuming the existence of an envelope, that
is a single non-negative function with a finite expectation
lying above the absolute value of the loss of every function
in the hypothesis set (Dudley, 1984; Pollard, 1984; Dud-
ley, 1987; Pollard, 1989; Haussler, 1992), or an assumption
similar to Hoeffding’s inequality based on the expectation
of a hyperbolic function, a quantity similar to the moment-
generating function (Meir and Zhang, 2003), or the weaker
assumption that the ath-moment of the loss is bounded for
some value of o > 1 (Vapnik, 1998; 2006; Cortes et al.,
2019). The need for guarantees for unbounded loss func-
tions with bounded alpha-moments with o < 2 come up in
several scenarios, for example in the context of importance-
weighting (Cortes, Mansour, and Mohri, 2010). Here, we
will also adopt this assumption and present distribution-
dependent learning bounds for unbounded losses that im-
prove upon the previous bounds of Cortes et al. (2019). To
do so, we will leverage the relative deviation margin bounds
given in the previous sections, which hold for any « < 2.

Let L be an unbounded loss function and L(h, z) denote
the loss of hypothesis h for sample 2. Let £,(h) =
E..p[L(h,2)*] be the a™-moment of the loss function
L, which is assumed finite for all h € H. In what fol-
lows, we will use the shorthand P[L(h, z) > ¢] instead of
P..p[L(h,z) > t], and similarly P[L(h, z) > t] instead of
PZ~E[L(h7 Z) > t].

Theorem 3. Fix p > 0. Let 1 <« <2, 0< e <1, and
a-=1 «@

0 <7 a <ea-t, Forany loss function L (not necessarily

bounded) and hypothesis set H such that £, (h) < +oo for

all h € K,

P[supﬁ(h) ~Ls(h) >T (o, €) e/ Lal(h) +T+p]

heH
SP[ sup PLE(h,2) > ] “FIL(h.2) > 1 = p) >€],
heI( teR YPIL(h,2)>t]+7

where Tr(a,e) = S1(1+ m)F 4 1(2)" (14

a \a-1
a—1

-1\ 1yl log(l/e) [
(5" i [ |

The proof is provided in Appendix E. The above theorem
can be used in conjunction with our relative deviation mar-
gin bounds to obtain strong guarantees for unbounded loss
functions and we illustrate it with our /..-based bounds.
Similar techniques can be used to obtain peeling-based
Rademacher complexity bounds. Combining Theorems 3
and (1) yields the following corollary.

Corollary 8. Fixp > 0. Lete < 1, 1 < a < 2. and hypothesis
set H such that L, (h) < +oo forall h € K,

_ A
L(h)=Ls(h) <V La(h)\ | —am + P
m- «

where Ay, = log B[N (L(3), 8, 27™)] + log 3 and v =
Lo (04 % ) = O(logm).

m

The upper bound in the above corollary has two terms. The
first term is based on the covering number and decreases
with p while the second term increases with p. A natu-
ral choice for p is 1/\/m, however one can choose a suit-
able value of p that minimizes the sum to obtain favorable
bounds.! Furthermore, the above bound depends on the
covering number as opposed to the result of Cortes et al.
(2019), which depends on the number of dichotomies gen-
erated by the hypothesis set. Hence, the above bound is
optimistic and in general is more favorable than the previous
known bounds of Cortes et al. (2019). We note that instead
of using our /,-based bounds, one can use our Rademacher
complexity bounds to derive finer results.

5.2. Relative Margin Bounds for Common Hypothesis
Sets

In this section, we briefly highlight some applications of our
learning bounds: both our covering number and Rademacher
complexity margin bounds can be used to derive finer
margin-based guarantees for several commonly used hy-
pothesis sets. Below we briefly illustrate these applications.

Linear hypothesis sets: let H be the family of liner hypothe-
ses defined by

H={xrw-x:|w|2<1,xeR" |x|2 < R}.

The margin bound for SVM by Bartlett and Shawe-Taylor
(1998, Theorem 1.7) is

R(h) < R%(h) +c\/BL,, )

where ¢’ is some universal constant and where 3/ =
~ 2
O (%). Recently, Grgnlund et al. (2020) derived the

following more favorable relative deviation margin bounds
for linear hypothesis sets:

R(h) < R%(h) +2\/ R%(h) BY, + Brn, 3)

where ()] = 9] (%). We can directly apply our rela-
tive deviation margin bounds to recover this result up to
logarithmic factors. However, our guarantees have the ad-
ditional benefit of being expressed in terms of Rademacher
complexity and thus of being distribution-dependent, unlike
the bound of Grgnlund et al. (2020). Furthermore, while
their proof technique crucially depends on the fact that the

underlying hypothesis set is linear, ours is comparatively

!"This requires that the bound holds uniformly for all p, which
can be shown with an additional log log % term (See Corollary 9).
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simpler and very general, it applies to arbitrary hypothesis
sets.

Feed-forward neural networks of depth d: For a matrix W,
let [W], , denote the matrix p, ¢ norm and [W/||2 denote
the spectral norm. Let Hy = {x : ||x]|2 < 1,x € R"}
and 3(; = {o(W -h) : h e H; 1, [W]z < B, |[WT g <
B31|W|2)}. Let o be L-Lipschitz. The Rademacher com-
plexity bounds of Corollary 7 can be used to provide gen-
eralization bounds for neural networks. By Bartlett et al.
(2017), the following upper bound holds for H,:

d*?BBy,

pvm

Plugging in this upper bound in the bound of Corollary 7
leads to the following:

R(h) < R%(h) + 27/ R%(h) B + B, 4)

~ 3 2 R2
where 3,, = O (%
best existing neural network bounds by Bartlett et al. (2017,
Theorem 1.1) is

R(h) < R%(h) +c\/BL,, )

where ¢’ is a universal constant and 3], is the empirical
Rademacher complexity. The margin bound (4) has the ben-
efit of a more favorable dependency on the empirical margin
loss than (5), which can be significant when that empirical
term is small. On other hand, the empirical Rademacher
complexity of (5) is more favorable than its counterpart in
(4). A similar analysis can be used to derive relative mar-
gin bounds for ensembles of predictors or neural networks
families (see Appendix F.2) as well as many other function
classes.

Rmax(G() = 6( .(BL)d).

(BL)2d). In comparison, the

pZm

6. Conclusion

Margin bounds are the most appropriate tools for the analy-
sis of generalization in classification problems since they are
more “optimistic”” and typically not dimension-dependent.
They have been used successfully to analyze the generaliza-
tion properties of linear classifiers with Gaussian kernels,
that of AdaBoost, and more recently that of neural networks.
The finer margin guarantees we presented provide a more
powerful tool for such analyses. Our relative margin bounds
can further be used to derive guarantees for a variety of
hypothesis sets and in a variety of applications. In particular,
as illustrated in Appendix F.2, these bounds can help derive
more favorable margin-based learning bounds for different
families of neural networks, which has been the topic of
several recent research publications. They may also serve
as a useful tool in the analysis of scenarios such as active
learning and the design of new algorithms.
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