Characterizing Fairness Over the Set of Good Models Under Selective Labels

A. Additional Theoretical Results

A.1. Implementation of the Exponentiated Gradient
Algorithm in § 4.1

We provide the details of the exponentiated gradient algo-
rithm discussed in § 4.1 for finding the predictive disparity
minimizing model within the set of good models. Algo-
rithm 3 implements the exponentiated gradient algorithm,
except for the best-response functions of the A-player and
the Q-player. The best-response function of the \-player
is

B, otherwise.

Best)(Qn) = { (7
The best-response function of the );,-player may be con-
structed through a further reduction to cost-sensitive classi-
fication. The Lagrangian for the setting without selective
labels can be written as

L(hy,A) = E[Ez, [ea(Y], Ai, Za)hy (Xi, Za)]] — N6,
(®)

where
* o ﬁo 61 *
(Y, Ay, Zy) = 171 {&io}+ ]3*1 {&in}+Ac(Y], Za)
0 1

and p, := B[ 4] fora € {0,1}.

The Lagrangian for the setting with selective labels can be
written as

L(hs,\) =R {EZQ [c,\(gi,Ai, Za)hf(X,-,Za)H Y
where ®

ex(fy, Ais Za) = %Q(Xuyi)(l — A+ %Q(XnYi)Ai

+ )‘C@i’ Zw)

and p, = E[g(X;,Y;)1{A; = a}] fora € {0,1}.

This is solved by calling cost-sensitive classification ora-
cle on an augmented dataset of size n x N with obser-
vations {(X; .., Ci ., Yicn],znez, With X . = (Xi, 24)
and C; ,, = cx (Y], A;, zo) for the setting without selective
labels and = ¢ (f1;, Ai, Z) for the setting with selective la-
bels. In our empirical implementation, we use the heuristic
least-squares reduction described in (Agarwal et al., 2019).
The heuristic reduction generally performed well in our em-
pirical work, but its performance will depend on the dataset
and the choice of predictive disparity in general.

A.2. Shrinking the Support of the Stochastic Risk
Score

As discussed in § 4.1, a key challenge to the practical use
of Algorithm 3 is it returns a stochastic prediction function

@, with possibly large support. The number of prediction
functions in the support of Qp is equal to the total number
of iterations taken by the respective algorithm. As a result,
Qn may be complex to describe, time-intensive to evaluate,
and memory-intensive to store.

The support of the returned stochastic prediction may be
shrunk while maintaining the same guarantees on its perfor-
mance by solving a simple linear program. To do so, we
take the set of prediction functions in the support of Qp, and
solve the following linear program

T T
i disp(hy) s.t. cost(hy) < é+2v, (10
iy ;pt isp(he) s ;ptcos( 1) < é+2v, (10)

where T is the number of iterations of Algorithm 3, A7 is
the T'-dimensional unit simplex and h; is the ¢-th prediction
function in the support of Qp (i.e., the prediction function
constructed at the ¢-th iteration of Algorithm 3). We then use
the randomized prediction function that assigns probability
p: to each prediction function in the support of Qn. In
practice, we calibrate the constraint in (10) by choosing the
smallest v > 0 such that the linear program has a feasible
solution, following the practical recommendations in Cotter
et al. (2019).

Algorithm 3: Algorithm for finding the predictive
disparity minimizing model
Input: Training data {(X;,Y;, 4;)}7 4,
parameters [3y, 51, events & o, &; 1,
empirical loss tolerance €, bound B},
accuracy v and learning rate 7).
Result: v-approximate saddle point (Qp, \)
Setf; =0€R;
fort=1,2,...do
Set A, = Byl
ht — BeSth(At);
Qh,t — %22:1 th R
L < L(Qn,¢, BestA(Qn,t)3
j\t < %22:1 )\5, L — L(Besth():t), ):t);
Uy —
max {L(Qh,ty /\t) —-L,L— L(Qh,h /\t)};
if vy < v then
if cost(Qn) < &+ Lol then
‘ return (Qh,t, j\t);
else
| return null
end
end

Set 1 = 0y +1 (&)\st(ht) - e);

end
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Lemma 7 of Cotter et al. (2019) shows that the solution to
(10) has at most 2 support points and the same performance
guarantees as the original solution Q)p,.

A.3. Computing the Absolute Predictive Disparity
Minimizing Model

In this section, we extend the reductions approach to com-
pute the prediction function that minimizes the absolute
predictive disparity over the set of good models (3). We
solve

min

di £ <e.
i [disp(@)] st loss(Q) < ¢

Y
Through the same discretization argument, this problem
may be reduced to a constrained classification problem over
the set of threshold classifiers

min

(12)
QrEA(H)

|disp(@n)] s.t. cost(@n) < € — co.

To further deal with the absolute value operator in the ob-
jective function, we introduce a slack variable £ and define
the equivalent problem over both @, € A(H),£ € R

min
§,QnEA(H)
st disp(Qn) — £ <0,
— disp(Qn) =€ <0,
cost(Qr) < e —cp.

13)

We construct solutions to the empirical analogue of (13).

Solving the empirical analogue of (13)
is equivalent to finding the saddle point

ming, eA(#).¢e0,Be) MaxX| x| <By L(§; Qn, A)  with La-
grangian L(§,QnA) = € + Ay (disp(@n) —€) +

A (—dlASp(Qh) — f) + Acost (C/OED(Qh) - g)’
A = (A4, A2, Aeost) and B¢ is a bound on the slack
variable. Since the absolute predictive disparity is bounded
by one, we define B¢ = 1 in practice. We search for the
saddle point by treating it as the equilibrium of a two-player
zero-sum game in which one player chooses (£, Q) and
the other chooses .

Algorithm 4 computes a v-approximate saddle point of
L(&,Qn,A\). The best-response of the \-player sets the
Lagrange multiplier associated with the maximally violated
constraint equal to B)y. Otherwise, she sets all Lagrange
multipliers to zero if all constraints are satisfied. In order to
analyze the best-response of the (£, Q) )-player, rewrite the
Lagrangian as

L&, @Qn, A) = (1= Ay —A)¢ (14)

+ (g = A2)disp(Qn) + Acost (COS(Qn) — ).

For a fixed value of A, minimizing L(&, Qp,, \) over (£, Qp)
jointly is equivalent to separately minimizing the first term
involving ¢ and the remaining terms involving Qp. To mini-
mize (1 — Ay — A_)&, the best-response is to set £ = Bg if
1 — A4 — M- <0, and set £ = 0 otherwise. Minimizing

(A — A_)disp(Qn) + Acost (cOSt(@Qn) —€)  (15)
over (J;, can be achieved through a reduction to cost-
sensitive classification since minimizing the previous dis-
play is equivalent to minimizing

E[Ez, [ex(Y5, Ai, Za)hy (Xi, Za)]] (16)

where  now (Y], Ai, Za) = A+ -

A) (214600} + 211{E1)) + Aeomel, Za).

We use an analogous linear program reduction (§ A.2) to
shrink the support of the solution returned by Algorithm 4.

Algorithm 4: Algorithm for finding the absolute
predictive disparity minimizing model among the
set of good models
Input: Training data {(X;,Y;, A;)}~,,
Parameters 3y, 51, Events &; o, &; 1, and empirical
loss tolerance €
Bounds B), Be, accuracy v and learning rate 7
Result: v-approximate saddle point (£, Q, \)
Setf, =0 € R3 )
fort=1,2,...do
Set A\, = B,\% for all
k = {cost,+,—};
hi < Bestp(A), & < Beste(N\y) ;
Qnt = F X emi hor & 301 &
L« L(&, Qt, Best(§:-Q1);
5‘t = % 22:1 As»
L + L(Beste(\,), Bestr, (), Ar);
Vg <
max {L(fta Qi \e) — L, L — L(&, Qt, )\t)};
if v, < v then
if cost(Q) < é + BﬁTf”
‘ return (§;, Q¢, At);
else
| return null;
end
end

then

disp(h) — &
Set 011 =0, + 1 | —disp(he) — & |3
cost(h) — €

end
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A.3.1. ERROR ANALYSIS

We analyze the suboptimality of the solution returned by
Algorithm 4.

Theorem 3. Suppose Assumption 1 holds for C' > 2C +
—log(6/8)
2+ /2In(8N/d) and C"" > || ===

Then, Algorithm 4 with v < n~% By x n®,N « n®
terminates in at most O(n*?) iterations. It returns Qp,
which when viewed as a distribution over F, satisfies with
probability at least 1 — 0 either one of the following: 1)

On # null, loss(Op) < € + O(n~?%) and ‘disp(@h) <
disp(Q)| + O(nad)) + O(ny®) for any Q that is feasible

in(11); or2) Qh = null and (11) is infeasible.

We next provide an oracle result for the absolute disparity
minimizing algorithm under selective labels.

Theorem 4 (Selective Labels for Algorithm 4). Suppose
Assumption 2 holds and Algorithm 4 is given as input the
modified training data {(X;, A;, p(X;) 4.

Under the same conditions as Theorem 3, Algorithm 4
terminates in at most O(n*?) iterations. It returns Qp,
which when viewed as a distribution over F, satisfies with
probability at least 1 — 0 either one of the following: 1)

Qn # null, lossu(Qh) < e+ 0(n?) and ‘disp(@h) <
‘disp(@) + O(ng®) + O(ny?) for any Q that is feasible
in(11); or2) Qn = null and (11) is infeasible.

We omit the proof of Theorem 4 since the analogous steps
are given in proofs of Theorems 2-3 below.

A.4. Bounded Group Loss Disparity

Bounded group loss is a common notion of predictive fair-
ness that examines the variation in average loss across values
of the protected or sensitive attribute. It is commonly used to
ensure that the prediction function achieves some minimal
threshold of predictive performance across all values of the
attribute (Agarwal et al., 2019). We define a bounded group
loss disparity to be the difference in average loss across val-
ues of the attribute, disp(f) = E[I(Y*, f(X;)) | A; = 1]—
E (Y, f(X;)) | A; = 0]. This choice of predictive dis-
parity measure is convenient as it allows us to drastically
simplify our algorithm by skipping the discretization step
entirely and reducing the problem to an instance of weighted
loss minimization. Agarwal et al. (2019) apply the same
idea in their analysis of fair regression under bounded group
loss.

Take, for example, the problem of finding the range of
bounded group loss disparities that are possible over the
set of good models. Letting loss(f | A; = a) =

E(Y”, f(X:)| Ai=a] and loss(Q | A; = a) =
Y rer Q(f)loss(f | A; = a), we solve

in 1 A =1)—1 A, =0
Qi Toss(Q | Ay = 1) loss(f | 4, = 0)

s.t. loss(Q) < e.

The sample version of this problem is to minimize lo/s\s(Q |
A; = 1) —loss(f | A; = 0) subject to loss(Q) < e
We solve the sample problem by finding a saddle point
of the associated Lagrangian L(Q, \) = ITJ\SS(Q | A; =
1) — lo/s\s(f | A; =0) + )\(IO/S\S(Q) — ¢). We compute a v-
approximate saddle point by treating it as a zero-sum game
between a ()-player and a A-player. The best response of the
A-player is the same as before: if the constraint loss(Q) — €
is violated, she sets A\ = B,, and otherwise she sets A =
0. The best-response of the ()-player may reduced to an
instance of weighted loss minimization since

oss(f|€:.0) — loss(f|€:.1) + A(loss(f) — €)
— B [(;01{60} G A) e f(Xm]

[3%1{51',0} -
ﬁ%l{é’m} + A, we see that minimizing L(h, \) is equiv-
alent to solving an instance of weighted loss minimization.
Algorithm 5 formally states the procedure for finding the
range of bounded group loss disparities. We may analo-
gously extend Algorithm 4 to find the absolute bounded
group loss-minimizing model among the set of good mod-
els.

Therefore, defining the weights W; =

B. Proofs of Main Results
Proof of Lemma 1

Fix f € F.Forxz € X and z, € Z,
hi(x,za) = {f(z) 2 20} = L{f(2) > za},

Therefore,
Ez, [hf(x,Za)] = Bz, [H{f(z) > Za}] = f(a),
and for any a € {0, 1},
|]E [hf(X7 Za)|gi,a] —E [f(X)‘gi,a} |
= ‘E UEZQ [hf(X7 Za)} - f(X)‘gi,a} |
= [E [f(X) = f(X)[€ia] | <@

where the first equality uses iterated expectations plus
the fact that Z, is independent of (X, A,Y™) and
the final equality follows by the definition of f(X).
The claim is immediate after noticing disp(h;) —
disp(f) equals By (E[hs(X, Za) — F(X)|E0]) +
b1 (E[hs(X, Zy) — f(X)|Ei1]) and applying the triangle
inequality. [J
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Algorithm 5: Algorithm for finding the bounded
group loss disparity minimizing model over the
set of good models

Input: Training data {(X;,Y;, A;)},,
Parameters 3y, 51, Events &; o, &; 1, and loss
tolerance €

Bound B), accuracy v and learning rate 7)
Result: v-approximate saddle point (Qy, \)

Setf; =0€R;
fort=1,2,...do
xp(0:) .
Set \; = B,\ liel)a(p(ﬂt)’

ft < Bebtf(kt)

1Y fo L L(Qr,Besta(Qy);
I DY D W P (Bestf()\t) M)
Vg <= max {L(Qt, M) = L, L — L(Q, /\t)}

if v, < v then
if IO/S\S(Qt) <é+ WB# then
‘ return (Q;, \;);
else
| return null
end
end

Set 0t+1 = et + n (k)/S\S(ft) — g),

end

Proof of Theorem 1

The claim about the iteration complexity of Algorithm 3
follows immediately from Lemma 2, substituting in the
stated choices of v and B.

The proof strategy for the remaining claims follows the
proof of Theorems 2-3 in (Agarwal et al., 2019). We con-
sider two cases.

Case 1: There is a feasible solution Q* to the popula-
tion problem (4) Using Lemmas 4-5, the v-approximate
saddle point @}, satisfies

disp(Qn) < disp(Qs) + 2v 17
|Bol + [B1] + 2v

cost(Qn) < €+ 5

(18)
for any distribution @, that is feasible in the empirical
problem. This implies that Algorithm 3 returns Q # null.
We now show that the returned @)y, provides an approximate
solution to the discretized population problem.

First, define cost,(h) := RE[e(Y],z2)h(X;,2)] and
cost,(h) = Ele(Y],2)h(X;,2)]. Since c(Y},2) €
[—1,1], we invoke Lemma 7 with S; = (Y], 2), U; =

(Xi,2), G =H and ¢(s,t) = st to obtain that with proba-

bility at least 1 — % forallz € Z,andh € H
‘c/o\stz(h) - costz(h)‘ <

2 21n(8N/5)
FN T

where the last equality follows by the bound on R, (H)
in Assumption 1 and setting N o< n®. Averaging over
z € Z, and taking a convex combination of according to
Qr € A(H) then delivers via Jensen’s Inequality that with
probability at least 1 — 6/4 for all Q € A(H)

2R, (H) + =0(n=?),

cost(Qn) — cost(Qr)| < O(n™?). (19)
Next, define cﬂsE)z(h) = ﬁ()E[h(Xi,Z”gi’()] +

BE [h(X, 2)|Ei1] and disp, (k) := BoE [h(X;, 2)[E0] +
B1E [h(X;, 2)|&;,1], where the difference can be expressed
as

Bo (fE [M(Xi,2)|E0] — E [h(Xi72)|5i,o]> +

B1 (B [A(Xi, 2)I€:a] ~ E[R(Xi,2)[€:a])
Therefore, by the triangle inequality,
[ disp. () — disp.(h)| <

8ol |B1A(X, 2)1€: 0] — E [A(Xs, 2) 0] | +

18] |B [R(Xi, 2)IE5] — ER(X:, 2)[€31]|.

For each term on the right-hand side of the previous display,
we invoke Lemma 7 applied to the data distribution condi-
tional on & and &. Weset S = 1, U = (X;,2),G = H
and v(s,t) = st. With probability at least 1 — g for all
z € Zq,

(B 11(X:, 2)[E:0] — B [A(XG, 2) 0] <

2 2In(8N/5)
Vo no
(B IR(X:, 2)[€: 0] — B [A(XG, 2) ]| <

Ry (H) +

} . 21n(85\7/6).

Then, averaging over z € Z,, and taking a convex combina-
tion according to @, € A(H) delivers via Jensen’s Inequal-
ity that with probability at least 1 — §/4 for all Q € A(H)

£ Qul€so] ~ E[QuIEw0]| < Ry (W) + —=

Vo
2In(8N/4)
no

R, (H) +

(20)
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B [Qnl€:a] ~ E [Qul€in]] < Ruy (M) + \/%
1)
2(s6)

ni

By the union bound, both inequalities hold with probability
atleast 1 — §/2.

Finally, Hoeffding’s Inequality implies that with probability
atleast 1 — §/4,

. —log(6/8

léo — co| < #. 22)

n

From Lemma 6, we haye that Algorithm 3 terminates and
delivers a distribution (), that compares favorably against
any feasible @ in the discretized sample problem. That is,
for any such @y,

disp(Qn) < disp(Qn) + O(n™?) (23)
cost(Qn) < é+ O(n=?%) (24)

where we used the fact that v o« n~% and B o n? by
assumption. First, (19), (22), (24) imply

cost(Qp) < é+O0(n %) <e—co+0(n~%), (25

where we used that ¢ = e—E[I(Y?, D)]+C'n=¢—C"n 12,

by assumption. Second, the bounds in (20), (21) imply
disp(Qn) < disp(Qn) + O(ng”) + O(n?).  (26)

We assumed that (), was a feasible point in the discretized
sample problem. Assuming that (19) holds implies that any
feasible solution of the population problem is also feasible
in the empirical problem due to how we have set C’ and
C". Therefore, we have just shown in (25), (26) that On
is approximately feasible and approximately optimal in the
discretized population problem (5). Our last step is to relate
Qp to the original problem over f € F (2).

From Lemma 1 in Agarwal et al. (2019) and (25), we ob-
serve that

Y] -
loss (Qr) < e+ O(n_¢),

A~ @2 ~
loss(Qn) < e +0(n™?),

where (1) used Lemma 1 in Agarwal et al. (2019) and we
now view Qh as a distribution of risk scores f € F, (2)
used that loss(Q) < loss, (@) + «. Next, from Lemma 1
and (26), we observe that

disp(Qn) < disp(Q)+(|Bo| + |B1]) a+O0(ng *)+0(n?).

where Q n is viewed as a distribution over risk scores f € F
and Q is now any distribution over risk scores f € F that
is feasible in the fairness frontier problem. This proves the
result for Case I.

Case II: There is no feasible solution to the population
problem (4) This follows the proof of Case II in Theo-
rem 3 of Agarwal et al. (2019). If the algorithm returns
a v-approximate saddle point Qp, then the theorem holds
vacuously since there is no feasible Q. Similarly, if the
algorithm returns null, then the theorem also holds. [J

Proof of Theorem 2

Under oracle access to (), the iteration complexity and
bound on cost hold immediately from Theorem 1. The
bound on disparity holds immediately for choices &; o, &; 1
that depend on only A. For choices of &; o, &; 1 that de-
pends on Y;, such as the qualified affirmative action fairness-
enhancing intervention, we rely on Lemma 8. We first
observe that under oracle access to u(x), we can identify
any disparity as

BEf(X)g(u(X)) | A=1] BE[f(X)g(u(X)) | A=0]
Elg(u(X)) | A= 1] Elg(u(X)) | A= (()]27) ’

where g(x) = x for the balance for the positive class and
qualified affirmative action criteria; g(z) = (1 — z) for
balance for the negative class; and g(x) = 1 for the sta-
tistical parity and the affirmative action criteria (see proof
of Lemma 8 below proof for an example). We define the
shorthand

and we use &1, W1, Wy, and @y to denote their empirical esti-
mates. Lemma 8 gives the following bound on the empirical
estimate of the disparity:

]P’[ 5{@1 _ Powo (51001 B 50000)‘ > 6]

w1 (fl() w1 Wo

2
n [ ewn 2 —ne2wn

where wy = max(wi,wp), Wa = min(wy,wy) and

B = max(|B1],[Bol)-

‘We now proceed to relax and simplify the bound. For ¢ <
4 B;AV , we have

—neit o2
26Xp{64,82 ZA} *QGXP[ A}

Case 1: We first consider the likely case that w, > wy.
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Then we have

—ne —ne‘w
26Xp[6452 9} —zeXp{ 6452A}
la) If
E(I)/\ 2
— > 4R, — 2
88 = R (g)+\/ﬁ (28)
then

o 2-2 - 2
exp {%} < exp [Z(ZZ\ —4R,(G) — %) ]

Then we have

{
2
n(g)jﬁ> ] (30)

Inverting this bound yields the following: with probability
at least 1 — 6,

w1 wo

by _ fyin _ (B Bgeo))| > e] (29)

frwr  Bowo (51(«01 B ﬂowo) <
1 wo @1 @0 -
88 2 2 /8
o <4R (G) + 7n + - log (§)>
1b)
N ARN(G) + —= 31)
84 Vn
implies that
frwr  Bowo (/31601 B ﬂowo)
(f]l (f)o w1 wo -

iﬂ <4R Q) + ;ﬁ)

Case 2: We now consider the unlikely but plausible case
that w, < wy. Then we have

n [ ewa 2 ?
exp [_2<8ﬂ_4Rn(g)_\/ﬁ> 1 <

2
n [ ewy 2
ECE)

and 2-4 2, .2
ne“wiy —ne‘we
ox [6462 2} SGXP[ 6432 }

We proceed with the same steps as in Case 1 to conclude
that with probability at least 1 — 6,

Prwy  fowo (ﬁlwl B 50%)‘ <

w1 W

if <4R7,(g) + % +4/ % log (?))

Applying our assumption that

w1 Wo

R,(H)<Cn %andé=¢—¢éy+C'n~% —C"n"Y/2,

for <1/2and C' > 2C + 2+ /2In(8N/d) and C" >
] B2 1°g2(5/8),then

disp(Qn) < disp(Q) + O(n~?), (32)
which implies
disp(Qn) < disp(Q) + O(ng ?) + O(n; *).  (33)

O

Proof of Theorem 3

The claim about the iteration complexity of Algorithm 4 fol-
lows from Lemma 9 after substituting in the stated choices
of v, By. We consider two cases.

Case 1: There is a feasible solution () to the population
problem (11) Using Lemmas 11-13, the v-approximate
saddle point (£, Q) satisfies

. B 2
disp(Q) — € < ==, (34)
A
B 2
— disp(@n) — €< = (35)
A
GoRt(On) — oy < DET 2 (36)

B,

for any (£, Q) that is feasible in the empirical problem. This
implies that Algorithm 4 returns Q # null. We will now
show that the (é , Q) provides an approximate solution to
the discretized population problem.

First, through the same argument as in the proof of Theorem
1, we obtain that with probability at least 1 — /4 for all
Qn € A(H)

[cost(@n) — cost(@u)] < O(~?). (37
Second, with probability at least 1 — §/2 for all Q € A(H),
’ [QnlEi 0]
[EIQn/€i)

E[Qnr|E0 ’ (38)
E[Qu[ia]| < O ). (39)
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Finally, Hoeffding’s Inequality implies that with probability
atleast 1 — §/4,

—log(d/8)

o . (40)

|éo — co| <

From Lemma 14, we have that Algorithm 4 terminates and
delivers (&, )1,) that compares favorable with any feasible
(€, Qp) in the discretized sample problem. That is, for any

such (£, Qn),

£<e+0m?), 1)
disp(Qn) <€+ 0(n™?), (42)
—disp(Qn) < £+ 0(n™?) 43)
cost(Qn) < Ecost + O(n %) (44)
Notice that (37), (40) and (44) imply that
cost(Qn) < € — o+ O(n™?), (45)

where we used that ¢ = € — ¢y + C'n~% — C""n~?. For
any feasible (£, Qy), then (|disp(Qy)|, Qr) is also feasible.
Then, combining (41)-(43) yields

[disp(Qn)| < [disp(@n)| +O(n ™) (46)

Second, notice that this implies that

disp(Qn) | < [disp(Qn)| +O(ng ) + O(n ) @47)

We assumed that (£, @Q);,) were feasible in the discretized
sample problem. Assuming that (37) holds implies that any
feasible solution of the population problem is also feasible in
the empirical problem due to how we set C’, C". Therefore,
we have just shown that (é , Q;,,) are approximately optimal
in the discretized population problem.

Then, following the proof of Theorem 1, we observe that
loss(Qp) < € + O(n~?%), where we now interpret Q, as a
distribution over risk scores f € F. This proves the result
for Case L.

Case II: There is no feasible solution to the population
problem (11) This follows the proof of Case II of The-
orem 3 in Agarwal et al. (2019). If the algorithm returns
a v-approximate saddle point Qp, then the theorem holds
vacuously since there is no feasible Q. Similarly, if the
algorithm returns null, then the theorem also holds. [J

C. Auxiliary Lemmas for Main Results

In this section, we state and prove a series of auxiliary
lemmas that are used in the proofs of our main results in the
text.

C.1. Auxiliary Lemmas for the Proof of Theorem 1
C.1.1. ITERATION COMPLEXITY OF ALGORITHM 3

Lemma 2. Letting p := maxpcy |cost(h) — é|, Algorithm
3 satisfies the inequality
Bl
- Blog(2)
=T
Algorithm 3 will return a v-approximate
4p° B? log(2)
2

vt +np*B.

Forn = Tg e
saddle point of L in at most . Since in our set-
ting, p < 1, the iteration complexity of Algorithm 3 is
4B?log(2)/v2.

Proof. Follows immediately from the proof of iteration
complexity in Theorem 3 of Agarwal et al. (2019). Since the
cost is bounded on [—1, 1] and cost(h) — € < cost(h) < 1
for any h € H, we see that p < 1. O

C.1.2. SOLUTION QUALITY FOR ALGORITHM 3

Let A := {A€Ry: A< B} denote the domain of .
Throughout this section, we assume we are given a pair
(Qn, ) that is a v-approximate saddle point of the La-
grangian

L(Qn, A) < L(@n, A) + v forall @y € A(H),

L(Qn, A) > L(Qn,\) — v forall0 < A < B.
We extend Lemma 1, Lemma 2 and Lemma 3 of Agarwal
et al. (2018) to our setting.
Lemma 3. The pair (Qh, ;\) satisfies

A (cost(@n) — €) > B (cost(@u) —¢) -,

+

where (z), = max{z,0}.

+

Proof. We consider a dual variable A that is defined as

{0 if cost(Qn) < €

B otherwise.

From the v-approximate optimality conditions,

disp(Q) + A (cost(Q) - ¢) = L(Q. )

> L(Q.\) —v

= disp(@Q) + A (cost(@) - ),
and the claim follows by our choice of A. O

Lemma 4. The distribution Qj, satisfies

disp(Qn) < disp(Qy) + 2v

for any Qy, satisfying the empirical constraint (i.e., any Qp
such that cost(Qp) < é).
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Proof. Assume @y, satisfies (Es\t(Qh) < ¢. Since \ > 0,

we have that
L(Qn A) = disp(Qn) + A (cost(@n) — ) < disp(Qn).

Moreover, the v-approximate optimality conditions imply
that L(Qp, A) < L(Qp, A) + v. Together, these inequalities
imply that

L(Qn, A) < disp(Qn) +v.

Ne>it, we use Lemma 3 to construct a lower bound for
L(Qn, A). We have that

—

L(Qn, A) = disp(Qn) + A (cost(@n) — ¢
T + B (i(@) — &)
> disp(Qr) (cos (Q)—¢ )+ v
> disp(Qn) — v
By combining the inequalities L(Qn, \) > dlbp(Qh) —v
and L(Qp, \) < dlsp(Qh) + v, we arrive at the claim. [

Lemma 5. Assume the empirical constraint cost(Qp) < é
is feasible. Then, the distribution Qy, approximately satisfies
the empirical cost constraint with

N 2

cost(On) — |ﬁ0|+|51|+ v
B

Proof. Let Qy, satisfy cost(Qy) <

of Lemma 4, we showed that

€. Recall from the proof

—v < L(Qn,\) <
+

disp(Qn) + B (cost(Qn) — ¢)

(@(Qh) +v

Therefore, we observe that
B (cost(Qn) — €) < (disp(@n) — disp(@Qn)) +2v.

Since we can bound disp(Q,) — disp(Q) by [Bo| + |5,
the result follows. O

Lemma 6. Suppose that Qy, is any feasible solution to
discretized sample problem. Then, the solution Q)}, returned
by Algorithm 3 satisfies

disp(Qy) < m’s\pm + 2

CObt(Q ) |ﬁ0|+|g1|+2y

Proof. This is an immediate consequence of Lemma 2,
Lemma 4 and Lemma 5. If the algorithm returns null,
then these inequalities are vacuously satisfied. O

C.1.3. CONCENTRATION INEQUALITY

We restate Lemma 2 in Agarwal et al. (2019), which pro-
vides a uniform concentration inequality on the convergence
of a sample moment over a function class.

Let G be a class of functions g: &/ — R over some space
U. The Rademacher complexity of the function class G is

defined as
LSt ]

where the expectation is defined over the i.i.d. random
variables o1, ...,0, with P(o; = 1) = P(o; = —1) =
1/2.

Lemma 7 (Lemma 2 in Agarwal et al. (2019)). Let D be a
distribution over a pair of random variables (S, U) taking
values in S X U. Let G be a class of functions g: U —
[0,1], and let v: S x [0,1] — [—1, 1] be a contraction in
its second argument (i.e., for all s € S and t,t' € [0,1],
[t(s,t) — (s, t")| < |t —t'|). Then, with probability 1 — 6,
forallg € G,

E [(S,9(U))]

R.(G):= sup E,

U yeeeyUn EU

sup | —
geg

~E[p(S,9())]| <

2 21n(2/96)
EE— _l’_ _—,
vn n
where the expectation is with respect to D and the empirical
expectation is based on n i.i.d. draws from D. If 1 is linear
in its second argument, then a tighter bound holds with

4R, (G) replaced by 2R,,(G).

4R, (G) +

C.2. Auxiliary Lemmas for the Proof of Theorem 2

C.2.1. CONCENTRATION RESULT FOR DISPARITY
UNDER SELECTIVE LABELS

Lemma 8.
]P’[ 51:31 B ﬁ(idlo B (ﬂ{wl B ﬂowo)‘ > 6]
w1 wo w1 wo
2
n [ ewn 2 —neQwi
<4 A YR (G) - = 2 [
—nw?

2exp | A}
+ 2exp 1
where wy, = max(wi,wp), W = min(wy,&g) and

B =max(|A], |ol)

Proof. For exposition, we first show the steps for qualified
affirmative action and then extend the result to the general
disparity. We can rewrite the qualified affirmative action
criterion as

E[f(X)uX)|A = 1]

EfON =1L A=1]= =5 A =1

(48)



Characterizing Fairness Over the Set of Good Models Under Selective Labels

where p(z) ;== E[Y | X = z].

By triangle inequality and union bound, we have

E[f(X)Y =1,A4=1] P[|@(w—w)—w(@—w)|> t }
_ E[f(X)1{Y=1}|A=1 (W — @) + @2 ~ @?/2
OOy =1 l=) (49) (w-w)
FXOE[1{Y=1}|X,A=1]|A=1 o L . Ink
P T AmAT (0 <Ploo-w)l+w(@-)| 2 t] +P[|G-o)+0% < ]
_ Ef(X)P(Y=1|X,A=1)|A=1] (51)
- Elp(X)]A=1] ¢ ¢
L = — (" = — 2 — -2
= EAOuC0IAcy (2 <Pllo@-w) 23] +P[w -o)| > 5] +P[aé - @) +&?
@2
Assuming access to the oracle u function, we can estimate < 7}
this on the full training data as
- _ _ Since 0 < u(X,A = 1) < 1, we can use a Hoeffding
IE[fA(X),u(X, A=DiA=1] (53)  bound for the quantity | (& — @)|. Note that 0 < w < @ < 1.
Elp(X,A=1)[A=1] Then applying Hoeffding’s inequality gives us
Next we will make use of Lemma 2 of Agarwal et al. (2019), A t { —nt? }
P - >_] <2
which we restate here again for convenience. Under certain [ |w(w w)’ - 2] P 4w? (60)
conditions on ¢ and g, with probability at least 1 — ¢
X Next we bound the third term
B [6(5,9(U)] - E[6(S, g(U))]| < A 22 A .
Pllo@-o) +at < 2] <Pla@-a) 2 $len
2 21n(2/96) . )
ARn(G) [ =P[|G-o) > %] 6
nw?
We invert the bound by setting ¢ = 4R, (G) + % + < 2exp [ 4 ] (63)
21n(2/6) .
n and solving for  to get where we again used Hoeffding’s inequality for the last line.
n 9 7 We bound the first term using the restated Lemma in 55:
526Xp[2<e4Rn(g)ﬁ> (54) , . ) 2
) P[l@(@o—w)| > 5} < 2exp l—2<2_ —4R,(G)— f) ]
n
Now we can restate Lemma 2 of Agarwal et al. (2019) as (64)
P[Elo(s 9@ ~E6(S,9@)]| >¢] 65  Nowweleté= zi; toget
n 2\’ p{ w_wly ~} (65)
= ——|>€
<2exp| — 3 6*4Rn(g)*% o Wl
2
" : . €W 2 —né2pt —nw?
Next we revisit the quantity that we want to bound: <9 ey __“ [ ] [ ]
A < 2exp | =5 | R,(G) Tn +exp 1602 +exp 2
=2 (56)
W w Now we turn to the general case. Recalling that we define
B = max(|fS1, Bol), we have
where w = E[f(X)u(X,A = 1)]JA = 1] and © =
E[u(X,A = 1)]A = 1] and correspondingly for & and P Biwr  Bowo Biwir  Powo <. <
@. We will rewrite Expression 56 as a ratio of differences. o o ( o @ ) =€ =
We have
p PN w
"f—“’ — |eaze| (57) [I&I |+ 1ol 7_70 >e] <
w W « wWo
@(@—w)—w(@—©) .
- A | R 53| TR -2 2 o5 <
(59) W wi| 26 Wo ol 28
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exp {;%}—FQexp —721(68(? 4R,(G) \/277>2 .
—ne2od
exp [ Gy oo [0 <
4exp [—7;(6;}; }) +2exp g4;§w§}
o2
+2exp[ /\}

where the first inequality holds by triangle inequality, the
second inequality holds by the union bound, the third in-
equality applies (65) for € = 3 ﬁ, and the final inequality
simplifies the bound using the notation wy = max(wy, wo)
and W, = min (w1, @). O

C.3. Auxiliary Lemmas for the Proof of Theorem 3

C.3.1. ITERATION COMPLEXITY FOR ALGORITHM 4

Lemma 9. Defining p =
maXpe,eclo,Be) max{disp(h) - &, dlbp( )

€, cost(h) — €}, Algorithm 4 satisfies the inequality

By 1
vy < 225 7(7);3(3) +1p°B.

Forn = ﬁ, Algorithm 4 will return a v-approximate

2 2
saddle point of L in at most %fg(?’) iterations. Setting
B¢ = 1, we observe p < 1, and so the iteration complexity

2
of Algorithm 4 is %ﬁ;g(?’).

Proof. Follows immediately from the proof of Theorem 3
in Agarwal et al. (2019) and the same argument given in the
proof of Lemma 2. O

C.3.2. SOLUTION QUALITY FOR ALGORITHM 4
Let A = {A € R2
given (é , Qh, 5\) , which is a v-approximate saddle point

satistying L(¢, Qn, A) < L(&,Qn, A) + v for all Q) €

A(H),& € [0, Be] and L(&, Qn, A) = L(€,Qn, A) — v for
all ||A]] < By. We extend Lemmas 3-5 to the problem of

finding the absolute disparity minimizing model.

Lemma 10. (é , Qh, 5\) satisfies

: Al € Ba}. Assume we are

A (disp(Qn) —)+A- (~disp(Qn) =)+ Acout (c05t(Qn) — &)

> By max{disp(Qn)—&, —disp(Qn)—E, cost(Qp)—}—v.

Proof. The argument is the same as the proof of Lemma
O

Lemma 11. The value é satisfies
E<t+2w

for any § & such that there exists Qp, satisfying dlsp(Q n)—& <
0, —dlSp(Qh) € < 0and cost(Qp) < &

Proof. Assume the pair (£, Q) satisfies (ﬁs\p(Qh) —£<0,
f(ﬁs\p(Qh) —¢ < 0and (gs\t(Qh) < ¢. Since A > 0, we
have that L(¢,Q,\) < €. Moreover, the v-approximate
optimality conditions imply that L(é, 0, 5\) < L(¢,Q, 5\) +
v. Together, these inequalities imply that

L(é? Q? x) S £+ V.

Ne)ft we can use Lemma 10 to construct a lower bound for
L(§,Q, A). To do so, observe that
L(&, Q. )
> € + By max{disp(Q) — €, —disp(Q) — &, cost(Q) — &} — v
>&-
By combining the inequalities, L(é .0, 5\) > ¢ — vand
L(§,Q,\) <&+ v, we arrive at the claim. O

Lemma 12. Assume the empirical cost constraint
costQy, < ¢ and the slack variable constraints disp(Qn) —
¢ < 0and —disp(Qn) — & < 0 are feasible. Then, the pair

(€. Qn) satisfies

— A Be +2v
disp(Qn) — € < =5 5=,
— A . Be +2v
— disp(Qn) — £ < 55—
A

Proof. Let £ be a feasible value of the slack variable such
that there exists Qp, satisfying cost(Qn) < € and the slack
variable constraints dlbp(Qh) £<o, dlsp(Q;L) £<O.
Recall from the Proof of Lemma 11, we showed that

£+ B, max{(ﬁs\P(Qh) —¢, —Cﬁs\p(Qh) - éaC/OEC(Qh) — ¢}
—v < L€ Qn,\) <€+
Therefore, it is immediate that
By max{disp(Qn) — & ~disp(Qn) — & cost(Qn) — &}
< (6-€) +ow
and so
B (000§ < (£-8) + 30
By (~disp(@n) — €) < (¢~ €) + 2.



Characterizing Fairness Over the Set of Good Models Under Selective Labels

Since ¢ € [0, Be|, we can bound & — ¢ by Be. The result
follows. O

Lemma 13. Assume the empirical cost constraint
cost(Qr) < € and the slack variable constraints

disp(Qn) — £ <0, —(ﬂs\p(Qh) — & < 0 are feasible. Then
the distribution Qy, satisfies
c Be +2v
cost(Qp) — 637
A

Proof. The proof is analogous to the proof of Lemma 12.
O

Lemma 14. Suppose that (£, Qp) is a feasible solution to
the empirical version of (13). Then, the solution (§,Q},)
returned by Algorithm 4 satisfies

£ <€+ 2,
— A B +2V
disp(Qn) — € < =5
A
— A ~  Be+2v
—dlsp(Qh)—fsz—
A
. B§—|—21/

cost(Qp) — € < By

Proof. The proof follows from Lemmas 12-13. If the al-
gorithm returns null, then these inequalities are vacuously
satisfied. O

D. Additional Experimental Details and
Results

In this section, we present additional details on our exper-
imental setup as well as additional results for both experi-
ments presented in the main paper.

D.1. Recidivism Risk Prediction: Additional Results

ProPublica’s COMPAS recidivism data (Angwin et al.,
2016) contains 7,214 examples. We randomly split this data
50%-50% into a train and test set. We evaluate models us-
ing logistic regression loss, defined as {(y, f(z)) = log(1 +
e~ C¢2y=D(@)=1)) /(log(1 + €)) for C = 5. We ran the
exponentiated gradient algorithm for at most 500 iterations
on a fixed discretization grid, Z, = {1/40,2/40,...,1}.
Letting n = 3, 607, we set the parameters of the exponenti-
ated gradient algorithm to be B = /n/2 for minimization
problems, B = y/n for maximization problems, v = 1/y/n
and n = 2. We report the average run time results for a sin-
gle run of the exponentiated gradient algorithm to solve the
minimization and maximization problems for each disparity
measure in Table 2 below. These experiments were con-
ducted on a 2012 MacBook Pro with a 2.3 GHz Quad-Core
Intel Core i7.

Table 2. Timing for the recidivism risk prediction experiment on
the ProPublic COMPAS dataset. We report the average time for
the exponentiated gradient algorithm to complete at most 500 itera-
tions on the train set (n¢rqin = 3,607) in computing the disparity
minimizing model (Min. Disp.) and the disparity maximizing
model (Max. Disp.). Timing is reported in minutes. See § 6 for
details.

TIMING (IN MINUTES)

MIN. DisP. MAX. DISP.
SP 7.29 24.10
BFPC 8.45 24.18
BFNC 22.24 23.64

Table 3. The disparity minimizing and disparity maximizing mod-
els over the set of good models (performing within 1% of COM-
PAS’s training loss) achieve comparable test loss to COMPAS. The
first panel (SP) displays the test loss for the models that minimize
(Min. Disp.) and maximize (Max. Disp.) the disparity in average
predictions for black versus white defendants (Def. 1). The second
panel (BFPC) analyzes the test loss for the models that minimize
and maximize the disparity in average predictions for black versus
white defendants in the positive class, and the third panel examines
the test loss for the models that minimize and maximize the dispar-
ity in average predictions for black versus white defendants in the
negative class (Def. 2). Standard errors are reported in parentheses.
See § 6 for details.

TEST LOSS
MIN. Disp. MaAX. Disp. COMPAS

SP 0.095 0.067 0.102
(0.001) (0.002) (0.003)

BFPC 0.099 0.085 0.102
(0.003) (0.002) (0.003)

BENC 0.094 0.073 0.102
(0.004) (0.001) (0.003)

D.1.1. TEST LOSS

Table 3 reports the test loss of COMPAS and the test losses
of the disparity minimizing and disparity maximizing mod-
els over the set of good models. The disparity minimizing
and disparity maximizing models achieve comparable and
in some cases lower test loss than COMPAS.

D.1.2. TRAIN SET PERFORMANCE

Figure 2 plots the range of predictive disparities over the
train set when the parameter € is calibrated using COMPAS.
‘We report the train set performance for various choices of
the loss tolerance parameter, setting ¢ = 1%, 5%, 10% of
COMPAS’ training loss. The blue error bars plot the rela-
tive disparities associated with the linear program reduction
(§ A.2), the green error bars plot the relative disparities as-
sociated with the stochastic prediction function returned by
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Algorithm 3 and the orange dashed line plots the relative
disparity associated with COMPAS. The range of disparities
produced by the linear program reduction closely track the
range of disparities produced by the stochastic prediction
function returned by Algorithm 3 in the train set, confirming
the quality of the linear programming reduction.

Average Disparity

5%
Loss Tolerance

(a) Statistical Parity

0.20

Average Disparity

0.05

5%
Loss Tolerance

(b) Balance for the Positive Class

Average Disparity
=4
8

0.04

5%
Loss Tolerance

(c) Balance for the Negative Class

Figure 2. The minimal and maximal predictive disparities between
black defendants (A; = 1) and white defendants (A; = 0) over the
set of good models in the train set. We set the loss tolerance as e =
1%, 5%, 10% of COMPAS’ training loss. The blue error bars plot
the relative disparities associated with the linear program reduction
(§ A.2), the green error bars plot the relative disparities associated
with the stochastic prediction function returned by Algorithm 3
and the orange dashed line plots the predictive disparity associated
with COMPAS. See § 6 and § D.1.2 for details.

D.1.3. RESULTS FOR PREDICTIVE DISPARITIES ACROSS
YOUNG AND OLDER DEFENDANTS

We also examine the range of predictive disparities between
defendants that are younger than 25 years old (A; = 1) and
defendants older than 25 years old (4; = 0), focusing on
the range of predictive disparities that could be generated by
arisk score that is constructed using logistic regression on a

quadratic polynomial of the defendant’s age and number of
prior offenses. We calibrate the loss tolerance parameter e
such that (2) constructs the fairness frontier over all models
that achieve a logistic regression loss within 1% of COM-
PAS’s training loss. We provide the results for the statistical
parity, balance for the positive class, and balance for the
negative class disparity measures (Def. 1 and Def 2). Table
4 summarizes the range of predictive disparities over the
test set when the parameter e is calibrated using COMPAS’
training loss. While COMPAS lies within the range of pos-
sible disparities for each measure, notice that there exists a
predictive model that produces strictly smaller disparities
between young and older defendants than the COMPAS risk
assessment at minimal cost to predictive performance. The
disparity minimizing and disparity maximizing models over
the set of good models achieve a test loss that is comparable
to COMPAS (see Table 5).

Figure 3 plots the range of predictive disparities over the
train set when the parameter € is calibrated using COMPAS.
We report the train set performance for various choices
of the loss tolerance parameter, setting ¢ = 1%, 5%, 10%
of COMPAS’ training loss. The blue error bars plot the
relative disparities associated with the linear program re-
duction (Section A.2), the green error bars plot the relative
disparities associated with the stochastic prediction function
returned by Algorithm 3 and the orange dashed line plots the
relative disparity associated with COMPAS. We again find
that the range of disparities produced by the linear program
reduction closely track the range of disparities produced by
the stochastic prediction function returned by Algorithm 3.

Table 4. The minimal and maximal disparities between young de-
fendants (A; = 1) and older defendants (A; = 0) over the set of
good models (performing within 1% of COMPAS’ training loss)
on the test set. The first panel (SP) displays the disparity in aver-
age predictions for young versus older defendants (Def. 1). The
second panel (BFPC) displaces the disparity in average predictions
for young versus old defendants in the positive class, and the third
panel examines the disparity in average predictions for young ver-
sus older defendants in the negative class (Def. 2). Standard errors
are reported in parentheses. See § D.1.3 of the Supplement for
details.

MIN. Disp. MaX. Disp. COMPAS
SP -0.296 0.433 0.173
(0.019) (0.008) (0.014)
BFPC -0.207 0.260 0.101
(0.010) (0.008) (0.019)
BFNC -0.040 0.329 0.200
(0.038) (0.008) (0.022)
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Figure 3. The minimal and maximal disparities between young
defendants (A; = 1) and older defendants (A; = 0) over the set
of good models on the train set. We set the loss tolerance as € =
1%, 5%, 10% of COMPAS’ training loss. The blue error bars plot
the relative disparities associated with the linear program reduction
(§ A.2), the green error bars plot the relative disparities associated
with the stochastic prediction function returned by Algorithm 3
and the orange dashed line plots the predictive disparity associated
with COMPAS. See § D.1.3 of the Supplement for details.

Table 5. The disparity minimizing and disparity maximizing mod-
els over the set of good models (performing within 1% of COM-
PAS’s training loss) achieve comparable test loss to COMPAS.
The first panel (SP) displays the test loss for the models that min-
imize (Min. Disp.) and maximize (Max. Disp.) the disparity in
average predictions for young versus older defendants (Def. 1).
The second panel (BFPC) analyzes the test loss for the models
that minimize and maximize the disparity in average predictions
for young versus older defendants in the positive class, and the
third panel examines the test loss for the models that minimize and
maximize the disparity in average predictions for young versus
older defendants in the negative class (Def. 2). Standard errors are
reported in parentheses. See § 6 for details.

TEST LOSS
MIN. Disp.  MaXx. Dise. COMPAS

SP 0.096 0.097 0.102
(0.004) (0.003) (0.003)

BFPC 0.098 0.098 0.102
(0.002) (0.003) (0.003)

BFNC 0.094 0.093 0.102
(0.016) (0.002) (0.003)

D.2. Consumer Lending: Additional Data Details

Construction of IRSD for SA4 Regions As discussed in
§ 7, we focus our analysis on predictive disparities across
SA4 geographic regions within Australia. We use the Aus-
tralian Bureau of Statistics’ Index of Relative Socioeco-
nomic Disadvantage (IRSD) to define socioeconomically
disadvantaged SA4 regions. The IRSD is calculated for
SA2 regions, which are more granular statistical areas used
by the ABS, by aggregating sixteen variables that were
collected in the 2016 Australian census. These variables
include, for example, the fraction of households making
less than AU$26,000, the fraction of households with no
internet access, and the fraction of residents who do not
speak English well. Higher scores on the IRSD are asso-
ciated with less socioeconomically disadvantaged regions,
and conversely, lower scores on the IRSD are associated
with more socioeconomically disadvantaged regions. The
full list of variables that are included in the IRSD and com-
plete details on how the IRSD is constructed is provided in
Australian Bureau of Statistics (2016).

Because the IRSD is constructed for SA2 regions, we first
aggregate this index to SA4 regions. We construct an
aggregated IRSD for each SA4 region by constructing a
population-weighted average of the IRSD for all SA2 re-
gions that fall within each SA4 region. This delivers a
quantitative measure of which SA4 regions are the most and
least socioeconomically disadvantaged. For example, the
bottom ventile (i.e., the 20th ventile) of SA4 regions based
upon the population-weighted average IRSD (i.e., the least
socioeconomically disadvantaged SA4 regions) are regions
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. Disadvantaged (A = 1) . Non-disadvantaged (A = 0)

Figure 4. SA4 regions in Australia. We classify SA4 regions
as being ”socioeconomically disadvantaged” (red) and “non-
socioeconomically disadvantaged” (blue) based on the Index of
Relative Socioeconomic Disadvantage (IRSD).

associated with Sydney and Perth. The top ventile (i.e.,
the 1st ventile) of SA4 regions based upon the population-
weighted average IRSD (i.e., the most socioeconomically
disadvantaged SA4 regions) are regions associated with the
Australian outback such as the Northern territory outback
and the Southern Australia outback. Figure 4 provides a map
of SA4 regions in Australia, in which colors SA4 regions
classified as socioeconomically disadvantaged in blue.

D.3. Consumer Lending: Additional Experimental
Details

We performed experiments on a random 2% sample of over
360,000 loan applications submitted from July 2017 to July
2019 by customers who did not have a prior financial rela-
tionship with CommBank, yielding our experimental sample
of 7414 applications. We did a 2:1 train-test split, resulting
in 4906 applications in our training set and 2508 applica-
tions in our test set.

In order to evaluate our methods on the full population
(including applications that are not funded), we generate
synthetic funding decisions D; and outcomes f’l* from the
observed application features. On a 20% sample of the full
360,000 applicants, we train a classifier 7(z) to predict the
observed funding decision D); using the application features
X, and we train a classifier u(x) on funded applicants to
predict the observed default outcome Y; using the applica-
tion features X;. In other words, 7(x) estimates P(D; =
1|X; = x) and p(z) estimates P(Y; = 1|D; = 1, X; = z).
For both models we use probability forests from the R pack-
age ranger with the default hyperparameters: 500 trees,
miry = /[dim(X)] = 6, min node size equal 10, and max
depth equal to 0. To learn p, we use bootstrap sampling of
the (0, 1) classes with probabilities (0.01, 1), respectively,

in order to down-sample the applicants who repaid the loans
because we have significant class imbalance: Only 2.0% of
applicants have default outcomes = 1.

We generate synthetic funding decisions D; according to
D; | X; ~ Bernoulli(m(X;)) and synthetic default out-

_ comes Y;* according to Y;* | X; ~ Bernoulli(u(X;)).

We then proceed with our learning as if we only had ac-

cess to labels Y;* for apphcants with D; = 1. We estimate
fi(z) := P(Y; = 1|X; = 2, D; = 1) using random forests
with the same hyperparameters as above and use ji(z) to
construct the pseudo-outcomes used by the IE and RIE ap-
proaches. The KGB, IE, and RIE approaches use linear
regression. Our FaiRS algorithm ran the exponentiated
gradient algorithm for at most 500 iterations on a fixed
discretization grid, Z, = {1/40,2/40,...,1} with param-
eters B = y/n and v = 1//n and n = 2. These choices
were guided by our theoretical results as well as prior work
(Agarwal et al., 2019). The average runtime for a single
error tolerance € was 26.4 minutes. The experiments were
conducted on a machine with one Intel Xeon E5-2650 v2
processor with 2.60 GHz and 16 cores.

Our comparison against prior work used the fairlearn® API
with logistic regression, using parameters parameters C' =
10 and maximum iterations = 10, 000. We ran fairlearn
using both grid search and exponentiated gradient algorithm,
but we report only the grid search algorithm since it traced
out a larger fairness-performance tradeoff curve than the
exponentiated gradient algorithm. We used a grid size of 41
with a grid limit of 2.

We also compared against the Target-Fair Covariate Shift
method in Coston et al. (2019). To construct our covari-
ate shift weights, we first estimated the propensity scores
P(D =1 | X = z) by regressing D ~ X , yielding
propensity estimates 7 (x). Our propensity model used
ranger probability forests that with the default hyper-
parameters: 500 trees, miry = +/[dim(X)] = 6, min
node size equal 10, and max depth equal to 0. We used
max(7(X),50) as covariate shift weights. We ran the
method for A = {0, 10, 1000, 20000, 50000} using step size
n = 0.01. We terminated the algorithm when the L1 dis-
tance in the weight vector < le — 7 or after 500 iterations
(whichever came first).

D.4. Consumer Lending Risk Scores: Additional
Results

Figure 5 provides an extended version of Figure 1 that re-
ports models over a range of hyperparameters (e.g. loss
tolerance for FaiRS) to show the range of possible fairness-
performance combinations.

8See Fairlearn Github for code.


https://fairlearn.github.io/v0.5.0/api_reference/fairlearn.reductions.html
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Figure 5. Area under the ROC curve (AUC) with respect to the
synthetic outcome against disparity in the average risk prediction
for the disadvantaged (A; = 1) vs advantaged (4; = 0) groups.
FaiRS reduces disparities for the RIE and IE approaches while
maintaining AUCs comparable to the benchmark models (first row).
Evaluation on only funded applicants (second row) overestimates
the performance of TFCS and KGB models and underestimates
disparities for all models. Error bars show the 95% confidence
intervals. See § 7 of the main paper for details.

We next consider the implications of FaiRS for the credit
applicants from the sensitive group. One might hope that
encouraging statistical parity will increase access to credit
for the sensitive group, and indeed we see some evidence
for this. Figure 6 shows the distribution of risk scores for
the disadvantaged group for the KGB, RIE, and IE models
for the benchmark models (first row) and for FaiRS with
1% loss tolerance (second row). The 75% percentile score
is given as a dashed line. FaiRS shifts the 75% percentile
KGB score to the left (left column). FaiRS therefore reduces
the predicted risk of the sensitive group, thereby expanding
access to credit. We see a smaller shift for the RIE and IE
approaches, which have lower risk distributions than the
KGB model. As we have seen elsewhere, evaluation on
the funded only applicants (right column) lends misleading
conclusions, e.g., underestimating both the difference in dis-
tributions between the KGB and RIE/IE approaches as well
as differences between the benchmark and FaiRS variants.

We present results for the benchmarks and FaiRS models
with respect to the loss they were trained to minimize, mean-
squared error. Figure 7 shows the mean square error (MSE)
against predictive disparity for the KGB, RIE, IE bench-
marks and FaiRS variants on held-out test data. The quali-
tative patterns are the same as Figure 1 in § 7 of the main
text. Evaluation on all applicants shows that FaiRS with
reject extrapolation (RIE and IE) reduces disparities without
impacting MSE. The RIE and IE methods achieve lower

disparity and lower MSE than the KGB model trained only
on funded data, highlighting the importance of adjusting
for selective labels. We again observe that evaluation on
only funded applications is misleading as it suggests that
the KGB models have comparable MSE and it drastically
underestimates predictive disparities for all models.

Figure 1 in § 7 of the main text and Figure 7 shows that
the FaiRS KGB model appears to produce larger predictive
disparities than the benchmark KGB model. This is likely
due to generalization error on the held-out test data. To
verify this hypothesis, Figure 8 shows the MSE against
predictive disparity for the KGB, RIE, IE benchmarks and
FaiRS variants on the training data. Indeed among funded
applicants in the train data, FaiRS-KGB models produce
smaller absolute predictive disparities than the benchmark
KGB model (second row).

All applicants Funded applicants

%0

density

%t
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Predicted risk scores
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Figure 6. Predicted risk distributions for disadvantaged group
A; =1 for FaiRS algorithm using KGB, RIE and IE approaches.
The first row shows the benchmark model risk scores. The sec-
ond row shows our FaiRS’s risk scores for a loss tolerance of 1%.
The left and right columns show risk scores on all applicants and
funded applicants from the disadvantaged group respectively. The
dashed line indicates the 75-percentile score. The RIE and IE
methods predict lower rates of default for the disadvantaged group
than the KGB method. The densities for the funded applicants
(right column) underestimate the differences in risk scores across
the KGB, RIE, and IE methods (compare to left column). See § 7
for details.

Another approach to expanding credit access for applicants
from geographically disadvantaged regions is to target a
prediction model that reduces score disparities among those
applicants who would repay the loan if approved. This
notion is related to balance for the positive/negative class
(See Def. 2). To avoid confusion that may result from the
definition of the positive class as those having the adverse
outcome (e.g., default) in a risk assessment context, we will
use would-default class to denote those who would have
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Figure 7. Mean square error (MSE) with respect to the synthetic
outcome Y; against disparity in the average risk prediction for
the disadvantaged (A; = 1) vs. advantaged (A; = 0) groups
in held-out test data. The first row evaluates each method on
all applicants and and the second row evaluates each method on
funded applicants only. See § 7 and § D.4 for details.
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Figure 8. Mean square error (MSE) with respect to the synthetic
outcome Y; against disparity in the average risk prediction for the
disadvantaged (A; = 1) vs. advantaged (A; = 0) groups in the
training data. The first row evaluates each method on all appli-
cants and and the second row evaluates each method on funded
applicants only. See § 7 and § D.4 for details.

defaulted had the loan been funded and would-repay class
to denote those who would have repaid had the loan been
funded. Balance for the would-repay class is related to
the notion of equality of opportunity (Hardt et al., 2016),
but unlike standard applications of equality of opportunity,
our target notion explicitly address selective labels. We
compare our method to fairlearn models learned using true
positive rate and false positive rate parity. We do not present
the TFCS models as we did for statistical parity in the main
paper because TFCS does not offer a method for balance par-
ities. In certain settings where affirmative action-type poli-
cies are desirable, instead of targeting balance in the classes,
the decision-maker may instead like to know whether there
exists in the set of good models a prediction model for which
the average score among those who would repay if funded
is lower for the disadvantaged class versus the privileged
class. To answer this question, we focus on characterizing
the relative disparities (Problem 2).

AUC
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Figure 9. Area under the ROC curve (AUC) with respect to the
synthetic outcome against disparity in the average risk prediction
for the disadvantaged (A; = 1) vs advantaged (A; = 0) groups
among those who would repay the loan if funded (Y* = 0). The
benchmark IE, RIE, and FaiRS with IE models achieve the highest
AUC. They also yield low disparities, but the disparities still favor
the advantaged A = 0 applicants. FaiRS with RIE yields a model
that favors the disadvantaged A = 1 applicants, but this model
must sacrifice performance in order to do so. Error bars show the
95% confidence intervals. See § D.4 for details.

Figure 9 presents the results for disparities on the would-
repay class. We present the AUC and disparities for the
KGB, RIE, and IE benchmarks and their FaiRS variants
as well as the fairlearn models. Our IE approach yields a
prediction model with low disparities and a higher AUC than
the fairlearn or other KGB approaches that do not adjust
for selective labels. Using FaiRS with RIE, it is possible to
achieve an affirmative-action type prediction model that has
a substantially lower average score among the would-repay
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Figure 10. Area under the ROC curve (AUC) with respect to the
synthetic outcome against disparity in the average risk prediction
for the disadvantaged (A; = 1) vs advantaged (A; = 0) groups
among those who would default if funded (Y* = 1). The bench-
mark IE and RIE models as well as a FaiRS with IE model achieve
the highest AUC with low disparities that slightly favor the advan-
taged A = 0 applicants. A fairlearn model as well as FaiRS with
RIE and with KGB yield predictions that favor the disadvantaged
A = 1 applicants, but these models have lower AUC. Increasing
the error allowance for FaiRS with IE yields a constant model that
achieves a disparity of zero and a low AUC. Error bars show the
95% confidence intervals. See § D.4 for details.

for those with A = 1 versus A = 0. The AUC of this model
is lower than the benchmark RIE model but is comparable
to the AUCs of fairlearn and FaiRS with KGB.

Figure 10 presents the results for disparities on the would-
default class. The results are similar for the would-repay
class except here it is a fairlearn model that most favors
the disadvantaged class, albeit at a lower AUC than that
achieved by the benchmark or FaiRS with IE models.

D.5. Regression Experiments: Communities & Crime
Dataset

The Communities & Crime dataset (Dua & Graff, 2017)
contains 1,994 examples. We randomly split this data 50%-
50% into a train and test set. We train models to predict the
violent crime rate within each community (the number of
violent crimes per 100,000 people), which is a continuous
outcome. We evaluate models using least squares loss, de-
fine the benchmark model to be the loss-minimizing linear
regression and focus on the statistical parity measure of pre-
dictive disparities between communities that are majority
white vs. majority non-white. We use FaiRS to search for
the predictive disparity minimizing linear regression that
achieves a loss that is comparable to the benchmark (loss
tolerance € = 1%, 5%, 10% of the loss-minimizing linear

Table 6. The FaiRS models over the set of good models (perform-
ing within 1%, 5%, and 10% of the loss-minimizing linear regres-
sion’s training loss) achieve comparable performance to the test
loss of the loss-minimizing linear regression and produce lower ab-
solute predictive disparities. The first column reports the disparity
in average predictions between majority white and majority non-
white communities (Def. 1). The second column reports the test
losses for each model. Standard errors are reported in parentheses.
See § D.5 for details.

Loss Disp.

BENCHMARK 0.0101 -0.3386
(0.0007) (0.0135)

FAIRS
e=1% 0.0103 -0.2989
(0.0008) (0.0130)
e=5% 0.0105 -0.2856
(0.0008) (0.0129)
e=10% 0.0108 -0.2658
(0.0008) (0.0127)

regression). In this dataset, there is no selective labels prob-
lem, so we construct the FaiRS model following approach
detailed in § 4 and Supplement § A.3.

Table 6 summarizes both the predictive disparities and least
squares losses over the test set of the F'aiRS models and
the benchmark linear regression. The FaiRS models achieve
comparable performance to the test loss of the benchmark
loss-minimizing linear regression while producing lower
predictive disparities. These results highlight that our pro-
posed methods perform as desired in a regression setting.



