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Abstract

This supplementary material provides the proofs of the main theorems
of the core article.

1 Reminder of the main setting

For convenience, we first recall our main setting and assumptions. The central
object of interest is the matrix

K =

{
1

p
(X � S)H(X � S)

}
�B ∈ Cn×n (1)

under the large dimensional n, p regime. Here, X, S and B satisfy the following
assumptions.

Assumption 1 (Data model).

X = Z + P

where the Zij ∼ CN (0, 1) are independent, and where P ∈ Cp×n is a rank-k
matrix for some k.

Assumption 2 (Large p, n asymptotics). As n→∞,

p/n→ c0 ∈ (0,∞)

and there exists a decomposition P = LV H of P with V ∈ Cn×k isometric (i.e.,
V HV = Ik) and

1

p
LHL→ L
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for some deterministic matrix L ∈ Ck×k. In particular, the eigenvalues of L are
the limiting k non-trivial eigenvalues of 1

pP
HP . Besides,

lim sup
n

max
1≤i≤n
1≤j≤k

{
√
nV 2

ij} = 0.

2 The theorems

The spectral characterization of K is made through the study of its resolvent
matrix

Q(z) = (K − zIn)−1.

The results are then as follows.

Theorem 1 (Deterministic equivalent for Q). Under Assumptions 1–2, let z ∈ C
be away from the limsup of the union of supports of ν1, ν2, . . .. Then, as n→∞,

Q(z)↔ m(z)

[
In +

c−1
0 ε2

SεBm(z)

1 + εBεSc
−1
0 m(z)

V LV H

]−1

where m(·) is the unique Stieltjes transform solution to1

z = εSb−
1

m(z)
− c−1

0 εBε
2
Sm(z) +

c−2
0 ε3

Bε
3
Sm(z)2

1 + c−1
0 εBεSm(z)

.

This theorem is in fact sufficiently exhaustive to characterize both the macro-
scopic spectrum of K (its limiting spectral measure) as well as the microscopic
behavior of its dominant isolated eigenvalues and associated eigenvectors. The
next result, which we name theorem in compliance with the core article, is in
effect an (important) corollary of Theorem 1.

Theorem 2 (Phase transition, isolated eigenvalues and eigenvectors). Define
the functions

F (t) = t4 +
2

εS
t3 +

1

ε2
S

(
1− c0

εB

)
t2 − 2c0

ε3
S

t− c0
ε4
S

G(t) = εSb+ c−1
0 εBεS(1 + εSt) +

εS
1 + εSt

+
εB

t(1 + εSt)

and Γ ∈ R be the largest real solution to F (Γ) = 0. Further denote `1 > . . . > `k̄
the k̄ ≤ k distinct eigenvalues of L of respective multiplicities L1, . . . , Lk̄, and
Π1, . . . ,Πk̄ ∈ Rk×k the projectors on their respective associated eigenspaces.
Similarly denote (λ1, v̂1), . . . , (λn, v̂n) the eigenvalue-eigenvector pairs of K in
descending order and gather the first k eigenvectors under the isometric matrices
V̂1 = [v̂1, . . . , v̂L1

] up to V̂k̄ = [v̂k−Lk̄+1, . . . , v̂k].

1We also recall that the notation A↔ B stands for the fact that, for any linear functional
u : Cn×n → R of bounded infinity norm, u(A−B)→ 0 almost surely as n→∞.
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Then, for i ∈ {1, . . . , k̄} and for all j ∈ {L1 + . . .+Li−1 +1, . . . , L1 +. . .+Li},

λj → ρi ≡
{
F (`i) , `i > Γ
F (Γ) , `i ≤ Γ

almost surely, and

V̂iV̂H
i ↔ ζiVΠiV

H, where ζi =

{
F (`i)ε

3
S

`i(1+εS`i)3 , `i > Γ

0 , `i ≤ Γ

with the notation ‘↔’ introduced in Theorem 1. In particular, if the `i’s have
unit multiplicities with associated population eigenvectors vi, then

|vHi v̂i|2 → ζi, i = 1, . . . , k.

3 Elements of proof

3.1 Rationale

The proof relies on the Gaussian tools for random matrices popularized in [] and
consisting in exploiting Stein’s lemma

E[zφ(z)] = E
[
∂

∂z̄
φ(z)

]
for standard complex (or real) Gaussian random variables z ∼ CN (0, 1) along
with the Nash-Poincaré inequality

Var[f(z)] ≤
n∑
i=1

(
E

[∣∣∣∣ ∂∂zi f(z)

∣∣∣∣2
]

+ E

[∣∣∣∣ ∂∂z̄i f(z)

∣∣∣∣2
])

for standard multivariate complex Gaussian z ∼ CN (0, In).

As we shall see, Stein’s lemma is used to “unfold” the a priori quite involved
form of the expected value E[Qij ] of the entries of the resolvent matrix Q of
K. The Nash-Poincaré inequality is then subsequently used to control that the
variance of Qij vanishes at a proper rate.

3.2 Proof of Theorem 1

In order to be in a position to apply Stein’s lemma, we first exploit the straight-
forward resolvent identity : KQ− zQ = In, so to obtain

E[Qij ] = −1

z
δij +

1

z
E[[KQ]ij ].

By expanding X = Z + P , with P decomposed as P = LV H (L ∈ Cp×k and
V ∈ Cn×k), we have to consider four terms in the expansion of E[[KQ]ij ].
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Term 1: involving (ZH, Z)

Anticipating coming results, instead of evaluating E[[KQ]ij ] directly, we rather
evaluate a modified version in which matrix B is replaced by a deterministic
matrix A with bounded operator norm and bounded entries: using Stein’s lemma,
we have

E

[[([
1

p
(Z � S)H(Z � S)

]
�A

)
Q

]
ij

]

=
1

p

p∑
l=1

n∑
m=1

SliSlmAimE
[
Z̄liZlmQmj

]
=

1

p

p∑
l=1

n∑
m=1

SliSlmAim

(
E
[
δimQmj + Zlm

∂Qmj
∂Zli

])
. (2)

Using ∂Q
∂Zab

= −Q ∂Q
∂Zab

Q, it then comes

∂Qcd
∂Zab

= −1

p

n∑
l,l′=1

Qil [[(X � S)′(Eab � S)]�B]ll′ Ql′d,

for Eab the matrix with all zero entries but at coordinate (a, b) where the entry
equals 1. We further have that

[[
(X � S)H(Eab � S)

]
�B

]
ll′

=

p∑
o=1

X̄olSolδoaSabBll′ = X̄alSalSabBll′δl′b

so that

∂Qcd
∂Zab

= −1

p

[
QDB·,b(X � S)H

]
ca
SabQbd.

We then obtain for T1(A,S) ≡ E
[[([

1
p (Z � S)H(Z � S)

]
�A

)
Q
]
ij

]
in (2):

T1(A,S) =
1

p

p∑
l=1

n∑
m=1

SliSlmAimE
[
δimQmj −

1

p
Zlm

[
QDB·,i(X � S)H

]
ml
SliQij

]

= E
[

1

p

[
SHS

]
ii
AiiQij

]
− 1

p2

p∑
l=1

[
ZDSl,·DAi,·QDB·,i(X � S)HDS·,iDS·,i

]
ll
Qij

where Dx denotes the diagonal matrix with elements the entries of vector x.
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Term 2: (Z ′, P )

We obtain for T2(A,P ) ≡ E
[[([

1
p (Z � S)H(P � S)

]
�A

)
Q
]
ij

]
:

T2(A,R) =

p∑
l=1

n∑
m=1

1

p
E
[
Z̄liSliPlmSlmAimQmj

]
,

=
1

p

p∑
l=1

n∑
m=1

SliPlmSlmAimE
[
∂Qmj
∂zli

]
,

= − 1

p2

p∑
l=1

n∑
m=1

SliPlmSlmAimE
[(
QDB·,i(X � S)H

)
ml
SliQij

]
= − 1

p2

p∑
l=1

E
[[
TDSl,·DAi,·QDB·,i(X � S)HDS·,i

]
ll
Qij
]

where we used in particular the fact that D2
S·,i

= DS·,i .

Summation of T1(A, S) and T2(A, S):

Summing the two previous terms, we get

T1(A,S) + T2(A,S) = E
[

1

p

[
SHS

]
ii
AiiQij

]
− 1

p2

p∑
l=1

E
[[
XDSl,·DAi,·QDB·,i(X � S)HDS·,i

]
ll
Qij
]

Due to the presence of the term Sl,· inside the matrix evaluated at position (l, l),
the summation over l cannot be “turned into a trace”, as conventionally done to
prove e.g., the Marc̆enko-Pastur theorem [] (when Sij = 1 and Bij = 1 for all
i, j). We therefore need to proceed otherwise by writing

1

p2

p∑
l=1

[
XDSl,·DAi,·QDB·,i(X � S)HDS·,i

]
ll

=
1

p2

p∑
l=1

Xl,·DSl,·DAi,·QDB·,iDSl,·X
H
l,·Sl,i.

To evaluate the quadratic forms, we must “break” the dependence between Xl,·
and Q. To this end, note that

Q =

(
1

p

p∑
i=1

{[
DSi,·X

H
i,·Xi,·DSi,·

]
�B

}
− zIn

)−1

so that, applying Woodbury’s identity,

Q = Q−l −
1

p
Q−l

{[
DSl,·X

H
i,·Xi,·DSl,·

]
�B

}(
In +

1

p
Q−l

{[
DSl,·X

H
i,·Xi,·DSl,·

]
�B

})−1

Q−l.
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Plugged into the quadratic form over Xl,·, this gives:

1

p
Xl,·DSl,·DAi,·QDB·,iDSl,·X

H
l,·

=
1

p
Xl,·DSl,·DAi,·Q−lDB·,iDSl,·X

H
l,·

− 1

p2
Xl,·DSl,·DAi,·Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

}(
In +

1

p
Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

})−1

×Q−lDB·,iDSl,·X
H
l,·.

Recalling that X = Z +LV H (so that Xl,· = Zl,·+Ll,·V
H), we first find that,

averaging over Zl,·,

1

p
E
[
Xl,·DSl,·DAi,·Q−lDB·,iDSl,·X

H
l,·
]

=
1

p
E
[
trDSl,·DAi,·Q−lDB·,iDSl,·

]
+

1

p
E
[
Ll,·V

HDSl,·DAi,·Q−lDB·,iDSl,·V L
H
l,·
]
.

A further application of the Nash-Poincaré inequality then shows that the variance
of Xl,·DSl,·DAi,·Q−lDB·,iDSl,·X

H
l,· vanishes as O(1/p) while Var[Qij ] = O(1), so

that the above result extends into

1

p
E
[
Xl,·DSl,·DAi,·Q−lDB·,iDSl,·X

H
l,·Qij

]
=

1

p
E
[
trDSl,·DAi,·Q−lDB·,iDSl,·

]
E[Qij ]

+
1

p
E
[
Ll,·V

HDSl,·DAi,·Q−lDB·,iDSl,·V L
H
l,·
]
E[Qij ] +O(p−

1
2 ).

Now observe, for the second right-hand side term, that, by Cauchy-Schwarz’s
inequality and after summation over l,(

1

p2

p∑
l=1

E
[
Ll,·V

HDSl,·DAi,·Q−lDB·,iDSl,·V L
H
l,·Qij

]
Sl,i

)2

≤ 1

p2

n∑
l′=1

‖Ll′,·‖2
1

p2

p∑
l=1

E[|Qij |2Ll,·DS·,iV
HDSl,·DB·,i

QH
−lDSl,·DAi,·V V

HDSl,·DAi,·Q−lDB·,iDSl,·V DS·,iL
H
l,·]

≤ tr(LHL)
1

p4

p∑
l=1

∥∥E[|Qij |2DS·,iV
HDSl,·DB·,iQ

H
−lDSl,·DAi,·V V

HDSl,·DAi,·Q−l

DB·,iDSl,·V DS·,i ]
∥∥ ‖Ll,·‖2

≤ C

p2
(tr(LHL))2 = O(p−2)
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for C > 0 a bound on the norm of the matrix in the expectation term. This bound
holds because we imposed that LHL→ L = O‖·‖(1), because ‖Q−l‖ ≤ 1/|=[z]|
(or ≤ 1/z for z < 0) and because all entries of S, A, B are bounded.

Therefore, the term in the first line parentheses above is of order O(p−1). As
a consequence,

1

p2

p∑
l=1

E
[
Xl,·DSl,·DAi,·Q−lDB·,iDSl,·X

H
l,·Qij

]
Sl,i

=
1

p2

p∑
l=1

E
[
trDRl,·DAi,·Q−lDB·,iDSl,·Qij

]
Sl,i +O(p−1).

In the remainder of the derivations, we will often use the Cauchy-Schwarz
and norm inequalities for more complex terms. We will not further develop them
in detail when the result is immediate or close to the previous derivation.

Back to our original sum over (l, l) indices, we are now left to estimating the
newly introduced quantity

− 1

p2
Xl,·DRl,·DAi,·Q−l

{[
DSl,·X

′
l,·Xl,·DSl,·

]
�B

}
×
(
In +

1

p
Q−l

{[
DSl,·X

′
l,·Xl,·DSl,·

]
�B

})−1

Q−lDB·,iDSl,·X
′
l,·.

This term is delicate as the dependence of the inner-matrix in Xl,· remains.
Here the main observation to make is the following and depends on the nature
of B:

1

p

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

}
=

1

p

{[
DSl,·X

H
l,·Xl,·DSl,·

]
� εB1n1Tn

}
+

1

p

{[
DSl,·X

H
l,·Xl,·DSl,·

]
� B̊

}
+

1

p

{[
DSl,·X

H
l,·Xl,·DSl,·

]
� (b− εB)Ip

}
where we wrote B̊ = B − E[B] and used E[B] = εB1n1Tn + (b− εB)Ip.

Remark that

1

p

[
DSl,·X

H
l,·Xl,·DSl,·

]
� B̊ = DDSl,·X

H
l,·
B̊DXl,·DSl,·

the spectral norm of which is bounded, for all large n, p with high probability
by O(log p/

√
p): this is because the spectrum of B̊ follows a semi-circle dis-

tribution in the limit with ‖B̊‖/
√

2n → 1, and ‖DXl,·‖ is the maximum of n
independent Gaussian variables which, uniformly on X cannot grow faster than
O(
√

log(np)) = O(
√

log p). This claim is confirmed by a further application of
the Nash-Poincaré inequality. Similarly, 1

p{[DSl,·X
H
l,·Xl,·DSl,· ]� (b− εB)Ip} is

bounded in norm by O(log p/p).
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With these remarks at hand, we may freely replace B in the expression of
[DSl,·X

H
l,·Xl,·DSl,· ]�B above by εB1n1Tn, so to obtain

− 1

p2
Xl,·DSl,·DAi,·Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

}
×
(
In +

1

p
Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

})−1

Q−lDB·,iDSl,·X
H
l,·

= −εB
p2
Xl,·DRl,·DAi,·Q−lDSl,·X

H
l,·Xl,·DSl,·

×
(
In +

εB
p
Q−lDSl,·X

H
l,·Xl,·DSl,·

)−1

Q−lDB·,iDSl,·X
H
l,· +Op(

√
log p/

√
p).

Using Sherman-Morrison’s identity uH(A+λuvH)−1 = uHA−1

1+λvHA−1u
, this further

simplifies into

− 1

p2
Xl,·DSl,·DAi,·Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

}
×
(
In +

1

p
Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

})−1

Q−lDB·,iDSl,·X
H
l,·

= −εB
p2
Xl,·DSl,·DAi,·Q−lDSl,·X

H
l,·
Xl,·DSl,·Q−lDB·,iDSl,·X

H
l,·

1 + εB
p Xl,·DSl,·Q−lDSl,·X

H
l,·

+Op(
√

log p/
√
p).

The quadratic forms are now all accessible and all converge to their traces at
uniform speed O(log(p)/

√
p) (again by a control of their variances), so that

− 1

p2
Xl,·DSl,·DAi,·Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

}
×
(
In +

1

p
Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

})−1

Q−lDB·,iDSl,·X
H
l,·

= −εB
p2

trDSl,·DAi,·Q−l
trDB·,iD

2
Sl,·
Q−l

1 + εB
p trDSl,·Q−l

+Op(
√

log p/
√
p).

With the same argument as above, one may freely replace Q−l by Q up to
a negligible cost of O(1/

√
p) in the above traces. Then, perturbing matrix K

so to discard the contribution of Sl,· and B·,i also comes at a negligible cost, so
that, again with the same perturbation argument, we get

− 1

p2
Xl,·DSl,·DAi,·Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

}
×
(
In +

1

p
Q−l

{[
DSl,·X

H
l,·Xl,·DSl,·

]
�B

})−1

Q−lDB·,iDSl,·X
H
l,·

= −εB
p2

trDSl,·DAi,·Q−l
εBεStrQ

1 + εBεS
p trQ

+Op(
√

log p/
√
p).
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Summarizing the results above, we then get (with the same necessary controls
by the Nash-Poincaré inequality as above),

T1(A,R) + T2(A,R) = E
[

1

p
[SHS]iiAiiQij

]
− E

[
1

p2

p∑
l=1

tr (DSl·DAi·Q−lDB·iDSl·)SliQij

]

+
1

p

p∑
l=1

E

[
εB
p2

tr
(
DSl,·DAi,·Q−l

) εBεStrQ

1 + εBεS
p trQ

SliQij

]
+O

(
log p
√
p

)
.

Term 3: (PH, Z)

We consider now T3(A,S) ≡ E
[[([

1
p (P � S)H(Z � S)

]
�A

)
Q
]
ij

]
:

T3(A,R) =
1

p

p∑
l=1

n∑
m=1

PliSliSlmAimE
[
∂Qmj
∂Z̄lm

]
with

E
[
∂Qcd
∂Z̄ab

]
= −1

p

[
Q
[
(Eba � SH)(X � S) ·B

]
Q
]
cd

= −1

p

n∑
l=1

p∑
m=1

Qcl
[
(Eba � SH)(X � S) ·B

]
lm
Qmd

= −1

p

n∑
l=1

p∑
m=1

∑
o=1

QclδblδaoS
H
lo[X � S]omBlmQmd

= −1

p

n∑
l=1

p∑
m=1

QclδblS
H
la[X � S]amBlmQmd

= −1

p

p∑
m=1

QcbS
H
ba[X � S]amBbmQmd

= −1

p
QcbS

H
ba [(X � S)DBb·Q]ad .

As a consequence,

T3(A,R) = − 1

p2

p∑
l=1

n∑
m=1

PliSliSlmAimQmmSmlE [(X � S)DBm·Q]lj

= − 1

p2

p∑
l=1

PliSliE

[
(X � S)

(
p∑

m=1

DBm·SlmAimQmmSml

)
Q

]
lj

= − 1

p2

p∑
l=1

PliSliE
[
(X � S)D{trQDB·sDSl·DAi·}

n
s=1
Q
]
lj

= − 1

p2

p∑
l=1

E
[
[(T � S)H]il

[
(X � S)D{trQDB·sDSl·DAi·}

n
s=1
Q
]
lj

]
.
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At this stage in the calculus, it is necessary to study the normalized trace

1

p
trQDB·sDAi·DSl· .

Note that, unless BH
·s = Ai· (which could only occur for one value of s; typically

s = i if we take A = B), using similar perturbation arguments in the large n, p
regime as above (the impact of column B·s is negligible in Q), we obtain

1

p
trQDB·sDAi·DSl· =

εB
p

trQDAi·DSl· + op(1).

As such, D{trQDB·sDAi·DSl·}
p
s=1

is asymptotically close to a scaled identity
matrix depending on i and we may then rewrite

T3(A,R) = −εB
p
E
[
(P �R)HD{ 1

p trQDAi·DSl·}
p
l=1

(X � S)Q
]
ij

+ o(1).

This further boils down to

T3(A,S) = −εBεS
p

E
[
D{ 1

p trDAi·Q}
n
i=1

(P � S)H(X � S)Q
]
ij

+ o(1)

= −εBεS
p

E
[{[

(P � S)H(X � S)
]
� d{ 1

p trDAi·Q}
n
i=1

1Tn

}
Q
]
ij

+ o(1)

where dv is the (column) vector composed of the elements vi.

Term 4: (PH, P )

We finally add up the easiest term

T4(A,R) ≡ E

[[([
1

p
(P � S)H(P � S)

]
�A

)
Q

]
ij

]
.

Collecting the terms

Collecting all terms Ti(A,S), it appears that the desired evaluation of E[Qij ],
which we obtain through that of

E
[

1

p
(X � S)H(X � S)Q

]
ij

gives rise to two sets of “new” terms:

1. the traces

tr (DSl·DAi·Q−l)

2. the matrix expectation

E
[{[

(P � S)H(X � S)
]
� d{ 1

p trDAi·Q}
n
i=1

1Tn

}
Q
]
ij
.
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Using perturbation arguments, the traces are easily analyzed and all lead to
scaled versions of trQ in the limit, thereby effectively not providing any new
term.

The matrix expectation is less immediate and must be appropriately used to
“close the loop” of the estimate of E[Qij ]. Specifically,

• letting A = B in the initial equation leads to evaluating

E
[{[

(P � S)H(X � S)
]
� d{ 1

p trDBi·Q}
n
i=1

1Tn

}
Q
]
ij

which, from the fact that 1
p trDBi·Q = εB

p trQ+ op(1), is essentially

E
[
εB
p

trQ
{[

(P � S)H(X � S)
]
� 1n1Tn

}
Q

]
ij

a term that we thus need to evaluate;

• letting then A = 1n1Tn leads instead to

E
[{[

(P � S)H(X � S)
]
� d{ 1

p trD1nQ}ni=1
1Tn

}
Q
]
ij

= E
[
((1/p)trQ)

{[
(P � S)H(X � S)

]
� 1n1Tn

}
Q
]
ij

from which we may now close the loop.

Precisely, combining terms from T3(1n1T
n, S) and T4(1n1T

n, S), we first find
that {[

1

p
(P � S)H(X � S)

]
� 1n1Tn

}
Q

↔−
(
εBεS
p

trQ

){[
1

p
(T � S)H(X � S)

]
� 1n1Tn

}
Q

+

{[
1

p
(P � S)H(P � S)

]
� 1n1Tn

}
Q

so that, letting m(z) ∈ C be such that 1
n trQ↔ m(z),{[

1

p
(P � S)H(X � S)

]
� 1n1Tn

}
Q

↔ 1

1 + c−1
0 εBεSm(z)

{[
1

p
(P � S)H(P � S)

]
� 1n1Tn

}
Q.

Next, combining all Ti(B,S), we get, using in particular 1
p [SHS]ii → εS

almost surely,

Q↔ −1

z
In +

εSb

z
Q− ε2

SεBc
−1
0 m(z)Q+

ε3
Bε

3
Sc
−2
0 m(z)2

1 + c−1
0 εBεSm(z)

Q

− ε2
BεSc

−1
0 m(z)

1 + c−1
0 εBεSm(z)

1

p
(P � S)H(P � S)Q+

1

p

{[
(P � S)H(P � S)

]
�B

}
Q.
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To complete the proof, we now need to handle the terms (P � S)H(P � S)Q
and 1

p{[(P � S)H(P � S)] � B}Q and relate then to Q directly. To this end,

similar to previously, let us write S = εS1p1
T
n + S̊, B = εB1n1T

n + B̊ and

P =
∑k
`=1 L·,`V

H
·,`. Then, since we imposed the entries Vij to be essentially

of order 1/
√
n,2 observe that the matrix 1√

pL·,`V
H
·,` � S̊ = 1√

pDL·,` S̊DV H
·,`

has

operator norm of order 1/
√
p. The same reasoning applies to B, so that we may

rewrite

zQ↔− In + εSbQ− ε2
SεBc

−1
0 m(z)Q+

ε3
Bε

3
Sc
−2
0 m(z)2

1 + c−1
0 εBεSm(z)

Q

− ε2
Bε

3
Sc
−1
0 m(z)

1 + c−1
0 εBεSm(z)

1

p
PHPQ+ εBε

2
S

1

p
PHPQ

=− In + εSbQ− ε2
SεBc

−1
0 m(z)Q+

ε3
Bε

3
Sc
−2
0 m(z)2

1 + c−1
0 εBεSm(z)

Q

+
εBε

2
S

1 + c−1
0 εBεSm(z)

1

p
PHPQ

Further using

1

p
PHP =

1

p
V LHLV H = V LV H + o‖·‖(1)

along with the fact that V HV = Ik, we finally get the deterministic equivalent
for Q

Q↔
[
(εSb− z)In − c−1

0 ε2
SεBm(z)In +

c−2
0 ε3

Sε
3
Bm(z)2

1 + εBεSc
−1
0 m(z)

In

+
c−1
0 ε2

SεB

1 + εBεSc
−1
0 m(z)

V LV H

]−1

.

In particular, recalling that m(z) is an asymptotic equivalent for 1
n trQ, we

have

m(z) =
1

(εSb− z)− c−1
0 ε2

SεBm(z) +
c−2
0 ε3Sε

3
Bm(z)2

1+εBεSc
−1
0 m(z)

which unfolds from V LV H being of finite rank k (so that it does not affect
the limiting normalized trace) and thus provides a deterministic equivalent.
Equivalently, this is

z = εSb−
1

m(z)
− c−1

0 εBε
2
Sm(z) +

c−2
0 ε3

Bε
3
Sm(z)2

1 + c−1
0 εBεSm(z)

2More specifically, it is enough to assume that V 2
ij = o(1/

√
n).
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which, integrated in the previous expression of the random equivalent of Q,
provides the shorter and final forms of the deterministic equivalent :

Q↔ m(z)

[
In +

c−1
0 ε2

SεBm(z)

1 + εBεSc
−1
0 m(z)

V LV H

]−1

or possibly more expressively

Q↔ m(z)V⊥V
H
⊥ +m(z)V

[
Ik +

c−1
0 ε2

SεBm(z)

1 + εBεSc
−1
0 m(z)

L
]−1

V H

where in this last equality V⊥ is an orthonormal basis completing V (this last
result follows from Woodbury’s matrix inverse identity).

3.3 Proof of Theorem 2

With the previous result available, the proof of Theorem 2 follows from a classical
random matrix approach.

Let L =
∑k̄
i=1 `iViVH

i be the spectral decomposition of L with Vi ∈ Ck×Li
isometric and such that Πi = ViVH

i is a projector on the eigenspace associated
to eigenvalue `i which we assume of multiplicity Li greater or equal to 1.

Then, assuming asymptotic separability (that is, the existence of a spike
associated to `i), such that the resulting associated eigenvalue(s) λj , . . . , λj+Li−1

of K converge to ρi with associated eigenspace V̂i, we have, in the large n, p
limit, almost surely (the limit is needed to ensure that λj , . . . , λj+Li−1 fall into
the contour Γρi),

V̂iV̂H
i = − 1

2πı

∮
Γρi

Q(z)dz

↔ − 1

2πı

∮
Γρi

m(z)V

[
Ik +

c−1
0 ε2

SεBm(z)

1 + εBεSc
−1
0 m(z)

L
]−1

V Hdz

for Γx a positively oriented complex contour surrounding x closely. By residue
calculus, we then find that

V̂iV̂H
i ↔ − lim

z∈C→ρi
(z − ρi)m(z)U

[
Ik +

c−1
0 ε2

SεBm(z)

1 + εBεSc
−1
0 m(z)

L
]−1

V H

↔ − lim
z∈C→ρi

(z − ρi)m(z)V Vi
[
1 +

c−1
0 ε2

SεBm(z)

1 + εBεSc
−1
0 m(z)

`i

]−1

VH
i V

H

where we exploited the fact that the denominator above must vanish as z → ρi,
thereby in passing defining ρi.

Specifically, we find that ρi, the limit of the empirical eigenvalues of K
associated with `i, is solution to

1 + `i
c−1
0 εBε

2
Sm(ρi)

1 + c−1
0 εBεSm(ρi)

= 0⇔ 1

m(ρi)
= −c−1

0 εBεS(1 + εS`i).
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In particular, we have the following convenient relation for what follows:

1 + c−1
0 εBεSm(ρi) =

εS`i
1 + εS`i

.

Exploiting the relation z = f(m(z)) above, applied to z = ρi, this leads to the
explicit value of the isolated “spike” ρi:

ρi = εSb+ c−1
0 εBεS(1 + εS`i) +

εS
1 + εS`i

+
εB

`i(1 + εS`i)
.

By l’Hospital’s rule (or equivalently a first order Taylor expansion of both
numerator and denominator in the inverse formula of the residue), we then have

ÛiV̂H
i ↔ −V Vi

m(ρi)(1 + c−1
0 εBεSm(ρi))

2

`ic
−1
0 εBε2

Sm
′(ρi)

VH
i V

H

where, exploiting the defining equation of m(z), we find after mere algebraic
calculus

1

m′(z)
=

1

m(z)2
− c−1

0 εBε
2
S + c−2

0 ε3
Bε

3
Sm(z)

2 + c−1
0 εBεSm(z)

(1 + c−1
0 εBεSm(z))2

=
1

m(z)2
− c−1

0 εBε
2
S +

c−2
0 ε3

Bε
3
Sm(z)

1 + c−1
0 εBεSm(z)

+
c−2
0 ε3

Bε
3
Sm(z)

(1 + c−1
0 εBεSm(z))2

.

Altogether, we finally find the fully explicit deterministic equivalent

V̂iV̂H
i ↔

(
εS`i

1 + εS`i
− εS`i

c−1
0 εB(1 + εS`i)3

− 1

c−1
0 (1 + εS`i)3

− 1

c−1
0 εS`i(1 + εS`i)2

)
V ViVH

i V
H.

Equating the term in parentheses to zero then provides the phase transi-
tion condition: indeed, the asymptotic alignment of population and sample
eigenspaces vanishes right at the position where the spike ρi escapes the limiting
continuous part of the support of the eigenvalues of K. The phase transition for
ρi then occurs when `i satisfies:

0 = `4i +
2

εS
`3i +

1

ε2
S

(
1− c0

εB

)
`2i −

2c0
ε3
S

`i −
c0
ε4
S

≡ F (`i).

This expression of F is convenient as it takes the form of a polynomial of order
4 with unit leading monomial coefficient. It then suffices to remark that the
asymptotic alignment expression above expresses as F (ρi)/`i/(1 + εS`i)

3 to
conclude the proof of Theorem 2.

14


	Reminder of the main setting
	The theorems
	Elements of proof
	Rationale
	Proof of Theorem 1
	Proof of Theorem 2


