Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

Structure of the appendix

We provide additional details and experiments which could
not be included in the main part. In summary,

* Sec. A contains the proofs omitted above and experi-
ments in support of the effect of the exact projection
Ps(u) compared to the approximation A(u) and about
the expected sparsity of the steepest descent direction,

* in Sec. B we analyse our observations about catas-
trophic overfitting in adversarial training wrt [; .

e Sec. C describes the algorithm of our /;-Square Attack,

* in Sec. D we provide the details of models and attacks
used in Sec. 5,

* Sec. E contains experiments with a larger threshold, on
other datasets, an ablation study on the importance of
tuning the parameter of the sparsity k of the updates in
SLIDE.

A. Omitted proofs

In the following we provide the missing proofs from the
main paper. For the convenience of the reader we state the
propositions and lemmas again.

Proposition 2.1 The projection problem (3) onto S =
Bi(z,€) N H can be solved in O(dlog d) with solution

1 Joru; > x;and 0 < N5 <y —1

u; — A5 foru; > xiandu; —1 < A5 <y —x;
z2i =1 x; Sfor AL > |u; — x4 ,

up + A foru; <wziand —up < AN <xp—uy

0 Joru; <x;and 0 < \; < —u;

where N > 0. With ~y € R defined as
i — i)},

it holds \; = 0 zfzgl:l max{0, min{|u; — z;|, 7} < €
and otherwise \} is the solution of

~v; = max{—uz;sign(u; — x;), (1 — x;)sign(u

d
Zmax {0, min{|u; — ;| — A5, vt} =€

i=1

Proof. By introducing the variable w’ = z — x we transform
(3) into

max 2w~} st 'l < e

w/€R? 2

w4 € [0,1]%

Moreover, by introducing w = sign(u — z)w’ we get
1
max — Z(|uz — x| — wy)?

weRd 2 4
i=1

d
s.th. Zwl <ee,
i=1

The two componentwise constraints can be summarized
with

w; >0, sign(u; — z;)w; + z; € [0,1].

i — i)}

as w; € [0,7;]. Note that if 7; = 0 this fixes the variable
w; = 0 and we then remove this variable from the optimiza-
tion problem. Thus wlog we assume in the following that

~; > 0. The corresponding Lagrangian becomes

i := max{—ax; sign(u; — x;), (1 — z;) sign(u

d
L(w, o, B, Ae %Z lui — o) — w;)* + Ae((1,w) — €)
+{a,

—7) = (Bw),

which yields the KKT optimality conditions for the optimal
primal variable w* and dual variables o*, 8*, A}

VoL =w —u;i —zi| + AL +0f = 57 =

Thus 3; > 0 implies w; = 0 and with ; > 0 this yields
a; = 0and thus % = A. — |u; — ;] and we get

z'—Iz'|}-

On the other hand o > 0 implies w} = ~; and 3] = 0 and
thus & = |u; — x;] —v; — A and thus

B; = max{0, \! — Ju

o =max{0, |u; — z;| — v — AL}
Thus we have in total

Yi if\ui—xi|—'yi—/\:>0
lf)\z — |’U,1' 7l‘i| >0

|lu; —x;| — A5 else.

which can be summarized as w} = max{0, min{|u; —z;|—
AL, ~vi}}- Finally, if Z;i:l max{0, min{|u; — z;],7:}} <€
then A} = 0 is optimal, otherwise A} > 0 and we get the
solution from the KKT condition

d
> max{0, min{|u; — z;| — A5, v}t =e (D)

=1

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

Noting that
d(Ae) = max{0, min{|u; — ;| — A, Vi }}

is a piecewise linear and monotonically decreasing function
in)., the solution can be found by sorting the union of
|u; — x;| — ~; and |u; — x;| in non-decreasing order 7
and then starting with A\, = 0 and then going through the
sorted list until ¢(A.) < €. In this case one has identified
the interval which contains the optimal solution A} and
computes the solution with the “active” set of components

{i|0<|ui—mi\—)\e<%},

via Equation (11). The algorithm is provided in Algorithm
2, where the main complexity is the initial sorting step
O(2dlog(2d)) and some steps in O(d) so that the total
complexity is O(2dlog(2d)). Once we transform back to
the original variable of (3) we get with the form of ~ the
solution

2f = x; + sign(u; — x;)w;

1 foru; > x;and 0 < \f <y —1

u; —A; foru; >x;andu; — 1 <A <wuy —a;
=q; for A\X > |u; — x4

u; + A foru; <zjand —u; < A <z —uy

0 foru; <x;and 0 < A < —u;

O

In order to argue about the approximate projection A(u)
we need the same analysis for the [;-projection which can
be derived in an analogous way and the solution for the
projection onto Bj(x, €) in (4) has the form:

w; — A} foru; > x; and A < |u; — a4
21 =\ T; for)\ik > |uz — Z’l‘ y
ul—i-/\’{ for u; < x; and)\,{ < |’U,i—l‘i|

where the optimal A] > 0 is equal to 0 if
Zle max{0, |u; — x;|} < e and otherwise it fulfills

d
z:rnaX{O7 lu; — x| — Aj} =€
i=1

The two prior versions of PGD (Tramer & Boneh, 2019;
Maini et al., 2020) for the /;-threat model use instead of the
exact projection Pg the approximation 4 : R — §

A(u) = (Pu © Pp,(2,¢)) ().

The following proof first shows that A(u) € S. However,
it turns out that the approximation A(u) “hides” parts of
S due to the following property. Note that the condition
is is slightly deviating from the one of Lemma 2.1 due to
a corner case when ||u — x|, = e. Thus we know require
|lu — x||; > € which then implies that || Ps(u) — z||; = €.

Lemma 2.1 It holds for any u € R4,
[Ps(u) — [, = [[A(u) — |, .

In particular, if Pg, (o (u) ¢ H and ||[u — ||, > € and
one of the following conditions holds

¢ [Ps(u) —zfl, =€

o ||Ps(u) — z||; < €and3u; € [0,1] with u; # x;

then
[Ps(u) — x|, > [[A(u) — |, .

Proof. Ttholds A(u) € H but also A(u) € Bi(x,€) as with
R = PBl(w,e) (u)

21 — 2] <,

and it holds with Py (z) = max{0, min{z,1}} and z4 :=
PH(Zl) = A(’LL) that

|21,i—xi| = |21,i—24,i+24,i—xi| = |21,i—24,i|+]2a,i—T4],

which follows asif 21 ; > 1then z1; —24,; =21, —1 >0
and 1 — xz; > 0 whereas if z;; < Othen z1; — 24 =
21, —0<0and 0 — z; <0. Thus we get

lz1 = ailly = 21 = zally +llza —2ll,, (12)

Thus it holds ||za —z||; < |lz1 —z|; < € and we get
A(u) € H N By(x,¢€). and thus it is a feasible point of
the optimization problem in (3) and by the optimality of
Ze = Pp, (,0)nm () it follows

Ize = ully < [[A(u) —ull, -

If |21 — z||; < ethen z; = w and thus with (12) one gets
lza — z||; < € as well. In this case z4 is the optimal
projection if we just had the box constraints. However, as
lza — x||; < eitis also feasible for (3) and thus optimal,
Ze = za. Moreover, if ||u — z||; = € then z; = w and thus
with the same argument we get z, = z4. On the other hand
if |21 — z||; = eand z; € H, then 2 is feasible for (3) and
the minimum over a larger set and thus z, = 21 = z4.

Suppose now that ||lu —z||;, > e and z; ¢ H. Then
lz1 — u||; = € and there exists A} > 0 (optimal solution of
the /1 -projection problem) such that

min{u; — A}, 1}
A=\ Ty
max{u; + A},0}

forui > ZT; and)\x{ < \ui — $Z|
for)\T > |’UJ1 — £ZE1|

for u; < x; and A} < |u; — x4

where we have used that u; — A\] > x; for u; > z; resp.
u; + A < x; for u; < x;. Moreover, as z; ¢ H this implies

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

that ||z4 — z||; < ||z1 — z||; = €. Thenif ||z, —z||; =€
(which implies A} < A7) there is nothing to prove (we
get ||ze —z|; > ||za — ||, and this represents the first
condition in the Lemma for strict inequality) so suppose that
A7 =0 (thatis [|z. — z||; < €) and thus

min{u;, 1} foru; > x; and |u; — ;] >0
Ze = % T; for |u; —x;| <0
max{u;,0} foru; < x;and |u; —x;| >0
Then we get

|(Ze)i _$i| Z |(ZA)1 —xi\ V’L = 1,...,d.

and thus ||z —z||; > ||za —«[|;. In fact, a stronger
property can be derived under an extra condition on u.
As ||z1 —z||; = e it must hold ||ju — z||; > € and thus
u # x. Now suppose that wlog u; > x; and u; € [0, 1]
then (z4); = w; — A} if |u; — x;| > A or (z4); = x; if
|u; — x;] < A%. However, in both cases we get

(ze)i—mi = w;—x; > max{u; —x; — A}, 0} > (24); — x4,

and thus ||ze — z||; > |lza —2|;. fu; < 2; and u; €
[0,1] then

(ze)i — i = u;—x; < min{u; —x; —A],0} < (24);i — 25

and thus ||z, — z||; > ||za — z||;.

O

In Figure 4 we simulate the projections after the steepest de-
scent step (8) (for varying level of sparsity) to get a realistic
picture of the influence of the approximation A(u) versus
the exact projection Pg(u). For sparse updates (less than
50) the approximation behaves quite poorly in comparison
to the exact projection in the sense that the true projection
is located at the boundary of the /;-ball around the target
point 2 whereas A(u) is located far into the interior of the
l1-ball. Note that such sparse updates are used in SLIDE
(Tramer & Boneh, 2019) and using the exact projection im-
proves SLIDE (see Figure 2). Next we derive the form of
the steepest descent step.

Proposition 2.2 Let z; = max{(l —
x;) sign(w;), —x; sign(w;)}, 7w the ordering such that
|wr,| > |wg,| for i > j and k the smallest integer for
which Zle Zx; = € then the solution of (6) is given by

Zn,; - sign(wp,) fori <k,

0p. =14 (e— Zi.:ll Zn,) - sign(wy,) fori=k,. (13)
0 fori>k
Proof. We introduce the new variable «; := sign(w;)d;,

with the convention sign(¢) = 0if ¢ = 0. Then we get the

2Diff. of correct and approximate projection (d = 3024, e = 12)

4 ﬁﬂ
—correct proj. ||Ps(v +6) — x|y

2
ffl -} approximation ||A(v +) — ||,

0 50 100 150
Sparsity [|d]|o of the update §

Figure 4. In order to simulate update steps of PGD, we sample
target points = ~ U([0,1]%) and w € N(0,1) and define v =
Ps(w) and project the point u = v + €d, where 0 is generated
as the descent step in (8) for different sparsity levels k. Then we
plot || Ps(u) — ||, and || A(u) — «||, for varying sparsity & of the
update (for each level k we show average and standard deviation
over 100 samples). It can clearly be seen that the approximate
projection is highly biased towards interior regions of the set S =
Bi(z,€) N[0,1]% in particular for small levels of k whereas the
correct projection stays on the surface of S. Note that SLIDE
uses k = 31 (corresponds to 99% quantile) and thus is negatively
affected by this strong bias as effectively large portions of the
threat model S’ cannot be easily explored by SLIDE.

equivalent optimization problem:

max Z |w;| (14)

aeRi
d

s.th. Zai <e a; >0,
i=1

—x; <sign(w;)oy; <1—a, i=1,...,d.
and thus
0 < @; < max{—a;sign(w;), (1 — x;)sign(w;)}.

Given the positivity of « and the upper bounds the maxi-
mum is attained when ordering |w;| in decreasing order 7
and setting always o, to the upper bound until the budget

Z?Zl a; = e is attained. Thus with k being the smallest
integer in [1, d] such that Zle u; < e we get the solution

Zr; for i <k,
ay =19 (e— Zi:ll Zn;) fori=k, .
0 for i >k
Noting that §; = sign(w;)a; we get
Zr,sign(wy,) for i < k,

* —_—
5t =

(e — Zi:ll Zx,)sign(wy,,) for i =k, .
0 for i > k

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

Next we show the expected sparsity of the steepest descent
step.

Proposition 2.3 Let w € R? with w; # 0 for all i =
,dand x € U([0,1]¢) and let 6* be the solution from

22 Then it holds for any 2 1 >e>0,
d LeJ —1
—k)m
E[07llo]=le+ 1]+ > > (-1 f
(m—1-k)!
m_LsJ+2k 0
S [3¢] + 1.
- 2

Proof. We first note that the components z; defined in
Proposition 2.2 are independent and have distribution z; ~
U(0,1]),i=1,...,dasboth 1 — z; and z; are uniformly
distributed and the x; are independent. As the z; are i.i.d.
the distribution of k is independent of the ordering of w and
thus we can just consider the probability Zle z; > €. Note
that for any € > 0, we have 1 < k < d. Moreover, we note
that

m d
k>m <— Z'Zi<6 and k:d@Zzige,
i=1 =1
and as k is an integer valued random variable we have
k>m < k>m—1.

Thus as k is a non-negative integer valued random variable,
we have

mjl m—1 " d m—1
= P(Zzl<€):ZP<Z’Z’<€)
m=1 =1 m=1 i=1

where in the last step we use that Z:’:ll z; 18 a continuous
random variable and thus we add a set of measure zero. The
sum of uniformly distributed random variables on [0, 1] has
the Irwin-Hall distribution with a cumulative distribution
function (Irwin, 1927; Hall, 1927) given by

Note that the distribution of >~ Yais symmetric around

the mean value mTl and thus the median is also mTl

We note that for m = 1 the first sum is empty and thus
P(Z?Zl 2z < e) = land in general as 0 < z; < 1t
holdsford —1>¢>m — 1:

m—1
P(Z Zi < 6) =1
i=1

)(e—k)ml.

Histogram of sparsity [d*[|o for d = 3024 and € = 12
15000
mE[||]o] = 24.6667

10000
5000 “ “
0 .III |III-

15 20 40
b])usm [|o* H(,

Figure 5. Histogram of the sparsity level ||0%||, of the steepest
descent step from Proposition 2.3 for d = 3024 and € = 12
(histogram computed using 100.000 samples from z € ([0, 1]%)
and w € N(0,1)). The exact expected sparsity can be computed
as E[||07||,] ~ 24.6667.

Thus

d m—1 d m—1
ZP(zi§e>: le+1] Z P Zlge)
m=1 i=1 =|e+1]+1 i=1

m 1

As the median is given by we get for e >

m=1 i=1
d m—1
+ > (D ase)
m=|2e+1]+1 =1
> le+1] —;LQ& +1] > L36J2+ 1

Note that tighter lower bounds could be derived with more
sophisticated technical tools but we decided for the simple
argument as we just want to show that the sparsity is non-
trivially lower bounded. The exact expression is difficult
to evaluate in high dimensions. In Figure 5 we provide an
empirical evaluation of the sparsity of §* for d = 3024 and
e = 12 for 100.000 samples from the uniform distribution
on [0,1] (w is drawn from a standard multivariate Gaus-
sian). The exact expected sparsity is about 24.6667 which
is slightly higher than 2¢. Thus 2¢ is a reasonable guideline
in practice.

B. Adversarial training wrt [,

As mentioned in Sec. 3.4, adversarial training (Madry et al.,
2018) in the 1, N[0, 1]¢-threat model is more delicate than for

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

100%
—— test PGD

train PGD
—— test APGD
—— train APGD

80%

VY
N,]

40% |

Accuracy

20%

0%

0 2000 4000 6000

Iteration

8000 10000 12000

70%

60%

50%

Accuracy
-y
Q
E

30%

20% —— test PGD
train PGD
—— test APGD
10% —— train APGD
0 2000 4000 6000 8000 10000 12000
Iteration

Figure 6. Left: Illustration of catastrophic overfitting in /; adversarial training when using the 10-step PGD-attack SLIDE (Tramer &
Boneh, 2019) with k£ = 0.01 for training. While the model is robust against the 10-step SLIDE attack, it is completely non-robust when
running our stronger /;-APGD attack with 100 iterations. Right: Catastrophic overfitting does not happen when using 10-step /1-APGD
for adversarial training to train AT-APGD, even when one attacks the model with much stronger attacks at test time, see the evaluation in
Table 3. In both plots we report the robust accuracy on training and test set over the 30 epochs of training.

lo or lo. In particular, we observe that using the multi-step
PGD-based attack SLIDE with the standard sparsity of the
updates k£ = 0.01 (here and in the following k indicates the
percentage of non zero elements) leads to catastrophic over-
fitting when training classifiers on CIFAR-10 with € = 12
and 10 steps. Here we mean by catastrophic overfitting
that model is robust against the attack used during training
even at test time but it fails completely against a stronger
attack (APGD in the left part of Figure 6). This is similar
to what has been reported by (Wong et al., 2020) in the
lso-threat model using FGSM (Goodfellow et al., 2014), i.e.
a single step method, in adversarial training might produce
classifiers resistant to FGSM but not to a stronger PGD at-
tack. Moreover, the robustness against PGD drops abruptly
during training, on both training and test sets. In our sce-
nario, as illustrated in Figure 6 by the left plot, a similar
phenomenon happens: when we use SLIDE in adversarial
training the classifier is initially robust against both SLIDE
with 10 steps (blue and yellow curves) and the stronger
11-APGD (green and red) with 100 iterations, but around
iteration 4000 the robustness computed with [;-APGD goes
close to 0%, while the model is still very robust against the
attack used for training (which is a 10-step attack and not
a single step attack). Conversely, when [;-APGD with 10
steps is used for training (right plot) the model stays robust
against both /1-APGD with 100 iterations and SLIDE (and
other attacks as shown in Sec. 5).

We could prevent catastrophic overfitting by decreasing the
sparsity in SLIDE to £ = 0.05, but this yields poor final
robustness (around 50%) compared to what we achieved us-
ing [1-APGD (59.7% against multiple attacks, see Table 2),
since a weaker attack is used at training time. In fact, we
show in Sec. E.1 that values k£ > 0.01 in SLIDE lead to

worse performance in most of the cases. We hypothesize
that [;-APGD, adapting the sparsity of the updates per point,
first prevents the model from seeing only perturbations with
similar sparsity and second is able to effectively maximize
the loss, allowing adversarial training to perform. We note
that even (Tramer & Boneh, 2019) observed that using the
standard fixed value of & leads to overfitting, and proposed
as remedies random sparsity levels and 20 steps. We instead
keep the usual 10 steps, and have a scheme which adaptively
chooses the sparsity rather than randomly.

C. [;-Square Attack

(Andriushchenko et al., 2020) introduce the Square Attack, a
black-box score-based adversarial attacks, based on random
search with square-shaped updates. The key component of
such scheme is using an effective distribution to sample at
each iteration a new candidate update of the current best
point, i.e. achieving the best loss. We adapt the algorithm
proposed for [o-bounded attacks and give in Alg. 3 the
detailed procedure constituting the sampling distribution
of our version of Square Attack for the I; N [0, 1]¢-threat
model. If the new point () + § attains a lower margin
loss (since in this case we aim at minimizing the difference
between the logit of the correct class and the largest of
the others, until a different classification is achieved), then
20D = 2 4 5 otherwise (1) = 2(*), The input w of
Alg. 3 controls the size of the update and is progressively
reduced according to a piecewise constant schedule, in turn
regulated by the only free parameter of the method p.

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

Algorithm 2 Projection onto B (z,¢) N[0, 1]¢
1: Input: point to be projected u, x and radius €
2: Output: projection z onto By (x,¢) N [0, 1]¢

3: v; = max{—uz; sign(u; — x;), (1 — ;) sign(u; — x;)},
A=0
z; = min{|u; — x|, vi }
S = Z?:l Zi

if § > € then
sort t; = {|u; — x|, |u; — x;] — ;} in decreasing
order m and memorize if it is |u; — x;| (category 0)
or |u; — x;| — 7 (category 1)

8: M=|{i\zi:\ui—azi|and |ul—x1\>0}|

9: A=0

10. for j =1 to2ddo

AN AN

11:)\old = maX{O,)\}

12: A=t

13: SZS—M(/\—)\OM)

14: if category(m;) = 0 then
15: M=M+1

16: else

17: M=M-1

18: end if

19: if S < e then

20: if category(m;) = 0 then
21: M=M-1

22: else

23: M=M-+1

24: end if

25: S:S+M()\f)\01d)
26: A= Ao + (S - E)/M
27: BREAK

28: end if

29: end for

30: end if

31: z; = max{0, min{|u; — x;| — A,y }}, i=1,...,d
32: Ps(u); = x; + sign(u; — ;) - 253

D. Experimental details

We here report details about the experimental setup used in
Sec. 5.

D.1. Models

Almost all the models we used are publicly available: the
classifiers from (Engstrom et al., 2019; Carmon et al., 2019;
Rice et al., 2020; Augustin et al., 2020) are provided in the
library RobustBench (Croce et al., 2020). Those of (Maini
et al., 2020; Xu & Yang, 2020) can be found in the official
pagesz’3. Moreover, (Madaan et al., 2021; Xiao et al., 2020)

https://github.com/locuslab/robust_union
*https://github.com/MTandHJ/amoc

Algorithm 3 Sampling distribution in Square Attack for
1N [07 l}d
1: Input: target point = of shape h x h X ¢, radius ¢,
current iterate (9, size of the windows w
Output: new update §
vz —g
sample uniformly 71, 1,72, s2 € {0,...,w — h}
Wii=ri+1:ri+hs1+1:s1+h Wy i=rg+1:
T2+h,82+1252+h
€unused < € — ||l/||1a
7: 0* = n/|ln|l, with n as in Eq. (2) of (Andriushchenko
et al., 2020)
8: fori=1tocdo
9: p<« Uniform({-1,1})
10: Uemp ot + ”lei/Huwl,z‘ .
s € < [lwnuws |y 4 /e ‘
122 v, <=0, vy < (Yow/lvemlly) €bvail
13: end for
14: z + Pg(x + 3v)
15: § « 2z — 2@

a

Table 5. Architecture of the models used in the experimental eval-
uation on CIFAR-10.

model

APGD-AT (ours)
(Madaan et al., 2021)
(Maini et al., 2020) - AVG
(Maini et al., 2020) - MSD
(Augustin et al., 2020)
(Engstrom et al., 2019) - [>
(Rice et al., 2020)

(Xiao et al., 2020)

architecture

PreAct ResNet-18
WideResNet-28-10
PreAct ResNet-18
PreAct ResNet-18
ResNet-50
ResNet-50

PreAct ResNet-18
DenseNet-121

(Kim et al., 2020)" ResNet-18
(Carmon et al., 2019) WideResNet-28-10
(Xu & Yang, 2020) ResNet-18
(Engstrom et al., 2019) - [ResNet-50

made models available via OpenReview*>. Upon request,
(Kim et al., 2020) could not give access to the original
models out of privacy reasons. Therefore we trained new
classifiers using the official code® following the suggested
parameters. For the models denoted in (Kim et al., 2020) by
“RoCL” and “RoCL+rLE” we could reproduce both clean
and robust accuracy wrt [, with the original evaluation
code, while for “RoCL+AT+SS” we could match the robust
accuracy but not the clean one (here robust accuracy is the
one computed using their code). However, we used this last
one in our experiments since it is the most robust one wrt [;.

For APGD-AT we trained a PreAct ResNet-18 (He et al.,

*https://openreview.net/forum?id=
tv8n52Xb04p

‘https://github.com/iclrsubmission/kwta

*https://github.com/Kim-Minseon/RoCL

https://github.com/locuslab/robust_union
https://github.com/MTandHJ/amoc
https://openreview.net/forum?id=tv8n52XbO4p
https://openreview.net/forum?id=tv8n52XbO4p
https://github.com/iclrsubmission/kwta
https://github.com/Kim-Minseon/RoCL

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

2016) with softplus activation function, using cyclic learn-
ing rate with maximal value 0.1 for 100 epochs, random
cropping and horizontal flipping as training set augmenta-
tions. We set 10 steps of APGD for maximizing the robust
loss in the standard adversarial training setup (Madry et al.,
2018).

Table 5 reports the architecture of every model. As men-
tioned in Sec. 5, we chose such models to have different
architectures, training schemes and even training data, as
(Carmon et al., 2019; Augustin et al., 2020) use unlabeled
data in their methods.

D.2. Attacks

In the following we report the details of the presented at-
tacks. We use ALMA from Adversarial Library (Rony &
Ben Ayed, 2020), with the default parameters for the I;-
threat models, in particular « = 0.5 with 100 iterations,
a = 0.9 with 1000. EAD, B&B and Pointwise Attack (PA)
are available in FoolBox (Rauber et al., 2017): for EAD we
use the [; decision rule and regularization § = 0.01, for
B&B we keep the default setup, while PA does not have tun-
able parameters. We reimplemented SLIDE following the
original code, according to which we set sparsity of the up-
dates k = 0.01 for CIFAR-10 and step size n = 3.06, which
is obtained rescaling the one used in (Tramer & Boneh,
2019) n = 2 for e = 2000/255 (see below for a study of
the effect of different values of k). Also, since no code
is available for ZO-ADMM for [/;, we adapted the l5 ver-
sion following (Zhao et al., 2019) and then optimized its
parameters, using p = 2, v = 0.1. Finally, we use FABT as
available in AutoAttack.

For [,-APGD we fix the values of all parameters to those
mentioned in Sec. 3.1 and Sec. 3.2. Moreover, we set p =
0.8 in [1-Square Attack as done in AutoAttack for /5 and [.
Thus even /1 -AutoAttack can be used without any parameter
tuning.

Attacks runtime: Direct comparison of runtime is not nec-
essarily representative of the computational cost of each
method since it depends on many factors including imple-
mentation and tested classifier. We gave similar budget to
(almost all) attacks: for the low budget comparison (see
Table 1) we use 100 iterations, which are equivalent to 100
forward and 100 backward passes for ALMA, SLIDE and
1;-APGD, 110 forward and 100 backward passes for B&B
(because of the initial binary search), 150 forward and 100
backward passes for FABT. EAD has instead a 9 times larger
budget since we keep the default 9 binary search steps. As
an example, when run using a classifier on CIFAR-10 with
PreAct ResNet-18 as architecture, 1000 test points, ALMA
and SLIDE take around 25 s, I;-APGD 27 s, FABT 32 s,
EAD 105 s, B&B 149 s.

E. Additional experiments
E.1. Effect of sparsity in SLIDE

Since the sparsity k of the updates is a key parameter in
SLIDE, the PGD-based attack for [; proposed in (Tramer &
Boneh, 2019), we study the effect of varying k on its perfor-
mance. In Table 6 we report the robust accuracy achieved by
SLIDE with 5 values of & € {0.001,0.003,0.01,0.03,0.1}
on the CIFAR-10 models used for the experiments in Sec. 5,
with a single run of 100 iterations. As a reference, we also
show the results of our /;-APGD with the same budget (grey
column). We observe that while the default value k£ = 0.01
performs best in most of the cases, for 3/12 models the low-
est robust accuracy is obtained by k£ = 0.03, for 1/12 by
k = 0.001. This means that SLIDE would require to tune
the value of & for each classifier to optimize its performance.
Moreover, [;-APGD, which conversely automatically adapts
the sparsity of the updates, outperforms the best out of the
5 versions of SLIDE in 11 out of 12 cases, with the only
exception of the model from (Xiao et al., 2020) which is
know to present heavy gradient obfuscation and on which
the black-box Square Attack achieves the best result (see
Sec. 5).

E.2. Larger threshold ¢

We here test that the performance of our attacks at the larger
threshold e = 16. In Table 7 we run all the methods, with
the lower budget, on the four most robust models: one
can observe that even with a larger threshold our /;-APGD
outperforms the competitors on all models.

E.3. Other datasets

We test the effectiveness of our proposed attacks on CIFAR-
100 and ImageNet-1k, with e = 12 and € = 60 respectively,
in the same setup of Sec. 5. For CIFAR-100 we use the
models (PreAct ResNet-18) from (Rice et al., 2020), for
ImageNet those (ResNet-50) of (Engstrom et al., 2019): in
both cases one classifier is trained for [..-robustness, the
other one for I, all are publicly available’-®. On ImageNet,
because of the different input dimension, we use k£ = 0.001
for SLIDE (after tuning it), and we do not run Pointwise
Attack since it does not scale. For B&B we use random
images not classified in the target class from the respective
test or validation sets as starting points. We observe that
on ImageNet, the gap in runtime between B&B and the
faster attacks increases significantly: for example, to run
100 steps for 1000 test points B&B takes 3612 s, that is
around 14 times more than [{-APGD (254 s). Thus B&B

"https://github.com/locuslab/robust_
overfitting

$https://github.com/MadryLab/robustness/
tree/master/robustness

https://github.com/locuslab/robust_overfitting
https://github.com/locuslab/robust_overfitting
https://github.com/MadryLab/robustness/tree/master/robustness
https://github.com/MadryLab/robustness/tree/master/robustness

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

Table 6. Effect of the sparsity k of the updates in SLIDE (Tramer & Boneh, 2019), whose default value is £ = 0.01.

model | k=0.001 k=0003 k=001 k=003 k=01 | APGDcg
APGD-AT (ours) 74.5 70.1 66.6 64.4 65.7 61.3
(Madaan et al., 2021) 61.9 58.2 56.1 57.0 66.2 54.7
(Maini et al., 2020) - AVG 71.7 64.4 53.8 51.8 64.7 50.4
(Maini et al., 2020) - MSD 63.6 58.5 53.2 51.7 62.2 49.7
(Augustin et al., 2020) 60.9 53.0 48.8 59.3 74.1 37.1
(Engstrom et al., 2019) - I 49.6 40.0 35.1 474 67.4 30.2
(Xiao et al., 2020) 28.2 30.1 33.3 36.1 45.4 41.4
(Rice et al., 2020) 47.0 37.6 323 452 65.2 27.1
(Kim et al., 2020)" 38.4 30.6 25.1 34.9 58.3 18.9
(Carmon et al., 2019) 414 29.9 19.7 242 64.4 13.1
(Xu & Yang, 2020) 35.3 24.9 18.2 21.1 58.2 10.9
(Engstrom et al., 2019) - I 34.0 23.6 14.2 17.0 59.4 8.0

Table 7. Low Budget (¢ = 16): Robust accuracy achieved by the SOTA [;-adversarial attacks on models for CIFAR-10 at ¢ = 16.

model | clean | EAD ALMA SLIDE B&B FAB" APGDcg| PA Square
APGD-AT (ours) 87.1 552 553 591 527 597 506 | 785 66.4
(Madaan et al., 2021) 820 | 462 500 477 460 482 456 | 704 585
(Maini et al., 2020) - MSD 82.1 439 462 449 432 485 409 | 698 579
(Maini et al., 2020) - AVG 846 | 437 449 459 430 553 389 | 751 62.9

Table 8. Low Budget: Robust accuracy achieved by the SOTA [; -adversarial attacks on various models for CIFAR-100 and ImageNet in
the [, -threat model with radius indicated. The statistics are computed on 1000 points of the test set. PA and Square are black-box attacks.
The budget is 100 iterations for white-box attacks (x9 for EAD and +10 for B&B) and 5000 queries for our /;-Square-Attack.

model | clean | EAD ALMA SLIDE B&B FAB" APGDce| PA Square

CIFAR-100 (e = 12)

(Rice et al., 2020) - 2 58.7 19.5 244 17.7 19.3 19.6 14.6 37.0 23.8
(Rice et al., 2020) - I 54.5 8.6 9.9 6.0 6.5 13.0 4.5 23.0 10.6

ImageNet (¢ = 60)
(Engstrom et al., 2019) - 2 ‘ 56.6 ‘ 45.6 50.8 447 44 .4 44.8 43.6 ‘ - 50.2

(Engstrom et al., 2019) - [61.9 11.7 26.6 11.5 9.5 34.6 6.3 - 23.9

Table 9. High Budget: Robust accuracy achieved by the SOTA [; -adversarial attacks on various models for CIFAR-100 and ImageNet
in the [; -threat model with /;-radius indicated. The statistics are computed on 1000 points of the test set. “WC” denotes the pointwise
worst-case over all restarts/runs of EAD, ALMA, SLIDE, B&B and, if available, Pointwise Attack. Note that APGDcg.r, the combination
of APGDcg and APGDrprr (5 restarts each), yields a similar performance as AA (ensemble of APGDcg:r, I1-FABT and I;-Square
Attack) with the same or smaller budget than the other individual attacks.

model | clean | EAD ALMA SLIDE B&B APGDces WC AA

CIFAR-100 (e = 12)

(Rice et al., 2020) - 2 58.7 18.4 17.1 15.5 13.1 12.1 12.7 12.1
(Rice et al., 2020) - [54.5 8.1 5.5 4.5 3.0 34 29 3.1
ImageNet (¢ = 60)

(Engstrom et al., 2019) - I2 56.6 441 45.6 44.2 40.3 40.5 40.3 40.5
(Engstrom et al., 2019) - I 61.9 9.6 17.1 8.5 6.2 4.6 5.8 4.4

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

scales much worse to high-resolution datasets. Also, while
B&B and [;-APGD have in principle a similar budget in
terms of forward/backward passes, one could do much more
restarts for [{-APGD in the same time as for B&B.

We report in Table 8 and Table 9 the robust accuracy given
by every attack on 1000 points of test set of CIFAR-100
or validation set of ImageNet. Similarly to CIFAR-10, our
{1-APGD achieves the best results for all models in the
low budget regime (see Table 8) with a significant gap to
the second best, either B&B or SLIDE. Moreover, when
using higher computational budget, /1-AutoAttack gives the
lowest robust accuracy in 2/4 cases, improving up 1.4% over
WC, the pointwise worst case over all attacks not included in
AA, while in the other cases it is only 0.2% worse than WC,
showing that it gives a good estimation of the robustness of
the models.

E.4. Composition of /;-AutoAttack

We report in Table 10 the individual performance of the
4 methods constituting /;-AutoAttack, recalling that each
version of [1-APGD, with either cross-entropy or targeted
DLR loss, is used with 5 runs of 100 iterations, FABT ex-
ploits 9 restarts of 100 iterations and /;-Square Attack has a
budget of 5000 queries. Note that the robust accuracy given
by l1-AutoAttack is in all cases lower than that of the best
individual attack, which varies across models.

Mind the Box: [;-APGD for Sparse Adversarial Attacks on Image Classifiers

Table 10. Individual performance of the components of /;-AutoAttack.

model ‘ clean ‘ APGDcg APGDt.pir FABT Square ‘ AA
CIFAR-10 (e = 12)

APGD-AT (ours) 87.1 60.8 60.8 65.9 71.8 60.3
(Madaan et al., 2021) 82.0 54.2 52.0 54.7 62.8 51.9
(Maini et al., 2020) - AVG 84.6 48.9 475 59.5 68.4 46.8
(Maini et al., 2020) - MSD 82.1 48.6 474 53.5 63.5 46.5
(Augustin et al., 2020) 91.1 347 34.5 424 56.8 31.0
(Engstrom et al., 2019) - l» 91.5 27.9 29.3 32.9 52.7 26.9
(Rice et al., 2020) 89.1 25.5 26.3 30.3 50.3 24.0
(Xiao et al., 2020) 79.4 32.2 334 78.6 20.2 16.9
(Kim et al., 2020)" 81.9 17.0 16.9 22.2 36.0 15.1
(Carmon et al., 2019) 90.3 9.9 9.9 21.5 34.5 8.3
(Xu & Yang, 2020) 83.8 9.6 9.3 17.7 32.0 7.6
(Engstrom et al., 2019) - [88.7 6.1 6.7 13.0 28.0 4.9
CIFAR-100 (e = 12)

(Rice et al., 2020) - 2 58.7 13.4 13.8 16.4 23.8 12.1
(Rice et al., 2020) - [54.5 3.8 4.2 7.7 10.6 3.1
ImageNet (¢ = 60)

(Engstrom et al., 2019) - l» 56.6 42.8 40.8 43.1 50.2 40.5
(Engstrom et al., 2019) - [61.9 5.7 5.5 18.9 239 4.4

