Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

A. Missing Proofs from Section 4
A.1. Proof of Lemma 1

Proof. The proof is constructive and is inspired by (Calinescu et al., 2011; Han et al., 2020). For clarity, we provide a
procedure to construct o;(-), as shown by Algorithm 3. Suppose that the elements in S; are {z1, - - , z4} (listed according
to the order that they are added into .S;). Algorithm 3 finds a series of sets Jo C J; C --- C J, = @; such that all the
elements in M; = J; \ J;—1 is mapped to z; by o;(-) forany ¢t € {1,2,--- , ¢}. From Algorithm 3, it can be easily seen that
o0;(+) satisfies the conditions required by the lemma. The only problem left is to prove that all the elements in @); is mapped
by o;(-), i.e., to prove Jy = (). Indeed, we can prove a stronger result V¢ € {0,1,--- ,q} : |J| < kt by induction:

* When ¢ = ¢, we will prove |J,| < kg by showing that .S; is a base of ; U S;. It is obvious that each element u € O;
satisfies S; U {u} ¢ 7 according to the definition of O, . Moreover, for any element u € Ujc(g)\ (i} (O;f U 5;7), we
must have S; U {u} ¢ Z, because otherwise we have S;~(u) U {u} € Z due to S;~(u) C S; and the down-closed
property of independence systems, contradicting the definition of O;‘-* and 6;* These reasoning implies that .S; is a
base of Q; U S;. Note that ; C O. So we can get |J,| = |Q;| < k|S;| = kq according to the definition of k-systems.

* Suppose that |J;| < kt holds, we will prove |J;_1| < k(t — 1). If the set C; determined in Line 3 of Algorithm 3
has a cardinality larger than k, then we have |M;| = k according to Algorithm 3 and hence |J;_1| = |J;| — k <
k(t —1). If |C¢| < k, then {z1,---,2¢—1} must be a base of {z1,---,2,-1} U Ji—1, because there does not
existu € Jy_1 \ {21, -, 21} such that {21, -+, 21} U{u} € T according to Algorithm 3. So we also have
|Jt—1| < k(t — 1) according to J;—; € Z and the definition of k-systems.

From the above reasoning we know Jo =). So the lemma follows. O

Algorithm 3 CONSTRUCTING THE MAPPING o (")

Initialize: Denote the elements in S; as {z1,- - , z,}, where elements are listed according to the order that they are
added into S;; J, <+ @
1: fort = qto0do

2: Ct «— {6 € Jt\{Z1, s 7Zt—1} : {Zl, et 21, 6} € I}
3: if |Cy| < k then
4: Mt — Ct
5: endif
6: if |Cy| > k then
7: if zZr € Ct then
8: Find a subset M; C C, satisfying |M;| = k and z; € M,
9: else
10: Find a subset M; C C; satisfying | M| = k
11: end if
12: endif
13: Letoy(z) =z forall z € My; Ji—1 + Jp \ M,
14: end for
A.2. Proof of Lemma 2

Proof. We first prove Eqn. (3). According to the definitions of O;Jr and 6;*, any element u € Of U 5;+ can also be
added into S; without violating the feasibility of Z when w is inserted into .S;. Therefore, according to the greedy rule of
RANDOMMULTIGREEDY and the submodularity of f(-), we must have

Yue O U0 : f(ul S:) < flu| S7(w) < fu] S5 (u)) = 5(u) (11

Now we prove Eqn. (4). Recall that Q); = Ujem\{i}(Of U 5;*) U (0ONS;)UO; . According to Lemma 1, any element
u € O;-* u 6;* (j # i) can be added into S;=(7;(u)) without violating the feasibility of Z. Moreover, v must have not been

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

considered by the algorithm at the moment that 7;(u) is added into S;, because otherwise we have S;~(u) C S;~(m;(u))
and hence S;~(u) U {u} € T due to the definition of independence systems, which contradicts the definitions of O}~ and

5;* Therefore, according to the greedy rule of RANDOMMULTIGREEDY and submodularity, we can get
Yue O 0T« flu] Si) < flul| SF(w) < flu| S7(mi(w) < flmi(w) | S5 (ma(u))) = 8(mi(u)) (12)

By similar reasoning, we can also prove Vu € O; : f(u | S;) < f(u | S~ (mi(w))) < 6(m;(u)). Finally, f(u | S;) <
§(m;(u)) trivially holds for all w € O N S; as m;(u) = u due to Lemma 1. So the lemma follows. O

A.3. Proof of Lemma 3

As the proof of Lemma 3 is a bit involved, we first introduce Lemma 9, and then use Lemma 9 to prove Lemma 3.

Lemma 9. We have

Z(> (T X dm)+ ¥ 6<m<u>>> < Uk + 0= 2) (") (13)

i€l \jell\{i} “ueolt u€0i U0}~ ue0;
Proof. Forany i € [¢], let A\(i) = (¢ mod ¢) + 1. So we have

2. dw=, > dws) D W=, > d) (a4)

i€[l] ueOQ) J€l] ueojfl(-’“’ JEK] ueEONS; i€l ueONS;

where the inequality is due to O;‘il(jH COnNnSjandVu € S; : §(u) > 0. So we can get

DDLU MDD WL R

i€ll] jelE\{i} ueoi+ i€ll] N JEUNAGD)} ueoit weot,
< > > dYoosw+> Y dw) (15)
iele] je[\{i,\(i)} uEONS; i€[) ueons;
< LU=2F(S)+ D D d(w) (16)
i€[) ueONS;

where we leverage Eqn. (14) to derive Eqn. (15), and Eqn. (16) is due to Zueorwsj d(u) < Zues,- d(u) < f(S;5) < f(S*).
Moreover, we can get

Z(> (PORIOEIEDY 6<m<u>>) + 3 6<m<u>>)

i€l \jell\{i} “ueolt ue0i~ U0~ u€0;
= Z Z Z 6(u)+z< Z Z O(mi(u)) + Z 5(7n(u)))
i€lt] jelO\{i} ueot+ i€ll] N JEl\i} ueoi-uo:- weo;
< w2+ X (X dwr ¥ Y dm)+ X dmw)
i€ll] S ueons; J€l\i} ueoi~ubi™ u€0;
= LL=2)f(S)+ D> > d(mi(u)
i€[l) uEQ;
< LU= f(S)+EY Y (u) (18)
i€[0] u€S;
< LL=2)f(ST)+E Y f(S) S Lk +L—2)f(S7) (19)

1€[¢]

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

where Q; = Uje[o\ (i }(O U O YU (ONS;)UO; is defined in Lemma 1; Eqn. (17) is due to Eqn. (16); and Eqn. (18)
is due to Lemma 1. So the lemma follows. O]

Now we provide the proof of Lemma 3:

Proof. Let Gi = [Uicio (43 (O o UOl_ 6;4' U@;_)] UO; U[OND;] foralli € [¢]. Itis not hard to see that G; C O\ S;
andVu € O\ (S;UG;) : f(u]S;) < 0. Therefore, we can get

Z (rlous) - 1(s))

IA

D

i€[4)

(fwlSy+ > uS) SofwlS)+ > fu|S>(20)

Jel\i} “ueoituoit u€0t" U0~ u€0; weoNnD;

7N

Sosw+ Y 5(m(u)))+ > d(miw)+ > 5(u)> @1)

IN
(]
/\/\/\

€[] JG[f] {1} ueO”uOl+ uwe0: U0 uweO; weOND;
= (Z (m(U))) +) 5(7T¢(U))>
i [f] JElN{i} ueol+ uwe0: U0 u€0;
+Z< oY dw+ Y 5(u)>
i€le] N jelO\{i} ucoit ueoND;
< Uk+0—2)f(S") +Z< P BRI ESY 6(u)> (22)
icll] Njel\i} uedlt ueOND;

where Eqn. (20) is due to submodularity of f(-); Eqn. (21) is due to Lemma 2 and submodularity; and Eqn. (22) is due to
Lemma 9. Moreover, we can get

Z(DD BIOEESY 6(u))§2< YooY dw+ Y 6(u)) (23)

i€[l] Njele\{i} ueéH u€OND; i€fl] Njel\{i} veOND; weOND;
= >3 > sw=10) Xy 6(u) 24)
i€[f] je[£) ueOND; ueN

where Eqn. (23) is due to 5;+ CONDjandVu € D; : §(u) > 0. Combining Eqn. (22) and Eqn. (24) finishes the proof
of Lemma 3. O

A.4. Proof of Lemma 4

We first quote the following lemma presented in (Buchbinder et al., 2014):

Lemma 10. (Buchbinder et al., 2014) Given a ground set N and any non-negative submodular function g(-) defined on oN,
we have E[g(Y)] > (1 — p)g(0) if Y is a random subset of N such that each element in N appears in'Y with probability of
at most p (not necessarily independently).

With the above lemma, Lemma 4 can be proved as follows:

Proof. We first prove Eqn. (6). Note that Sq,.55,-- - , Sy are disjoint sets. Using submodularity, we have
¢ ¢
D f(SiU0) = f(O)+ f(S1US,U0) + > f(SiUu0)
i=1 i=3
4
> 2f(0)+ f(S1USUSsU0) + > f(SiU0) >+ > (L —=1)f(0) + f(UI, 5 UO) (25)

i=4

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Let g : 2V = R be a non-negative submodular function defined as: VS C N : g(S) = f(S U O). As each element in N/
appears in UY_, S; with probability of no more than p, We can use Lemma 10 to get

E[f(Ui—15: U O)] = Elg(Ui, 5:)] = (1 - p)g(0) = (1~ p)£(O) (26)

Combining Eqn. (25) and Eqn. (26) finishes the proof of Eqn. (6).

Next, we prove Eqn. (7). Forany u € N, letY, = lifu € U{_,S; and Y,, = 0 otherwise; let £, be an arbitrary event
denoting all the random choices of RANDOMMULTIGREEDY up until the time that u is considered to be added into a
candidate solution, or denoting all the randomness of RANDOMMULTIGREEDY if u is never considered. Note that we have
Y wen Yu-o(u) < Zle f(S;). Therefore, by the law of total probability, we only need to prove

VueN - %E[Yu S(u) | €] = E[X, - 6(u) | &4 27

for any event &, defined above. Note that we have X,, = 0 and hence Eqn. (27) clearly holds if u© ¢ O or u is never
considered by the algorithm. Otherwise we have E[Y,, - §(u) | £,] = p - 6(u) and E[X,, - §(u) | €] = (1 — p) - §(u) due
to the reason that u is accepted with probability of p and discarded with probability of 1 — p. Combining all these results
completes the proof of Eqn. (7). O

A.5. Proof of Theorem 2

For clarity, we first provide the detailed design of the accelerated version of RANDOMMULTIGREEDY, as shown by
Algorithm 5. In the ¢-th iteration, Algorithm 5 calls a procedure CHOOSE to greedily find an candidate element v; for .S;
satisfying f(v; | S;) > 0and S; U {v;} € T for each i € [¢]. The CHOOSE procedure also returns an index i, same to that
in Algorithm 1. After that, Algorithm 5 runs similarly as Algorithm 1, i.e., it inserts v;, into .S;, with probability p, and
then enters the (¢ + 1)-th iteration. Note that the elements vy, - - - , vy and v;, found in the ¢-th iteration are also used to
call CHOOSE in the (¢ + 1)-th iteration, so that CHOOSE need not to identify a new v; for all ¢ € [{] : v; # v;, (as S; does
not change for these ¢’s) and hence time efficiency can be improved. Finally, Algorithm 5 returns the optimal set among
S1,--+,S¢and Sy, where Sy is the singleton set with the maximum utility.

Next, we provide a brief description on the CHOOSE procedure. As explained in Sec. 4.1, CHOOSE maintains ¢ sets
Ay, A, -+, Ay such that v; can be selected from A;. At the first time that CHOOSE is called, CHOOSE assigns each element
u € A; aweight w;(u) = f(u | 0) and an integer 7;(u) indicating how many times w;(u) has been updated (Lines 3-7).
Afterwards, CHOOSE runs as that described in Sec. 4.1 and finds v; for each i € [¢]. Finally, CHOOSE identifies v;+ from
{v; : i € [£]} which has the maximum marginal gain, and it also removes v;+ from all A; : i € [{] because v;+ will used as
v;, by Algorithm 5.

Note that Algorithm 5 differs from Algorithm 1 in two points: (1) the element u; found in the ¢-th iteration is only an

(1}re)-approximate solution; (2) there are elements removed from A; due to “too many updates”. Based on this observation,

we can slightly modify the proofs for Algorithm 1 to prove Theorem 2, as presented below:

Proof. Let L; denote the set of all elements removed from A; due to Line 25 of Algorithm 4. We can slightly modify
Definition 5 to re-define the sets O;*, o5, O;+, 05,0, as follows:

O ={ue0ons;:ST(u)ufu} €T} \ L;;

O;-_ = {ueOﬂSj:Sf(u)U{u} ¢I}\Li;

O ={ue0onD;: S5 (u)U{ut €T} \ Ly

O ={ueO0nD;: 87 (u)U{u} ¢I}\ L

O ={ueO\NU:S;U{u} ¢ZA f(ul]S;)>0}\Ly;
With this new definition, it can be easily verified that each element u in O§+ U O;_ U 6j+ U 6;_ is still a candidate

considered for S; in the CHOOSE procedure when the algorithm tries to insert u into S;. Therefore, according to the greedy
rule of RANDOMMULTIGREEDY and the (1 + €)~*-approximation ratio of CHOOSE, we can use similar reasoning as that

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Algorithm 4 CHOOSE(S1, Sa, -+, Sp,v1,- -+ , v, 0*)

1: if Uf_,S; = 0 then

20 LetA; <« {ueN:{u} €ZAf(ul|l)>0}forallie [¢];
3: forallie€ [¢]do
4: Let w;(u) < f(u|0)and 7;(u) < Oforall u € A;;
5: Store A; as a priority list according to the non-increasing order of w;(u) : u € A; forall i € [¢];
6: Let v; < arg maxy,eca, w;(u);
7: end for
8: else
9 C [0\ €[l (v; #v) V(v = NULL)}
10: forall: € C' do
11: Let v; <~ NULL and remove all elements in A; with non-positive weights;
12: while A; # 0 do
13: pop out the top element u from A;;
14: if f(u | S;) has been computed then
15: v; < u; exit while;
16: end if
17: if S; U{u} ¢ T then
18: continue;
19: end if
20: old + w;(u); 7 (u) < 7(u) + 1;
21: Compute f(u | S;) and let w;(u) < f(u | S:);
22: if w;(u) > 2% then
23: v; < u; exit while;
24: else
25: if 7;(u) < [logy, . £ then
26: re-insert v into A; and resort the elements in A;;
27: end if
28 end if
29 end while
30: end for
31: end if

32: Letd* < arg maX;es.o,2NULL f (v | Si) and remove v;- from A; for all 7 € [/]
33: Output: vy, ve, -+ , vy, t*

for Lemma 2 to prove
Yu € OH'UOH' flwl] S) < (1+¢e)d(u);
Yu € Uje[é]\{i}(Oj U O; YUuONSHUO; = f(u|S:) < (14 €)d(m(u));
With the above results, we can use similar reasoning as that in Lemma 3 to prove:
1
—— > FO]S) S Uk+L=2f(S)+ Xu-dw)+ > > flul]S)

1
Te i€[l) ueN i€l ueL;NO

Moreover, we have

S osls)E D flul)+ e E < ST S) < ef(sh)/e

ueL;NO ueL;NO weL;NO

(28)
(29)

(30)

€2y

where the first inequality is due the reason that the weight of each element u € L, have been updated in CHOOSE procedure
for more than [log; | %’] times and it diminishes by a factor of 1%_6 for each update. Combining Eqn. (30), Eqn. (31) and

Lemma 4, we can prove

Lk+=—-1 e — 2
f(0)<{(1+6) (Z_,,p) glzp

[t

(32)

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Algorithm 5 RANDOMMULTIGREEDY (¢, p) /*with acceleration*/

Initialize: Vi € [(] : S; < (;v; < NULL; ¢« 1;ug < NULL;
1: repeat

2 (v1,v2,+ ,Up,4t) < CHOOSE(S1, -+, Se, U1, , Vg, Up—1)

3: if3j € [{] : v; # NULL then

4 Up < Vi, 5

5 With probability p do S;, <+ S;, U {u:}

6: t—t+1

7

8

9

0

1

end if
: until (Vi € [¢] : v; = NULL)
 u < argmaxyenn ez f0); So — {u')
0 8% < argmaxges,,s,,9s, .53 f(S); T+t —1
: Output: S*, T

Therefore, the approximation ratio of the accelerated RANDOMMULTIGREEDY algorithm is at most (1 + €)(1 4 v/k)?
when (= 2,p = - 2\F (for a randomized algorithm), or at most (1 + €)(k 4+ vk + [vV/k] + 1) when £ = [Vk] —|— l,p=1

(for a deterministic algorithm). Finally, it can be seen that the CHOOSE procedure incurs at most O(log; ;. - &y value
and independence oracle queries for each element in each A; : i € [¢]. So the total time complexity of the accelerated
RANDOMMULTIGREEDY algorithm is at most O(¢nlog; , %’) = O(“ log &), which completes the proof. O

B. Missing Proofs from Section 5
B.1. Proof of Lemma 5

Proof. Given any element set Y C N and any realization ¢, let g(Y, ¢) := f(Y UN (mopt, @), ¢). It is easy to verify that
the non-negative function g(-, ¢) is submodular. Thus, given a fixed realization ¢, by Lemma 10, we know that

ErilgN (a4, ¢),9)] = (1 —p)g(0,¢) (33)

Therefore, we have
fovg(Topt @) = B [Er, [9(N (74, ®),)] = Ea[(1 — p)g(D, ®)] = (1 = p) fave (Topt), 34
which completes the proof. O

B.2. Proof of Lemma 6

Proof. We first give an equivalent expression of the expected utility by a function of conditional expected marginal gains.
Given a deterministic policy 7 and a realization ¢, for each u € N, let Y,,(¢) be a boolean random variable such that
Yu(¢) =1lifu € N(m,¢) and Y,,(¢) = 0 otherwise. Further, denote by 17 (¢) the partial realization observed by 7 right
before considering u under realization ¢, and denote by W7 a random partial realization right before considering v by . We
also use Y,, (10T (¢)) to represent Y;,(¢), since the partial realization 47 (¢) suffices to determine whether u is added to the
solution under realization ¢. Thus,

ECD [f(N(W» (I))v (I))]
= Eo| Y (Ya(®)- (f(dom(u(®)) U{u}, @) — f(dom(v](2)), ®)))]

ueN

— Y Ey; [Eq) [Yu (f(dom (W) U {u}, ®) — f(dom(¥T),®)) | & ~ qﬂf”
ueN
_ %EQ[Y Alu| 0T } %Eé[mw[W) A | UT) | @ ~ \I/”

= D Ea[Yu(®)- A |v(@)] =Es| Y Aw]vf(@)]. (5)

ueN weN (m,®)

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Denote by (7 4, ¢) the observed partial realization at the end of 7 4 under realization ¢. Then, similar to the above analysis,
we have

favg(ﬂ—.A@Tropt) = E@,WA@WON [f(N(,/T.A@ﬂ—opta (I))v (I))]
= Erjor | D Al (@) + > Al | ¥(ma, @) Uz (@))]

UWEN (7 4,P) UEN (Topt , P)\N (7.4,®P)

= favg(TrA) + EﬂA@‘n'opt |: Z A(U ‘ ’(/)(77.»4) q)) U w;ropr, (q)))

uGN(TFopt S PN\N(74,P)

< fovg(ma) + Ery | 3 Alu] gu(@)],

WEN (Tropt, @) \N (7.4, D)

where the inequality is due to adaptive submodularity and 1, (®) C 1(m4, ®) C (74, P) U b, (P). O

B.3. Proof of Lemma 7

Proof. Since foyg(ma) =Er, []E@ [ZueN(m,¢) Au | wu(@))”, it suffices to prove

> oy A @) kDD A (6) (36)

for any given realization ¢ € ZN and fixed randomness of 7 4. Given a realization ¢, let @; be the i-th element selected by
74 and let S; be the first ; elements picked, i.e., S; = {d1,...,4;}, fori =1,2,..., h where h := [N (74, ¢)|. Suppose
that there exists a partition O1 1, O1 2, ...,01,5 of O1(¢) such that foralli =1,2,..., A,

Zueol A Yu(9) < k- Ad | Ya,(6)), 37
then Eqn. (36) must hold due to

uw€O01 (@) i=1 u€0q; WEN (T 4,0)
Therefore, we just need to show the existence of such a desired partition of O, as proved below.

We use the following iterative algorithm to find the partition, which is inspired by (Calinescu et al., 2011). Define
Ny, = 041(¢). Fori = h,h—1,...,2,let B; := {u € N | S; 1 U {u} € Z}. If | B;| < k, set O1; = B;. Otherwise,
pick an arbitrary O;; C B; with |O1 ;| = k. Then, set N;_1 = N; \ Oq ;. Finally, set O1 1 = N;. Clearly, |01 ;| < k
fori = 2,..., h. We further show that |O; 1| < k. We prove it by contradiction and assume |O; 1| > k. If |By| < k,
then we have Sy U {u} §é 7 for every u € N according to the above process. So Sy is a base of S; U N7, which
implies that |V;| < & - S|, contradicting the assumption that || = |O1 1| > k. Consequently, it must hold that
|Bz| > k and hence |O1 2| = k and |[N3| > 2k. Using a similar argument, we can recursively get that |B;| > k and hence
|O1,i| = k and |NV;| > ik forany i = 3,..., h, e.g., [Ny| > hk. However, as S}, is a base of S), U 0O1(¢), we should have
N3] = |01(¢)| < hk, which shows a contradiction. Therefore, we can conclude that |O ;| < kforalli =1,2,..., h.

*

According to the partition Oy ; : 7 € [h] constructed above, it is obvious that for every u € Oy 4, S; 1 U {u} € Z. This
implies that for every u € O ;, u cannot be considered before ; is added by 7 4, i.e., 14, (¢) C ¥, (¢). Meanwhile, due to
the greedy rule of ADAPTRANDOMGREEDY, it follows that A(4; | g, (¢)) > A(u | g, (¢)) for each u € O ;. Hence,

ST A@lvu@) < D Al va,(9) <Y Al | ¥, (6) < k- Aay | e, (9)) (39)
u€01 5 u€O1; u€01 ;
holds for any ¢ € [h]. Combining the above results completes the proof. O
B.4. Proof of Lemma 8

Proof. Again, since favg(m4) = Ex, |:Eq> {Zue/\/(m,@) Au | z/zu(fb))} } , we only need to prove that, for any ¢ € ZV,

Bea[oy A 1)) < =L B[S A ()] (40)

p

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Given a realization ¢ € N , for each v € N, let X, be a random variable such that X,, = 1 if u € O3(¢) and X,, = 0

otherwise. So we have
> A Yu(d) = Y (X Alu] u(9))). @1
u€O2 () ueN

Similarly, for each u € N, let Y,, be a random variable such that Y,, = 1 ifu € (74,) and Y,, = 0 otherwise. Thus,

Yo A vu(@) =D (Yu- Alu|du(9))). 42)
wEN (7 4,0) ueN
Therefore, it is sufficient to prove:
VueN : Er, [Xu-Au | ¢u(0))] < 1%9 B [V Alu | 9u(9))] (43)

Observe that, for any given u € N, if A(u | . (¢)) < 0 or dom(e),(¢)) U{u} ¢ Z, then we have u ¢ N (74, ¢) and u ¢
O2(¢) by definition, which indicates X,, = Y,, = 0. Consider the event that A(u | 1, (¢)) > 0 and dom(¢),(¢))U{u} € Z,
and denote such an event as &,. Since Pr[u € N'(m 4, ¢) | £,] = p, it is trivial to see that

Eﬂ'A [}/u ' A(U | 1/)u(¢))] =D E"/Ju((i’) [A(u | 1/}u(¢)) ‘ gu] ! Pr[gu]a (44)

where the expectation is taken over the randomness of ¢, (¢) (i.e., ¥, (¢) ~ &,) due to the internal randomness of algorithm.
On the other hand, if u € O(¢), then we have Pr[u € Oz(¢) | £,] = 1 — p as w is discarded with probability of 1 — p,
while we also have Pr[u € O3(¢) | £,] = 0if u ¢ O(¢). Thus, we know Pr[u € O2(¢) | £,] < (1 — p) and hence we can
immediately get

By [Xu- Au|)] < (1= p) By)[A] Yu(@)) |] - Pri€u]. (45)

The lemma then follows by combining all the above reasoning. O

B.5. Proof of Theorem 3

Proof. According to Lemmas 6-8, we have

Fove (FA0Topt) = fave(74) < Byt | > Al | (@)

UEN (Topt , @) \N (7.4, P)

SEro| Y Awlva@)t Y Alu] (@)

uw€01(P) u€O2 (P)

< (k+ T) favg(Ta)

where the second inequality is due to the definition of O3(®), i.e., A(u | 1, (®)) < 0 for every u € O3(®). Combining the

above result with Lemma 5 gives
kp+1

p(1—-p)
Moreover, p’z’l’f;) achieves its minimum value of (14++/k + 1)? at p = (1++/k + 1) . Finally, the O(nr) time complexity
is evident, as the algorithm incurs O(n) oracle queries for each selected element. O

f(ﬂ—opt) < : favg(ﬂ_.A)- (46)

