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Abstract

Submodular optimization has numerous applica-
tions such as crowdsourcing and viral market-
ing. In this paper, we study the problem of non-
negative submodular function maximization sub-
ject to a k-system constraint, which generalizes
many other important constraints in submodu-
lar optimization such as cardinality constraint,
matroid constraint, and k-extendible system con-
straint. The existing approaches for this problem
are all based on deterministic algorithmic frame-
works, and the best approximation ratio achieved
by these algorithms (for a general submodular
function) is k + 2v/k 4+ 2 + 3. We propose a ran-
domized algorithm with an improved approxima-
tion ratio of (1 4 v/k)?, while achieving nearly-
linear time complexity significantly lower than
that of the state-of-the-art algorithm. We also
show that our algorithm can be further general-
ized to address a stochastic case where the ele-
ments can be adaptively selected, and propose
an approximation ratio of (1 + v/k + 1)? for the
adaptive optimization case. The empirical perfor-
mance of our algorithms is extensively evaluated
in several applications related to data mining and
social computing, and the experimental results
demonstrate the superiorities of our algorithms in
terms of both utility and efficiency.

1. Introduction

Submodular optimization is an active research area in ma-
chine learning due to its wide applications such as crowd-
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sourcing (Singla et al., 2016; Han et al., 2018a), cluster-
ing (Gomes & Krause, 2010; Han et al., 2019), viral mar-
keting (Kempe et al., 2003; Han et al., 2018b), and data
summarization (Badanidiyuru et al., 2014; Iyer & Bilmes,
2013). A lot of the existing studies in this area aim to maxi-
mize a submodular function subject to a specific constraint,
and it is well known that these problems are generally NP-
hard. Therefore, extensive approximation algorithms have
been proposed, with the goal of achieving improved approx-
imation ratios or lower time complexity.

Formally, given a ground set A" with |A/| = n, a constrained
submodular maximization problem can be written as:

max{f(S):S €T} (1)

where f : 2V — R>¢ is a submodular function satisfying
VXY CN: f(X)+fY) > f(XUY)+ f(XNY),
and Z C 2V is the set of all feasible solutions. For example,
ifZ ={X:X CNA|X| <d}foragiven d € N, then
S € T represents a cardinality constraint. We also call f(-)
“monotone” if it satisfies VX CY C N : f(X) < f(Y),
otherwise f(-) is called “non-monotone”.

Although some application problems only have simple con-
straints like a cardinality constraint, many others have to
be cast as submodular maximization problems with more
complex “independence system” constraints such as ma-
troid, k-matchoid, and k-system constraint. Among these
constraints, the k-system constraint is the most general one,
and a strict inclusion hierarchy of them is: cardinality C ma-
troid C intersection of k matroids C k-matchoid C k-
extendible C k-system (Mestre, 2006). Due to the gen-
erality of k-system constraint, it can be used to model a lot
of constraints in various applications, such as graph match-
ings, spanning trees and scheduling (Feldman et al., 2020;
Mirzasoleiman et al., 2016).

It is recognized that submodular maximization with a k-
system constraint is one of the most fundamental problems
in submodular optimization (Calinescu et al., 2011; Feldman
et al., 2017; 2020), so a lot of efforts have been devoted to it
since the 1970s, and the state-of-the-art approximation ratios
are k+1 (Fisher et al., 1978) and k+2+/k + 2+ 3 (Feldman
et al., 2020) for monotone f(-) and non-monotone f(-), re-
spectively. Feldman et al. (2020) also showed that, by weak-
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ening their approximation ratio by a factor of (1 — 2¢)72,
their algorithm can be implemented under time complexity
of O(’%" log(2)). Surprisingly, all the existing algorithms
for this problem are intrinsically deterministic. Therefore,
it is an interesting open problem whether the “power of
randomization” can be leveraged to achieve better approxi-
mation ratios or better efficiency, as randomized algorithms
are known to outperform the deterministic ones in many
other problems.

It is noted that the utility function f(-) is assumed to be de-
terministic in Problem (1). However, in many applications
such as viral marketing and sensor placement, the utility
function could be stochastic and is only submodular in a
probabilistic sense. To address these settings, Golovin &
Krause (2011a) introduced the concept of adaptive submodu-
lar maximization, where each element v € A is assumed to
have a random state and the goal is to find an optimal adap-
tive policy that can select a new element based on observing
the realized states of already selected elements. Based on
this concept, they also investigated the adaptive submodu-
lar maximization problem under a k-system constraint and
provide an approximation ratio of k£ + 1 (Golovin & Krause,
2011b), but this ratio only holds when the utility function is
adaptive monotone (a property similar to the monotonicity
property under the non-adaptive case). However, it still re-
mains as an open problem whether provable approximation
ratios can be achieved for this problem when the considered
utility function is more general (i.e., not necessarily adaptive
monotone).

In this paper, we provide confirmative answers to all the
open problems mentioned above, by presenting novel ran-
domized algorithms for the problem of (not necessarily
monotone) submodular function maximization with a k-
system constraint. Our algorithms advance the state-of-the-
art under both the non-adaptive setting and the adaptive
setting. More specifically, our contributions include:

* Under the non-adaptive setting, we present a random-
ized algorithm dubbed RANDOMMULTIGREEDY that
achieves an approximation ratio of (1 + v/k)? under
time complexity of O(nr), where r is the rank of the
considered k-system. We also show that RANDOM-
MULTIGREEDY can be accelerated to achieve an ap-
proximation ratio of (1 + €)(1 4+ v/k)? under nearly-
linear time complexity of O(2 log Z). Therefore, our
algorithm outperforms the state-of-the-art algorithm
in (Feldman et al., 2020) in terms of both approxi-
mation ratio and time complexity. Furthermore, we
show that RANDOMMULTIGREEDY can also be imple-
mented as a deterministic algorithm with better perfor-
mance bounds than the existing algorithms.

* Under the adaptive setting, we provide a randomized
policy dubbed ADAPTRANDOMGREEDY that achieves

an approximation ratio of (1++/k + 1)? when the util-
ity function is not necessarily adaptive monotone. To
the best of our knowledge, ADAPTRANDOMGREEDY
is the first adaptive algorithm to achieve a provable
performance ratio under this case.

* We test the empirical performance of the proposed
algoirthms in several applications including movie rec-
ommendation, image summarization and social ad-
vertising with multiple products. The extensive ex-
perimental results demonstrate that, RANDOMMULTI-
GREEDY achieves approximately the same perfor-
mance as the best existing algorithm in terms of utility,
while its performance on efficiency is much better than
that of the fastest known algorithm; besides, ADAP-
TRANDOMGREEDY can achieve better utility than the
non-adaptive algorithms by leveraging adaptivity.

For the fluency of description, the proofs of all our lem-
mas/theorems are deferred to the supplementary file.

2. Related Work

There are extensive studies on submodular maximization
such as (Chekuri & Quanrud, 2019), (Balkanski et al., 2019),
(Lee et al., 2010), (Han et al., 2021) and (Kuhnle, 2019).
For example, Kuhnle (2019) addressed a simple cardinality
constraint using a nice “interlaced greedy” algorithm, where
two candidate solutions are considered in a compulsory
round-robin way; but it is unclear whether this algorithm
can handle more complex constraints. In the sequel, we only
review the studies most closely related to our work.

Non-Adaptive Algorithms: We first review the existing
algorithms for non-monotone submodular maximization
subject to a k-system constraint under the non-adaptive set-
ting. The seminal work of (Gupta et al., 2010) proposed
a REPEATEDGREEDY algorithm described as follows. At
first, a series of candidate solutions Sy, So, -+ , Sy are se-
quentially found, where the elements of S; are greedily
selected from N\ (Ui<;<;—15;) for all j € [¢]. After
that, an Unconstrained Submodular Maximization (USM)
algorithm (e.g., (Buchbinder et al., 2015)) is called to find
S% C Sj forall j € [¢]. Finally, the setin {Sj;, S} : j € [¢]}
with the maximum utility is returned. Note that the USM
algorithm is only used as a “black-box” oracle and can be
any deterministic/randomized algorithm, so this algorithmic
framework is intrinsically deterministic. Gupta et al. (2010)
showed that, by setting { = k + 1, REPEATEDGREEDY
can achieve an approximation ratio of 3k + 6 + 3k~! un-
der O(nrk) time complexity. However, through a more
careful analysis, Mirzasoleiman et al. (2016) proved that
REPEATEDGREEDY actually has an approximation ratio of
2k + 3 + kL. Subsequently, Feldman et al. (2017) further
revealed that REPEATEDGREEDY can achieve an approxi-

mation ratio of k + 2vk + 3 + % under O(nrv/k) time
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Table 1. Approximation for submodular function maximization with a k-system constraint

Algorithms Source Ratio Time Complexity  Adaptive?
REPEATEDGREEDY (Gupta et al., 2010) 3k+643k7! O(nrk) X
REPEATEDGREEDY (Mirzasoleiman et al., 2016) 2k +3+ k! O(nrk) X
TWINGREEDYFAST (Han et al., 2020) 2k +2+¢ O(Zlog(£)) X
REPEATEDGREEDY (Feldman et al., 2017) k+2Vk+3+ 7 O(nrvk x
FASTSGS (Feldman et al., 2020) (1-26)%(k+2vVk+2+3)  O(Elog(2)) X
RANDOMMULTIGREEDY this work (1 4e)(k+2vVEk+1) O(Zlog(%)) X
ADAPTRANDOMGREEDY this work k+2vVkE+1+2 O(nr) Vv

complexity by setting £ = [/k].

Recently, Han et al. (2020) proposed a different “simultane-
ous greedy search” framework, where two disjoint candidate
solutions 57 and Ss are maintained simultaneously, and the
algorithm always greedily selects a pair (e, .S;) such that
adding e into .S; brings the maximum marginal gain. By in-
corporating a “thresholding” method akin to that in (Badani-
diyuru & Vondrak, 2014), Han et al. (2020) proved that
their algorithm achieves (2k + 2 + €)-approximation under
O(Zlog £) time complexity. Feldman et al. (2020) also
proposed an elegant algorithm where |2 + /k + 2| dis-
joint candidate solutions are maintained. By leveraging a
thresholding method similar to (Badanidiyuru & Vondrak,
2014; Han et al., 2020), Feldman et al. (2020) proved that
their algorithm can achieve (1 — 2¢)~2(k + 2vk + 2 + 3)-
approximation under (9(’%” log 2) time complexity. On the
hardness side, Feldman et al. (2017) proved that no algo-
rithm making polynomially many queries to the value and
independence oracles can achieve an approximation better
than £ + 0.5 —e.

For clarity, we list the performance bounds of the closely re-
lated algorithms mentioned above in Table 1 !. Finally, it is
noted that some related studies also considered the k-system
constraint together with multiple knapsack constraints or
under the streaming setting (e.g., (Haba et al., 2020; Mirza-
soleiman et al., 2018; Badanidiyuru et al., 2020)).

Adaptive Algorithms: We then provide a brief review on
the related studies on adaptive submodular maximization.
Golovin & Krause (2011a) initiated the study on adaptive
submodular maximization and also provided several algo-
rithms under cardinality or knapsack constraints. They also
studied the more general k-system constraint in (Golovin
& Krause, 2011b) and provided a (k + 1)-approximation.
Recently, Esfandiari et al. (2021) proposed adaptive submod-

"For simplicity, we only list the performance bounds of the
accelerated versions of Feldman et al. (2020)’s algorithm and RAN-
DOMMULTIGREEDY in Table 1. Without acceleration, Feldman
et al. (2020) can achieve an approximation ratio of (1 + vk + 2)2
under O(knr) time complexity, while RANDOMMULTIGREEDY
achieves an approximation ratio of (1 4+ v/k)? under O (nr) time
complexity.

ular maximization algorithms with fewer adaptive rounds
of observation. There also exist many other studies on adap-
tive optimization under various settings/constraints, such
as (Cuong & Xu, 2016; Mitrovic et al., 2019; Parthasarathy,
2020; Fujii & Sakaue, 2019; Badanidiyuru et al., 2016).
However, all these studies assumed that the target function
is monotone or adaptive monotone. For non-monotone ob-
jective functions, Amanatidis et al. (2020) and Gotovos et al.
(2015) have proposed adaptive submodular maximization
algorithms with provable performance ratios, but only under
simple cardinality and knapsack constraints.

3. Preliminaries and Notations

It is well known that all the structures including matroid,
k-matchoid, k-extendible system and k-set system are set
systems obeying the “down-closed” property captured by
the concept of an independence system:

Definition 1 (independence system). Given a finite ground
set N and a collection of sets T C 2N, the pair (N, T) is
called an independence system if it satisfies: (1)) € Z; (2)
fXCYCNandY €T, then X € T.

Given an independence system (A, Z) and any two sets
X CY CWN, Xiscalled a base of Y if X € T and
XU{u} ¢ Zforallu € Y\ X. We also use 7 to denote the
rank of (N, ), i.e.,r = max{|X|: X € T}. A k-system
is a special independence system defined as:

Definition 2 (k-system). An independence system (N, T)
is called a k-system (k > 1) if | X1| < k|X3| holds for any
two bases X1 and X5 of any set Y C N.

Non-adaptive setting: Under the non-adaptive setting, our
problem is to identify an optimal solution O to Problem (1)
given a k-system (N, Z) and a (not necessarily monotone)
submodular function f(-). For convenience, we use f(X |
Y') as a shorthand for f(X UY) — f(Y) forall X, Y C N.
It is well known that any non-negative submodular function
f () satisfies the “diminishing returns” property: VX C
YCNzeN\Y: fz]Y)<f(z]| X). Following
the existing studies, we assume that the values of f(.5) and
17(5) can be got by calling oracle queries, and use the
number of oracle queries to measure time complexity.
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Adaptive setting: Under the adaptive setting, each element
u € N is associated with an initially unknown state ®(u) €
Z,where Z is the set of all possible states. A realization is
any function ¢: N +— Z mapping every element u € N to
a state z € Z. Therefore, ® is the true realization and we
follow (Golovin & Krause, 2011a) to assume that Pr[® =
¢] is known for any possible realization ¢. In adaptive
optimization problems, an adaptive policy m is allowed to
sequentially select elements in AV, and the true state ®(u)
of any u € N can only be observed after u is selected. In
such a case, the utility of m depends on not only the selected
elements but also their states, so we re-define the utility
function as f: 2V x ZV i Rsq. Let N(7, $) denote the
set of elements selected by 7 under any realization ¢, the
expected utility of policy 7 is defined as

fave(m) == E[f(N(m, ®), D)],

where the expectation is taken over both the randomness of
® and the internal randomness (if any) of .

Given any M C N, a mapping ¢): M — Z is called a
partial realization, and dom(v)) = M is called the domain
of ¢). Therefore, a partial realization is ¢/ is also a realization
when dom(¢)) = N. Intuitively, a partial realization can
be used to record the already selected elements and the
observed states of them during the execution of an adaptive
policy. We also abuse the notations a little by regarding
1 as the set {(u, ¥ (u)): u € dom(t))}. Given two partial
realizations 1) and ¢’, we say 1) is a subrealization of 1)’
(denoted by )" ~ 1)) if ¢p C 1)’. With these definitions, we
follow Golovin & Krause (2011a) to define the concept of
adaptive sumodularity:

Definition 3. Given a partial realization ¢ and an ele-
ment u, the expected marginal gain of u conditioned on
¢ is defined as A(u | ) = E[f(dom(y)) U {u}, ®) —
f(dom(z)), ®) | @ ~ 1. A function f: 2N x ZN = Rsg
is called adaptive submodular if it satisfies V1) C ', u €
N\ dom(e'): Alu | ) = Au | )

The utility function f(-) is also called adaptive monotone if
A(u | ¢) > 0 for any u € N and any partial realization v
satisfying Pr[® ~ ¢] > 0. However, in this paper we con-
sider the case that f(-) is not necessarily adaptive monotone.
In such a case, all the the current studies (e.g., (Amanatidis
et al., 2020; Gotovos et al., 2015)) assume that f(-) is also
pointwise submodular, whose definition is given below:

Definition 4. A function f: 2V x ZN — R is pointwise
submodular if (-, $) is submodular for any realization ¢
satisfying Pr[® = ¢] > 0.

Given a k-system (A, Z) and an adaptive and pointwise
submodular function f: N x ZN R, our problem is
to identify an optimal policy 7, to the following adaptive

Algorithm 1 RANDOMMULTIGREEDY (¢, p)
Initialize: Vi € [¢] : S; <+ 0; t <+ 1
1: repeat
2 fori =1to/do
3 Aj«—{ueN:S;U{u} eI}
4: v; 4 argmaxyca, f(u | S;)
5:  end for
6
7
8

if Uie[f] Al 7é @ then
Ut < argMaX;e(s]: A, £) (i | Si)s ug < vj,
if f(u; | Si,) > 0 then

9: with probability p do S;, + S;, U {us}
10: NN\ {uhst—t+1

11: else

12: break;

13: end if

14:  end if

16: S* <= argmaxge(s, s,,.-,9,} f(S); T +t—1
17: Output: S*, T

optimization problem:

max{ favg(m): N (7, $) € I for all realization ¢}. (2)

4. Non-Adaptive Algorithm

In this section, we propose an algorithm dubbed RANDOM-
MULTIGREEDY, as shown by Algorithm 1. RANDOM-
MULTIGREEDY iterates for 7" steps to construct £ candidate
solutions 51,52, ,Sy. At each step t, it greedily finds
a pair (ug,i;) € N x [€] such that S;, U {u;} € T and
flug | Si,) is maximized. If f(u; | S;,) > O, then Al-
gorithm 1 adds u, into S;, with probability p and discard
u; with probability 1 — p. After that, u; is removed from
N. The iterations stop immediately when the pair (u;, ;)
cannot be found or f(u; | S;,) < 0.

For convenience, we introduce the following notations. Let
U = {u1,- - ,ur} denote the set of all elements that have
been considered to be added into U;c()S;. For any u €
N, let S©(u) denote the set of elements already in S, at
the moment that u is considered by the algorithm, and let
S:=(u) = S; if u is never considered by the algorithm.

Although the design of RANDOMMULTIGREEDY is quite
simple, its performance analysis is highly non-trivial due
to the complex relationships between the elements in
S1,---,S¢ and the randomness of the algorithm. To ad-
dress these challenges, we first classify the elements in O
as follows:

Definition 5. Let D; denote the set of elements in U that
have been considered to be added into S; but are discarded
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due to Line 9. For any i,j € [{] satisfying i # j, we define:

O = {ue0nS;: SF(u)u{u} €T};
O ={uecOnS;: S5(u)u{u} ¢ I};
5§+={u€OﬂDj:Sf(u)U{u}EI}§
O ={ue0nD;: 85 (u)U{u} ¢T};
O; ={ueO\U:8;U{u} ¢ ZA f(u]S;)>0};

Note that both O§+ and O;-_
S;. Intuitively, each element u € O;* (resp. u € O;._)
can (resp. cannot) be added into S; without violating the
feasibility of Z at the moment that u is added into .S;. The
sets 6;*, 5;_ are also defined similarly for the elements in
O N D;. Based on Definition 5, it can be seen that, when
Algoirthm 1 terminates, all the elements in O, O;_ and

5;7 (Vj # i) cannot be added into S; due to the violation
of Z. Note that these elements together with the elements in
0OnNS; all belong to O. So we can map them to the elements
in S; using a method similar to that in (Calinescu et al.,
2011; Han et al., 2020) based on the definition of k-system,
as shown by Lemma 1:

are disjoint subsets of O N

Lemma 1. For each i € [{], let Q; = Ujem\{i}(Of U
6;7) U (0O NS;) UO; . There exists a mapping o; : QQ; —
S; satisfying: (1) The element c;(u) can be added into
S (0i(u)) without violating the feasibility of I for all u €
Qs (2) The number of elements in (); mapped to the same

element in S; by 0;(+) is no more than k; and (3) we have
Yu e ONS;:oi(u) =u.

The purpose for creating the mapping in Lemma 1 is to
bound the value of f(u | S;) for all u € Q;. For example,
given any element u € O™, u can be mapped to an element
v = o;(u) satisfying S;=(v) U {u} € Z, which implies
that the value of f(u | S;) is no more than f(v | S5 (v)),
because otherwise u should have been added into .S; instead
of v according to the greedy rule of Algorithm 1. Based on
this intuition, a more careful analysis reveals that:

Lemma 2. For any u, € U where t € [T], we define
S(u) = Y5y 1{i = j} - flu | S7(w)). Given any
i, € ] satisfying i # j, we have
Yue O U0« ful ;) < 8(u); 3)
Vu € Qi : f(u| Si) < d(mi(u)); “4)

where Q; is defined in Lemma 1.

Using Lemma 2, we can prove Lemma 3, which provides
an upper bound of 3=, f(O | S;):

Lemma 3. For any u € N, define X, = 1ifu € (UN
O)\ UY_, S;, otherwise define X,, = 0. Given any integer

> 2, we have

S HOIS) <Uk+L=2)f(S)+L> Xu-6(u) ()

i€l ueN

The proof idea of Lemma 3 is roughly explained as fol-
lows. As the elements in O \ S; can be classified using the
sets defined in Definition 5, we can leverage Lemma 1 and
Lemma 2 to bound f(u | S;) forall u € O\ S; using the
marginal gains of the elements in U¢_, S;. These marginal
gains are further grouped in a subtle way such that their
summation can be bounded by the RHS of Eqn. (5).

Note that Eqn. (5) holds for every random output of Algo-
rithm 1. So the inequality still holds after taking expectation.
Furthermore, we introduce Lemma 4 to bound the expec-
tations of the LHS and RHS of Eqn. (5). The proof of
Lemma 4 leverages the property that each element in N is
only accepted with probability of at most p.

Lemma 4. For any p € (0, 1], we have
5%, 700 S»} > (-pf0)  ©
IE[ > Xu~5(u)} < IE[ > (S } (7)

ueN €[]

By combining Lemma 3, Lemma 4 and the fact that Vi €
(] : f(S

i) < f(S*), we can immediately get the approxi-
mation ratio of Algorithm 1 as follows:

Theorem 1. For any ¢ > 2 and p € (0,1), the
RANDOMMULTIGREEDY (¢, p) algorithm outputs a solu-
tion S* satisfying

E[f(57)] (8)

Discussion of Theorem 1: From Theorem 1, it can be
seen that the approximation ratio of Algorithm 1 can be
optimized by choosing proper values of £ and p. Indeed,
the ratio can be minimized to (1 + v/k)? by setting £ =
2,p = 1+f Besides, if we set £ = [VE] +1,p = 1,

then the approximation ratio turns into k 4+ vk + [vVE] + 1.
Clearly, setting ¢ = 2 implies faster running time as only
two candidate solutions are maintained, while setting p = 1
implies a deterministic algorithm.

4.1. Acceleration

It can be seen that RANDOMMULTIGREEDY has time com-
plexity of O(¢nr). This time complexity can be further re-
duced by implementing Lines 2-5 using a “lazy evaluation”
method inspired by (Minoux, 1978; Ene & Nguyen, 2019).
More specifically, for each solution set S;, we maintain an
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ordered list A; which is initialized to A/. Each element
u € A; has a weight w;(u) = f(u | S;) and the elements
in A; are always sorted according to the non-increasing
order of their weights. When S; changes, we pop out the
top element u from A; and discard w if S; U {u} ¢ Z. If
S;U{u} € T and f(u | S;) has not been computed, then we
update the weight of u and set v; = u if the new weight of
u is at least (1 + €)~! fraction of its old weight (otherwise
u is re-inserted into A; and we pop out the next element).
During this process, any element in A; is removed from A;
immediately when its weight has been updated for more
than O(1 log £°) times. Using this method, we can guaran-
tee that f(v; | S;) is at least 1%% fraction of the marginal
gain of the best element in A; that can be added into .S,
and the total number of incurred value and independence
oracles is no more than O(2 log £°) for each S; : i € [{].
Combining these results with Theorem 1, we can get:

Theorem 2. For the problem of submodular maximiza-
tion subject to a k-system constraint, there exist: (1)
a randomized algorithm with an approximation ratio of
(1+ €)(1 4+ Vk)? under O(% log ©) time complexity, and
(2) a deterministic algorithm with an approximation ratio of
(1+ €)(k + Vk + [Vk] + 1) under O(@ log @) time
complexity.

Remark: From Theorem 2, it can be seen that Algo-
rithm 1 actually can be regarded as a “universal algorithm”
that achieves the best-known performance bounds under
different settings, as explained in the following. First, if
f(+) is non-monotone, then Algorithm 1 outperforms the
state-of-the-art algorithm of (Feldman et al., 2020) in terms
of both approximation ratio and time efficiency, no matter
Algorithm 1 is implemented as a randomized algorithm or as
a deterministic algorithm; moreover, when (J\f ,Z) is a ma-
troid (i.e., K = 1), Algorithm 1 achieves an approximation
ratio of 4 + e under O(% log %) time complexity, matching
the performance bounds of the fastest algorithm in (Han
et al., 2020) for a matroid constraint. Second, if the consid-
ered submodular function f(-) is monotone, it can be easily
seen that the standard greedy algorithm proposed in (Fisher
et al., 1978) equals to RANDOMMULTIGREEDY(1, 1), so
Algorithm 1 also achieves the best-known approximation
ratio of k + 1 under this case.

5. Adaptive Optimization

The framework of Algorithm 1 can be naturally extended
to address the adaptive case (i.e., Problem (2)), as shown
by Algorithm 2. For convenience, we use 7 4 to denote the
adaptive policy adopted by Algorithm 2. Algorithm 2 runs
in iterations and identifies an element u* in each iteration
which maximizes the expected marginal gain A(u* | )
without violating the feasibility Z, where v is the partial re-
alization observed by 7 4 at the moment that «* is identified.

Algorithm 2 ADAPTRANDOMGREEDY (p)
Initialize: S < @ and ¢ < 0

while AV # () do
i A—{ueN:Su{u} eI}

1:

2

30wt < argmax,c, Alu | ¥)
4 ifA=0VA(u*|v) <0 then
5: break

6:  endif

7. with probability p do

8: observe z = ®(u*);

9: S+ SuU{u*};

10: Y PpU{(u*,2)}

11 N« N\ {u*}

12: end while

13: return S

After that, m 4 observes the state of ©* and adds «* into the
solution set S with probability p, and discard v* with prob-
ability 1 — p. The algorithm stops when no more elements
can be added into S without violating the feasibility of Z or
when A(u* | v) is non-positive.

Although the framework of Algorithm 2 looks similar to
RANDOMMULTIGREEDY, its performance analysis is very
different, as there does not exist a fixed optimal solution
set under the adaptive setting, and we have to compare the
average performance of 7 4 with that of an optimal policy
Topt- 10 address this problem, we first build a relationship
between 7 4 and 7,y as follows:

Lemma 5. Given any two adaptive policy w1 and ms, let
w1 Qo denote a new policy that first execute w, and then
execute Ty without any knowledge about m,. So we have

favg(ﬂ—A@ﬂ—opt) = favg(ﬂ-opt@ﬂ.A) 2 (1 _p) . favg(ﬂ-opt)

Lemma 5 implies that we may get an approximation ratio by
further bounding fave(mAQmopt) using favg(m4). Given
any u € N and any realization ¢, let 1, (¢) denote the par-
tial realization observed by 7 4 right before v is considered
by Lines 7-10 of Algorithm 2; if u is never considered, then
let v, (¢) denote the observed partial realization at the end
of m 4. Based on this definition, we can get:

Lemma 6. The value of favg(TAQTopt) — favg(TA) is no

more than B , o [Zue/\/(ﬂopt@)\/\/(wm@) Alu | wu(é))}
where the expectation is taken with respect to both the ran-
domness of ® and the randomness of T 4.

Next, we try to establish some quantitative relationships
between fave(m.4) and the upper bound found in Lemma 6.
Given any realization ¢, Note that N (mopt, @) \N (74, @)
denotes the set of elements that are selected by m,p¢ but not
7 4 under the realization ¢. The elements in this set can be
partitioned into three disjoint sets O1 (¢), O2(¢) and O3(¢),
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where Oz(¢) denotes the set of elements that have been
considered by 7 4 in Lines 7-10 but discarded (due to the
probability p); Os(¢) denotes the set of elements satisfying
A(u | ¥y (6)) < 0forall u € O3(¢); and the rest elements
are all in O (¢). It can be seen that each element u in O (¢)
must satisfy dom (e, (¢)) U{u} ¢ Z. Therefore, by using a
similar method as that under the non-adaptive case, we can
map the elements in O1(¢) to the elements selected by 74
under realization ¢, and hence prove:

Lemma 7. We have

Erao| 2o, @ 201 Yu(®)] k- fag(ma)

Now we try to bound the “utility loss” caused by Oz (o).
Note that although these elements are discarded (with prob-
ability 1 — p), they got a chance to be selected by 74 with
probability p. So the ratio of the total expected (conditional)
marginal gain of these elements to faye(7.4) should be no
more than (1 — p)/p, which is proved by the following
lemma:

Lemma 8. We have
Brs| X Al ou®)| < L ()

w03 (®) p

Combining all the above lemmas, we can get the approxi-
mation ratio of ADAPTRANDOMGREEDY as follows:
Theorem 3. ADAPTRANDOMGREEDY achieves an ap-
. . . pk+1 . p(1—p)
proximation ratio of P=p) (i.e., favg(ma) > el
fave(Topt)) under time complexity of O(nr). The ratio

is minimized to (1 + vk +1)?> whenp = (1 + vk + 1)~ L.

Remark: When the objective function f(-) is monotone, it
can be easily seen that ADAPTRANDOMGREEDY(1) can
achieve an approximation ratio of (k + 1)—the same ratio as
that in (Golovin & Krause, 2011b). Therefore, ADAPTRAN-
DOMGREEDY (p) can also be considered as a “universal
algorithm” for both non-monotone and monotone submodu-
lar maximization.

6. Performance Evaluation

In this section, we compare our algorithms with the state-of-
the-art algorithms for submodular maximization subject to a
k-system constraint, using the metrics of both utility and the
number of oracle queries to the objective function. We im-
plemented five algorithms in the experiments: (1) the accel-
erated version of our RANDOMMULTIGREEDY algorithm
(as described in Sec. 4.1), abbreviated as “RAMG”; (2) the
REPEATEDGREEDY algorithm presented in (Feldman et al.,
2017), abbreviated as “REPG”; (3) the TWINGREEDYFAST
algorithm proposed in (Han et al., 2020), abbreviated as
“TGF”; (4) the FASTSGS algorithm proposed in (Feldman

et al., 2020), abbreviated as “FSGS”’; and (5) our ADAP-
TRANDOMGREEDY algorithm, abbreviated as “ARG”. Note
that the three baseline algorithms REPG, TGF and FSGS
achieve the best-known performance bounds among the re-
lated studies, as illustrated in Table 1. In all experiments, we
adopt the optimal settings of each implemented algorithm
such that their theoretical approximation ratio is minimized
(e.g., setting £ = 2,p = 1+2\/E for RAMG), and we set
€ = 0.1 whenever ¢ is an input parameter for the considered
algorithms. The implemented algorithms are tested in three
applications, as elaborated in the following.

6.1. Movie Recommendation

This application is also considered in (Mirzasoleiman et al.,
2016; Feldman et al., 2017; Haba et al., 2020), where there
are a set N of movies and each movie is labeled by several
genres chosen from a predefined set G. The goal is to select
a subset S of movies from N to maximize the utility

f(S) = Z Z Mu,v - Z Z Mu,va (9)

uweN vES ueSveS

under the constraint that the number of movies in S la-
beled by genre g is no more than m, for all g € G and
|S| < m, where my : g € G and m are all predefined in-
tegers. Intuitively, by using M,, ,, to denote the “similarity”
between movie u and movie v, the first and second factors
in Eqn. (9) encourage the “coverage” and “diversity” of the
movie set S, respectively. It is indicated in (Mirzasoleiman
et al., 2016; Feldman et al., 2017) that the function f(-)
is submodular and the problem constraint is essentially a
k-system constraint with k = |G/|. In our experiments, we
use the MovieLens dataset (Haba et al., 2020) containing
1793 movies, where each movie u is associated with a 25-
dimensional feature vector ¢,, calculated from user ratings.
We set M, , = e ist(tuto) where dist(t,,t,) denotes
the Euclidean distance between t,, and ¢, and A is set to
0.2. There are three genres “Adventure”, “Animation” and
“Fantasy” in MovieLens, and we set m, = 10 for all genres.
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Figure 1. Movie Recommendation

In Fig. 1(a)-(b), we scale the the total number of movies
allowed to be selected (i.e., m) to compare the performance
of the implemented algorithms. It can be seen from Fig. 1(a)
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that RAMG and REPG achieve almost the same utility,
while both of them outperform TGF and FSGS. More-
over, Fig. 1(b) shows that RAMG incurs much fewer oracle
queries than all the baseline algorithms, and TGF is more
efficient than FSGS. This can be explained by the reason
that, FSGS maintains more candidate solutions than TGF,
while the acceleration method adopted by RAMG is more
efficient than the “thresholding” method adopted by TGF in
practice.

6.2. Image Summarization

This application is also considered in (Mirzasoleiman et al.,
2016; Fahrbach et al., 2019), where there is a set A/ of
images classified into several categories, and the goal is to
select a subset S of images from " to maximize the utility

1
f(S) = ZUGN maXyes Su,v — m ZuGS Z’UES Su,v

(where s, ,, denotes the similarity between image v and im-
age v), under the constraint the the numbers of images in S
belonging to every category and the total number of images
in S are all bounded. It can be verified that such a constraint
is a matroid (i.e., 1-system) constraint. We perform the
experiment using the CIFAR-10 dataset (Krizhevsky et al.,
2009) containing ten thousands 32 x 32 color images. The
similarity s,, , is computed as the cosine similarity of the
3,072-dimensional pixel vectors of images v and v. We
restrict the selection of images from three categories: Air-
plane, Automobile and Bird, and the number of images
selected from each category is bounded by 5.

In Fig. 2, we plot the experimental results by scaling the
number of images allowed to be selected. It can be seen
from Fig. 2(a) that RAMG and REPG achieve approximately
the same utility and outperform FSGS and TGF again. Be-
sides, TGF performs much worse than FSGS on utility in
this application, as it uses a more rigorous stopping condi-
tion in its thresholding method and hence neglects many
elements with small marginal gains. The results in Fig. 2(b)
show that the superiority of RAMG on efficiency still main-
tains, while REPG outperforms FSGS significantly. This
can be explained by the fact that, the marginal gains of the
unselected elements diminish vastly after a new element
is selected in the image summarization application, so the
performance of the thresholding method adopted in FSGS
deteriorates to be close to a naive greedy algorithm, which
results in its worse efficiency as FSGS maintains more can-
didate solutions than the other algorithms. In contrast, the
performance of RAMG on efficiency is more robust against
the variations of underlying data distribution.

6.3. Social Advertising with Multiple Products

This application is also considered in (Mirzasoleiman et al.,
2016; Fahrbach et al., 2019; Amanatidis et al., 2020). We
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Figure 2. Image Summarization

are given a social network G = (N, E') where each node
represents a user and each edge (u,v) € F is associated
with a weight w,, ,, denoting the “strength” that « can in-
fluence v. Suppose that there are d kinds of products and
an advertiser needs to select a “seed” set H; C N for each
i € [d], such that the total revenue can be maximized by
presenting a free sample of product with type ¢ to each node
in H;. We also follow (Mirzasoleiman et al., 2016; Amana-
tidis et al., 2020) to assume that the valuation of any user for
a product is determined by the neighboring nodes owning
the product with the same type, and the total revenue of H;
is defined as

HEOED DN a\/zej (10)

where a, ; is a random number with known distributions.
Suppose that each node u € N can serve as a seed for at
most g types of products, and the total number of free sam-
ples available for any type of product is no more than m. The
goal of the advertiser is to identify the seed sets Hy,--- , Hy
to maximize the expected value of >, fi(#;) under

the constraints described above?. It is indicated in (Mirza-
soleiman et al., 2016) that this problem is essentially a sub-
modular maximization problem with a 2-system constraint.

We use the LastFM Social Network (Barbieri & Bonchi,
2014; Aslay et al., 2017) with 1372 nodes and 14708 edges,
and the edge weights in the network are randomly generated
from the uniform distribution (0, 1). We adopt the same
settings of (Amanatidis et al., 2020) to assume that, the
parameter «, ; follows a Pareto Type II distribution with
A =1,a = 2 for all node u and product ¢; and the param-
eters of u’s neighboring nodes can be observed after u is
selected under the adaptive setting. The values of d and ¢
are set to 5 and 3, respectively. Following a comparison
method in (Amanatidis et al., 2020), we also implement
a variation of RAMG (dubbed RAMG+) where the input
parameter p is randomly sampled from (0.9,1). To test the

*This application also has many other stochastic versions where
the objective function is adaptive submodular and pointwise sub-
modular (e.g., the scenario where only the edges’ weights are
stochastic). For simplicity, we only conduct experiments under the
described setting similar to that in (Amanatidis et al., 2020).
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performance of ARG, we randomly generate 20 realizations
of the problem instance described above, and plot the aver-
age utility/number of queries of ARG on all the generated
realizations.
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Figure 3. Social Advertising with Multiple Products

We study the performance of all algorithms in Fig. 3 by scal-
ing the number of items of each product available for seed-
ing (i.e., m). It can be seen from Fig. 3(a) that RAMG+,
TGF and REPG achieve approximately the same utility,
while the performance of RAMG and FSGS is slightly
weaker. Note that RAMG+ has a weaker theoretical ap-
proximation ratio than RAMG. However, it is well known
that approximation ratio is only a worst-case performance
guarantee. Fig. 3(a) also reveals that ARG performs the best
on utility, which is not surprising as it can take advantage on
side observation. In Fig. 3(b), we compare the efficiency of
all implemented algorithms and the results are qualitatively
similar to those in Figs. 1-2. Note that RAMG+ performs
almost the same with RAMG on efficiency, which implies
that it improves the utility performance of RAMG “for free”.

7. Conclusion

We have proposed the first randomized algorithms for sub-
modular maximization with a k-system constraint, under
both the non-adaptive setting and the adaptive setting. Our
algorithms outperform the existing algorithms in terms both
approximation ratio and time complexity, and their superior-
ities have also been demonstrated by extensive experimental
results on several applications related to data mining and
social computing.
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