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A. Further Examples
Example 3 (Biased MF-SGD). Biased matrix factorization models (Koren & Bell, 2015) compute scores as rating predictions
with

sui = p>u qi + fu + gi + µ

P ∈ Rn×d and Q ∈ Rm×d are respectively user and item factors for some latent dimension d, f ∈ Rn and g ∈ Rm are
respectively user and item biases, and µ ∈ R is a global bias.

The parameters are learned via the regularized optimization

min
P,Q,f ,g,µ

1

2

∑
u

∑
i∈Ωu

‖p>u qi + fu + gi + µ− rui‖22 +
λ

2
‖P‖2F +

λ

2
‖Q‖2F .

Under a stochastic gradient descent minimization scheme (Koren, 2008) with step size α, the one-step update rule for a user
factor is

p+
u = pu − α

∑
i∈ΩA

u

(qiq
>
i pu + qi(fu + gi + µ)− qirui)− αλpu .

User bias terms can be updated in a similar manner, but because the user bias is equal across items, it does not impact the
selection of items.

Notice that this expression is affine in the mutable ratings. Therefore, we have an affine score function:

φu(a) = Qp+
u = Q

(
(1− αλ)pu − αQ>A(QApu + gA + (µ+ fu)1) + αQ>Aa

)
where we define QA = QΩA

u
∈ R|ΩA

u |×d and gA = gΩA
u
∈ R|ΩA

u |. Therefore,

Bu = αQQ>A, cu = Q
(
(1 + λ)pu − αQ>A(QApu + gA + (µ+ fu)1)

)
.

Example 4 (Biased MF-ALS). Rather than a stochastic gradient descent minimization scheme, we may instead update the
model with an alternating least-squares strategy (Zhou et al., 2008). In this case, the update rule is

p+
u = arg min

p

∑
i∈ΩA

u ∩Ωu

‖p>qi + fu + gi + µ− rui‖22 + λ‖p‖22

= (Q>uQu + λI)−1(Q>ru +Q>A(gA + (µ+ fu)1) +Q>Aa)

where we define Qu = QΩA
u ∩Ωu . Similar to in the SGD setting, this is an affine expression, and therefore we end up with

the affine score parameters

Bu = Q(Q>uQu + λI)−1Q>A, cu = Q(Q>uQu + λI)−1(Q>ru +Q>A(gA + (µ+ fu)1)) .

Example 5 (Biased Item-KNN). Biased neighborhood models (Desrosiers & Karypis, 2011) compute scores as rating
predictions by a weighted average, with

sui = µ+ fu + gi +

∑
j∈Ni wij(ruj − µ− fu − gi)∑

j∈Ni |wij |

where wij are weights representing similarities between items, Ni is a set of indices which are in the neighborhood of item
i, and f ,g, µ are bias terms. Regardless of the details of how these parameters are computed, the predicted scores are an
affine function of observed scores:

su = Wru −W (g + (µ+ fu)1) + g + (µ+ fu)1

where we can define

Wij =

{
wij∑

j∈Ni
|wij | j ∈ Ni

0 otherwise



Quantifying Availability and Discovery in Recommender Systems via Stochastic Reachability

Therefore, the score updates take the form

φu(a) = W (ru − g + (µ+ fu)1) + g + (µ+ fu)1)︸ ︷︷ ︸
cu

+WEΩA
u︸ ︷︷ ︸

Bu

a

where EΩA
u

selects rows of W corresponding to action items.

Example 6 (SLIM and EASE). For both SLIM (Ning & Karypis, 2011) and EASE (Steck, 2019), scores are computed as

sui = w>i ru

for wi the row vectors of a weight matrix W . For SLIM, the sparse weights are computed as

min
W

1

2
‖R−RW‖2F +

β

2
‖W‖2F + λ‖W‖1

s.t. W ≥ 0,diag(W ) = 0

For EASE, the weights are computed as

min
W

1

2
‖R−RW‖2F + λ‖W‖2F

s.t. diag(W ) = 0

In both cases, the score updates take the form

φu(a) = Wru︸ ︷︷ ︸
cu

+WEΩA
u︸ ︷︷ ︸

Bu

a .

B. Proofs of Results
Proof of Proposition 1. Define

γβ(a) = LSE
j∈Ωtu

(βφuj(a))− βφui(a)

and see that ρui(a) = e−γβ(a). Then we see that

lim
β→∞

1

β
γβ(a) = max

j /∈Ωu
(φuj(a))− φui(a)

yields a top-1 expression. If an item i is top-1 reachable for user u, then there is some a such that the above expression is
equal to zero. Therefore, as β →∞, γ? → 0, hence ρ? → 1. In the opposite case when an item is not top-1 reachable we
have that γ? →∞, hence ρ? → 0.

Definition 2 (Convex hull). The convex hull of a set of vectors V = {vi}ni=1 is defined as

conv (V) =

{
n∑
i=1

wivi | w ∈ Rn+,
n∑
i=1

wi = 1

}
.

A point vj ∈ V is a vertex of the convex hull if

vj /∈ conv (V \ {vj}) .

Proof of Proposition 2. We begin by showing that if bui is a vertex on the convex hull of B = {buj}j∈Ωtu
, then item i is

top-1 reachable. This argument is similar to the proof of Results 1 and 2 in (Dean et al., 2020).

Item i is top-1 reachable if there exists some a ∈ R|ΩA
u | such that b>uia + cui ≥ b>uja + cuj for all j 6= i. Therefore, top-1

reachability is equivalent to the feasibility of the following linear program

min 0>a

s.t. Duia ≥ fui
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where Dui has rows given by bui − buj and fui has entries given by cuj − cui for all j ∈ Ωtu with j 6= i. Feasibility of this
linear program is equivalent to boundedness of its dual:

max f>uiλ

s.t. D>uiλ = 0, λ ≥ 0.

We now show that if bui is a vertex on the convex hull of B, then the dual is bounded because the only feasible solution is
λ = 0. To see why, notice that

D>uiλ = 0 ⇐⇒ bui
∑
j∈Ωtu
j 6=i

λj =
∑
j∈Ωtu
j 6=i

λjbuj

If this expression is true for some λ 6= 0, then we can write

bui =
∑
j∈Ωtu
j 6=i

wjbuj , wj =
λj∑

j∈Ωtu
j 6=i

λj
=⇒ bui ∈ conv (B \ {bui}) .

This is a contradiction, and therefore it must be that λ = 0 and therefore the dual is bounded and item i is top-1 reachable.

To finish the proof, we appeal to Proposition 1 to argue that since item i is top-1 reachable, then ρ?ui → 1 as β →∞.

Definition 3 (Rich actions). For a set of item factors {qj}mj=1, let C = maxj ‖qj‖2. Then a set of action items ΩAu ⊆
{1, . . . ,m} is sufficiently rich if the vertical concatenation of their item factors and norms is full rank:

rank
([

q>i
√
C2 − ‖qi‖22

]
i∈ΩA

u

)
= d+ 1 .

Notice that this can only be true if |ΩAu | ≥ d+ 1.

Proof of Proposition 3. Let C be the maximum row norm of Q and define v ∈ Rm satisfying v2
i = C2 − ‖qi‖22. Then we

construct modified item and user factors as

Q̃ =
[
Q v

]
, P̃ =

[
P 0

]
.

Therefore, we have that P̃ Q̃> = PQ>.

Then notice that by construction, each row of Q̃ has norm C, so each q̃i is on the boundary of the `2 ball in Rd+1. As a
result, each q̃i is a vertex on the convex hull of {q̃j}nj=1 as long as all qj are unique.

For an arbitrary user u, the score model parameters are given by b̃ui = Q̃Aq̃i. We show by contradiction that as long as the
action items are sufficiently rich, each b̃ui is a vertex on the convex hull of {b̃uj}nj=1. Supposing this is not the case for an
arbitrary i,

b̃ui =

n∑
j=1
j 6=i

wjb̃uj ⇐⇒ Q̃Aq̃i =

n∑
j=1
j 6=i

wjQ̃Aq̃i =⇒ q̃i =

n∑
j=1
j 6=i

wjq̃i

where the final implication follows because the fact that Q̃A is full rank (due to richness) implies that Q̃>AQ̃A is invertible.
This is a contradiction, and therefore we have that each b̃ui must be a vertex on the convex hull of {b̃uj}nj=1.

Finally, we appeal to Proposition 2 to argue that ρ?(u, i)→ 1 as β →∞ for all target items i ∈ Ωtu.

C. Datasets, Model Training and Computing Infrastructure
C.1. Detailed data description

Table 1 provides summary statistics.
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Table 1. Audit datasets

DATA SET ML 1M LASTFM 360K MIND

USERS 6040 13698 50000
ITEMS 3706 20109 247
RATINGS 1000209 178388 670773
DENSITY (%) 4.47% 0.065% 5.54%
LIBFM RMSE 0.716 1.122 0.318
KNN RMSE 0.756 1.868 -
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Figure 10. Descriptive statistics for the MovieLens 1M dataset split by user gender (28.3% female). The mean ratings of both users and
items are roughly normally distributed while user’s history length and item popularity display power law distributions.

MovieLens 1 Million ML-1M dataset was downloaded from Group Lens2 via the RecLab (Krauth et al., 2020) interface3.
It contains 1 through 5 rating data of 6040 users for 3706 movies. There are a total of 1000209 ratings (4.47% rating density).
The original data is accompanied by additional user attributes such as age, gender, occupation and zip code. Our experiments
didn’t indicate observable biases across these attributes. In Section E we show user discovery results split by gender.

Figure 10 illustrates descriptive statistics for the ML-1M dataset.

LastFM 360K The LastFM 360K dataset preprocessed4 by Shakespeare et al. (2020) was loaded via the RecLab interface.
It contains data on the number of times users have listened to various artists. We select a random subset of 10% users and
a random subset of 10% items yielding 13698 users, 20109 items and 178388 ratings (0.056% rating density). The item
ratings are not explicitly expressed by users as in the MovieLens case. For a user u and an artist i we define implicit ratings
rui = log(#listens(u, i) + 1). This data is accompanied by artist gender, an item attribute.

Figure 11 illustrates descriptive statistics for the LastFM dataset.

MIcrosoft News Dataset (MIND) MIND is a recently published impression dataset collected from logs of the Microsoft
News website 5. We downloaded the MIND-small dataset6, which contains behaviour log data for 50000 randomly
sampled users. There are 42416 unique news articles, spanning 17 categories and 247 subcategories. We aggregate user
interactions at the subcategory level and consider the problem of news subcategory recommendation. The implicit rating of
a user u for subcategory i is defined as: rui = log(#clicks(u, i) + 1). The resulting aggregated dataset contains 670773
ratings (5.54% rating density).

2https://grouplens.org/datasets/movielens/1m/
3https://github.com/berkeley-reclab/RecLab
4https://zenodo.org/record/3964506#.XyE5N0FKg5n
5https://microsoftnews.msn.com/
6https://msnews.github.io/

https://grouplens.org/datasets/movielens/1m/
https://github.com/berkeley-reclab/RecLab
https://zenodo.org/record/3964506#.XyE5N0FKg5n
https://microsoftnews.msn.com/
https://msnews.github.io/
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Figure 11. Descriptive statistics for the LastFM dataset split by artist gender (over 54% of artists have unknown gender, 36% are male,
6.5% are female and 3.5% are mixed gender). Unlike ML 1M, for the LastFM dataset the user history lengths are normally distributed
around a mean of around 12 artists.

Table 2. Tuning results

LIBFM KNN
DATASET LR REG. TEST RMSE RUN TIME (S) NEIGH. SIZE SHRINKAGE TEST RMSE RUN TIME (S)

ML 1M 0.0112 0.0681 0.716 2.76 ± 0.32 100 22.22 0.756 0.34 ± 0.07
LASTFM 0.0478 0.2278 1.122 0.78 ± 0.13 - - - -
MIND 0.09 0.0373 0.318 3.23 ± 0.37 - - - -

Figure 12 illustrates descriptive statistics for the MIND dataset.

C.2. Model Tuning

For each dataset and recommender model we perform grid search for progressively finer meshes over the tunable hyper-
parameters of the recommender. We use recommenders implemented by the RecLab library. For each dataset and
recommender we evaluate hyperparameters on a 10% split of test data. The best hyper-parameters for each setting are
presented in Table 2.

LibFM We performed hyper-parameter tuning to find suitable learning rate and regularization parameter for each dataset.
Following (Dacrema et al., 2021) we consider lr ∈ (0.001, 0.5) as the range of hyper-parameters for the learning rate and
reg ∈ (10−5, 100) for the regularization parameter. In all experimental settings we follow the setup of (Rendle et al., 2019)
and use 64 latent dimensions and train with SGD for 128 iterations.

KNN We perform hyperparameter tuning with respect to neighborhood size and shrinkage parameter. Following (Dacrema
et al., 2021) we consider the range (5, 1000) for the neighborhood size and (0, 1000) for the shrinkage parameter. We tune
KNN only for the ML-1M dataset.

C.3. Experimental Infrastructure and Computational Complexity

All experiments were performed on a 64 bit desktop machine equipped with 20 CPUs (Intel(R) Core(TM) i9-7900X CPU @
3.30GHz) and a 62 GiB RAM. Average run times for training an instance of each recommender can be found in Table 2.
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Figure 12. Descriptive statistics for the MIND dataset: The orange bars correspond to either user or items that have been displayed but
have not clicked/ have not been clicked on. Unlike ML 1M and LastFM, the MIND ratings have strongly skewed distribution, with most
user-subcategory ratings corresponding to users clicking on a small number of articles from the sub-category. There is a long tail of
higher ratings that corresponds to most popular subcategories. The leftmost plot illustrates the unequal distribution of news articles across
categories. The same qualitative behaviour holds for sub-categories.

D. Computing Reachability
D.1. Conic Program Implementation

The optimization problem in (4) is convex, and we solve it as a conic optimization problem using the MOSEK Python API
under an academic license (ApS, 2019). We reformulate (4) as an optimization over the exponential cone:

min
t,a,u

t− β(b>uia + cui)

s.t. a ∈ Au,
∑
j∈Ωtu

uj ≤ 1,

(
uj , 1, β(b>uja + cuj)− t

)
∈ Kexp ∀ j ∈ Ωtu

(5)

The parameters Bu and cu are computed for each user based on the recommender model as described in Section A. For
the LibFM model, we consider user updates with α = 0.1 and λ = 0. Average run times for computing reachability of a
user-item pair in various settings can be found in Table 3.

D.2. Experimental Setup for Computing Reachability

ML 1M We compute max stochastic reachability for the LibFM and KNN preference model. We consider three types of
user action spaces: History Edits, Future Edits, and Next K in which users can strategically modify the ratings associated to
K randomly chosen items from their history, K randomly chosen items from that they have not yet seen, or the top-K unseen
items according to the baseline scores of the preference model. For each of the action spaces we consider K ∈ {5, 10, 20}.
We perform reachability experiments on a random 3% subset of users (176). For each choice of preference model, action
space type and action space size we sample for each user 500 random items that have not been previously rated and are
not action items. For each user-item pair we compute reachability for a range of stochasticity parameters β ∈ {1, 2, 4, 10}.
Note that across all experimental settings we compute reachability for the same subset of users, but different subsets of
randomly selected target items.

We use the ML 1M dataset to primarily gain insights in the role that preference models, item selection stochasticity and
strategic action spaces play in determining the maximum achievable degree of stochastic reachability in a recommender
system.
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Table 3. Reachability run times (in seconds).

NUM. ACTIONS ML 1M (LIBFM) ML 1M (KNN) LASTFM MIND

K = 5 0.82 ± 0.04 9.8 ± 3.4 - -
K = 10 0.87 ± 0.04 10.2 ± 6.1 4.91 ± 0.32 0.44 ± 0.01
K= 20 0.91 ± 0.05 11.4 ± 6.8 - -

LastFM We run reachability experiment for LibFM recommender with Next K = 10 action model and stochasticity
parameter β = 2. We compute ρ? values for 100 randomly sampled users and 500 randomly sampled items from the set
of non-action items (target items can include previously seen items). Unlike the ML 1M dataset, the set of target items is
shared among all users.

MIND We run reachability experiments for LibFM recommender with Next K = 10 action model and stochasticity
parameter β = 2. We compute reachability for all items and users.

Reachability Run Times In Table 3 we present the average clock time for computing reachability for a user-item pair in
the settings described above. Due to internal representation of action spaces as matrices the runtime dependence on the
dimension of the action space is fairly modest. We do not observe significant run time differences between different types of
action spaces. We further add multiprocessing functionality to parallelize reachability computations over multiple target
items.

E. Detailed Experimental Results
E.1. Impact of recommender design

We present further insights in the experimental settings studied in Section 5.2. For ML-1M, we replicate the log scale
scatterplots of ρ? against baseline ρ for all the action spaces (Next K, Random Future, Random History), the full range of
β ∈ {1, 2, 4, 10} and the two preference models: LibFM (Figure 13) and KNN (Figure 14). We observe that for both KNN
and LibFM, random history edits can lead to higher ρ? values. We posit that this increased agency is partly due to the fact
that when editing K items from the history a user edits a larger fraction of total ratings compared to editing K future items.

The most striking feature of KNN reachability results is the strong correlation between baseline ρ and ρ?. The correlations
between baseline and max probability of recommendation is less strong in the case of LibFM. These insights are corroborated
by Figure 15 which compares the average LibFM and KNN user lifts for different choices of action space, action size K,
stochasticity parameter β.

E.2. Bias in movie, music, and news recommendation

We present further results on the settings studied in Section 5.3. We replicate the popularity bias results on ML-1M for
different action spaces and plot the results in Figure 16. We see that the availability bias for KNN is dependent on the
action space, with Random History displaying no or little correlation between popularity and max availability. This is not
surprising given the results in Figure 6.

To systematically study the popularity bias, we compute the Spearman rank-order correlation coefficient to measure the
presence of a monotonic relationship between popularity (as measured by average rating) and availability (either in the
baseline or max case). We also compute the correlation between the popularity and the prevalence in the dataset, as measured
by number of ratings.

The impact of user action spaces is displayed in Figure 17, which plots the correlation between popularity and max
availability for different action spaces. For comparison, the correlation between popularity and baseline availability is just
over 0.8 for all of these settings7, while the correlation with dataset prevalence is 0.346. Table 4 shows these correlation
values across datasets for a fixed action model. In all cases with the LibFM model, the pattern that popularity is less
correlated with max availability than baseline availability holds; however, the correlation with dataset prevalence varies.

7Due to variation in baseline actions, the baseline availability is not exactly the same.
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Figure 13. Log scale scatterplots of ρ? against baseline ρ evaluated for the LibFM preference model.
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Figure 14. Log scale scatterplots of ρ? against baseline ρ evaluated for the KNN preference model.
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Figure 15. Side by side comparison of average user lifts for LibFM (top row)and KNN(bottom row).
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Figure 16. Side by side comparison of baseline and best-case availability of content, across four popularity categories. From left to right:
LibFM preference model with Random Future, KNN preference model with Random Future, LibFM preference model with Random
History, KNN preference model with Random History. Reachability evaluated on ML-1M for with K = 10 and β = 2.
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Figure 17. Comparison of Spearman’s correlation between item popularity and max availability for different action spaces and models.
Reachability evaluated on ML-1M with β = 2.

Table 4. Spearman’s correlation with popularity for Next K with K = 10 and β = 2.

CORR. WITH CORR. WITH CORR. WITH
DATASET MODEL DATASET PREVALENCE BASELINE AVAILABILITY MAX AVAILABILITY

ML-1M LIBFM 0.346280 0.827492 0.501316
ML-1M KNN 0.346280 0.949581 0.942986
MIND LIBFM 0.863992 0.825251 0.435212
LASTFM LIBFM 0.133318 0.671101 0.145949

To investigate experience bias, we similarly compute the Spearman rank-order correlation coefficient to measure the presence
of a monotonic relationship between user experience (as measured by number of items rated) and discovery (either in the
baseline or max case). We observe correlation values of varying sign across datasets and models, and none are particularly
strong (Table 5).

Finally, we investigate gender bias. We compare discovery across user gender for ML-1M and availability across artist
gender for LastFM (Figure 18). We do not observe any trends in either baseline or max values.
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Figure 18. Side by side comparison of baseline and maximum discovery across user gender (left 3 panels) and availability across artist
gender (rightmost panel). Reachability evaluated on ML-1M and LastFM with LibFM model, K = 10, different action spaces, and
β = 2.
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Table 5. Spearman’s correlation with experience for Next K with K = 10 and β = 2.

CORR. WITH CORR. WITH
DATASET MODEL BASELINE DISCOVERY MAX DISCOVERY

ML-1M LIBFM 0.475777 0.530359
ML-1M KNN 0.206556 -0.031929
MIND LIBFM 0.050961 0.112558
LASTFM LIBFM -0.084130 -0.089226


