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A. Technical Lemmas
A.1. Good Event and High-Confidence Argument

We define the good event as

E =

{
∀i ∈ [M ], ∀t ∈ N : |ni(t)µ? − Ui(t)− Regi(t)| ≤ c

√
ni(t) ln

M lnni(t)

δ

}
. (6)

Lemma 5. There is an absolute constant c such that the event E has probability at least 1− δ

Proof. Consider a fixed i ∈ [M ] and write the LHS in the event definition as

ni(t)µ
? − Ui(t)− Regi(t) (7)

=
∑

k∈Ti(t)

(
µ? − rk −max

π′∈Π
E[rk|π′, xk] + E[rk|πk, xk]

)

=
∑

k∈Ti(t)

(
µ? −max

π′∈Π
E[rk|π′, xk]

)
+

∑
k∈Ti(t)

(E[rk|πk, xk]− rk) . (8)

Consider the first sum and let Ft be the sigma-field induced by all variables up to round t, i.e., (Ik, xk, ik, ak, rk)k≤t. Note
that it+1, the learner chosen at t+ 1 is Ft-measurable. Hence, Xk = 1{ik = i}(µ?−maxπ′∈Π E[rk|π′, xk]) ∈ [−1,+1] is
a martingale-difference sequence w.r.t. Fk. We will now apply a Hoeffding-style uniform concentration bound from Howard
et al. (2021). Using the terminology and definition in this article, by case Hoeffding I in Table 4, the process Sk =

∑k
j=1Xk

is sub-ψN with variance process Vk =
∑k
j=1 1{ij = i}/4. Thus by using the boundary choice in Equation (11) of Howard

et al. (2021), we get

Sk ≤ 1.7
√
Vk (ln ln(2Vk) + 0.72 ln(5.2/δ))

= 0.85
√
ni(k) (ln ln(ni(k)/2) + 0.72 ln(5.2/δ))

for all k where Vk ≥ 1 with probability at least 1− δ. Applying the same argument to −Sk gives that∣∣∣∣∣∣
∑

k∈Ti(t)

(
µ? −max

π′∈Π
E[rk|π′, xk]

)∣∣∣∣∣∣ ≤ 3 ∨ 0.85
√
ni(k) (ln ln(ni(k)/2) + 0.72 ln(10.4/δ))

holds with probability at least 1− δ for all t.

Consider now the second term in (8) and let Ft now be the sigma-field induced by all variables up to the reward at round
t + 1, i.e., σ((Ik, xk, ik, ak, rk)k≤t, It+1, xt+1, it+1, at+1). Then Xk = 1{ik = i}(E[rk|πk, xk] − rk) ∈ [−1,+1] is a
martingale-difference sequence w.r.t. Fk and we can apply the same concentration argument as for the first term to get with
probability at least 1− δ for all t∣∣∣∣∣∣

∑
k∈Ti(t)

(E[rk|πk, xk]− rk)

∣∣∣∣∣∣ ≤ 3 ∨ 0.85
√
ni(k) (ln ln(ni(k)/2) + 0.72 ln(10.4/δ)) .

We now take a union bound over both concentration results and i ∈ [M ] and rebind δ → δ/M . Then picking the absolute
constant c sufficiently large gives the desired statement.

A.2. Ancillary Technical Lemmas

Lemma 6. Let (xi)i∈[n] be a sequence of non-negative numbers and let β ∈ (0, 1]. Then

n∑
i=1

xi(∑i
j=1 xj

)1−β ≤
1

β

(
n∑
i=1

xi

)β

13
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Proof. We proceed by induction on n. The n = 1 case is clear. Suppose the statement is true for some n. Since β ≤ 1, the
function f(z) = zβ is concave. Therefore

f

(
n+1∑
i=1

xi

)
≥ f

(
n∑
i=1

xi

)
+ xn+1f

′

(
n+1∑
i=1

xi

)
(
n+1∑
i=1

xi

)β
≥

(
n∑
i=1

xi

)β
+

βxn+1(∑n+1
i=1 xi

)1−β

apply the induction hypothesis:

≥
n+1∑
i=1

βxi(∑i
j=1 xi

)1−β

Lemma 7 (Elliptical potential). Let x1, . . . , xn ∈ Rd and Vt = V0 +
∑t
i=1 xix

>
i and b > 0 then

n∑
t=1

b ∧ ‖xt‖2V −1
t−1

≤ b

ln(b+ 1)
ln

detVn
detV0

≤ (1 + b) ln
detVn
detV0

.

Proof Sketch. The proof is identical to the usual elliptical potential lemma (Lattimore & Szepesvári, 2020, Lemma 19.4)
where b = 1 except that we need to argue that for any b > 0

b ∧ u ≤ c ln(u+ 1)

holds whenever c ≥ b
ln(1+b) . Since ln(1 + ·) is strictly concave and strictly monotonically increasing, it is sufficient for us

to check that this inequality holds at the critical point u = b which is the case.

Lemma 8 (Randomized elliptical potential). Let x1, x2, · · · ∈ Rd and I1, I2, · · · ∈ {0, 1} and V0 ∈ Rd×d be random
variables so that E[Ik|x1, I1, . . . , xk−1, Ik−1, xk, V0] = p for all k ∈ N. Further, let Vt = V0 +

∑t
i=1 Iixix

>
i . Then

n∑
t=1

b ∧ ‖xt‖2V −1
t−1

≤ 1 ∨ 2.9
b

p

(
1.4 ln ln (2bn ∨ 2) + ln

5.2

δ

)
+

2

p
(1 + b) ln

detVn
detV0

=
4

p
(1 + b) ln

ln(2bn ∨ 2)5.2 detVn
δ detV0

holds with probability at least 1− δ for all n simultaneously.

Proof. We decompose the sum of squares as

n∑
t=1

b ∧ ‖xt‖2V −1
t−1

=
1

p

n∑
t=1

(bIt ∧ ‖Itxt‖2V −1
t−1

) +
1

p

n∑
t=1

(p− It)(b ∧ ‖xt‖2V −1
t−1

) (9)

The first term can be controlled using the standard elliptical potential lemma in Lemma 7 as

1

p

n∑
t=1

(bIt ∧ ‖Itxt‖2V −1
t−1

) ≤ 1

p

n∑
t=1

(b ∧ ‖Itxt‖2V −1
t−1

) ≤ 1

p
(1 + b) ln

detVn
detV0

.

For the second term, we apply an empirical variance uniform concentration bound. Let Fi−1 =

σ(V0, x1, I1, . . . , xi−1, Ii−1, xi) be the sigma-field up to before the i-th indicator. Let Yi = 1
p (p − Ii)

(
‖xi‖2V −1

i−1

∧ b
)

14
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which is a martingale difference sequence because E[Yi|Fi−1] = 0 and consider the process St =
∑t
i=1 Yi with variance

process

Wt =

t∑
i=1

E[Y 2
i |Fi−1] =

t∑
i=1

1

p2

(
‖xi‖2V −1

i−1

∧ b
)2

E[(p− Ii)2|Fi−1]

=
1− p
p

t∑
i=1

(
‖xi‖2V −1

i−1

∧ b
)2

≤ b

p

t∑
i=1

(
‖xi‖2V −1

i−1

∧ b
)
≤ tb2

p
.

Note that Yt ≤ b and therefore, St satisfies with variance process Wt the sub-ψP condition of Howard et al. (2021) with
constant c = b (see Bennett case in Table 3 of Howard et al. (2021)). By Lemma 9 below, the bound

St ≤ 1.44

√
(Wt ∨m)

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
+ 0.41b

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
holds for all t ∈ N with probability at least 1− δ. We set m = b

p and upper-bound the RHS further as

1.44

√√√√ b

p

(
1 ∨

t∑
i=1

(
b ∧ ‖xi‖2V −1

i−1

))(
1.4 ln ln (2bt ∨ 2) + ln

5.2

δ

)

+ 0.41b

(
1.4 ln ln (2bt ∨ 2) + ln

5.2

δ

)
≤ 1

2

(
1 ∨

t∑
i=1

(
b ∧ ‖xi‖2V −1

i−1

))
+ 1.45

b

p

(
1.4 ln ln (2bt ∨ 2) + ln

5.2

δ

)
,

where the inequality is an application of the AM-GM inequality. Thus, we have shown that with probability at least 1− δ,
for all n, the second term in (9) is bounded as

1

p

n∑
t=1

(p− It)(b ∧ ‖xt‖2V −1
t−1

) ≤ 1

2

(
1 ∨

n∑
i=1

(
‖xi‖2V −1

i−1

∧ b
))

+ Z.

where Z = 1.45 bp
(
1.4 ln ln (2bn ∨ 2) + ln 5.2

δ

)
. And when combining all bounds on the sum of squares term in (9), we get

that either
∑n
i=1

(
‖xi‖2V −1

i−1

∧ b
)
≤ 1 or

n∑
i=1

(
‖xi‖2V −1

i−1

∧ b
)
≤ 2Z +

2

p
(1 + b) ln

detVn
detV0

≤ 4

p
(1 + b) ln

ln(2bn ∨ 2)5.2 detVn
δ detV0

which gives the desired statement.

Lemma 9 (Uniform empirical Bernstein bound). In the terminology of Howard et al. (2021), let St =
∑t
i=1 Yi be a sub-ψP

process with parameter c > 0 and variance process Wt. Then with probability at least 1− δ for all t ∈ N

St ≤ 1.44

√
(Wt ∨m)

(
1.4 ln ln

(
2

(
Wt

m
∨ 1

))
+ ln

5.2

δ

)
+ 0.41c

(
1.4 ln ln

(
2

(
Wt

m
∨ 1

))
+ ln

5.2

δ

)
where m > 0 is arbitrary but fixed.
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Proof. Setting s = 1.4 and η = 2 in the polynomial stitched boundary in Equation (10) of Howard et al. (2021) shows that
uc,δ(v) is a sub-ψG boundary for constant c and level δ where

uc,δ(v) = 1.44

√
(v ∨ 1)

(
1.4 ln ln (2(v ∨ 1)) + ln

5.2

δ

)
+ 1.21c

(
1.4 ln ln (2(v ∨ 1)) + ln

5.2

δ

)
.

By the boundary conversions in Table 1 in Howard et al. (2021) uc/3,δ is also a sub-ψP boundary for constant c and level δ.
The desired bound then follows from Theorem 1 by Howard et al. (2021).

B. Regret Analysis for Simplified Dynamic Balancing Algorithm
In this section, we provide analysis for a simplified version of Algorithm 1. This method (Algorithm 2) does not employ the
balancing coefficients vi or the biases bi(t) (i.e. vi = 1, bi(t) = 0) and modifies the activation condition in a subtle way.
The new activation condition is:

ηi(t) + γi(t) +
Ri(ni(t))

ni(t)
≥ max
j∈[M ]

ηj(t)− γj(t)

The change is that γj(t) is now subtracted on the RHS rather than added. Although this loosens some bounds, it can yield
simpler and more intuitive analysis. In particular, since bi(t) = 0 for all i and t, we are able to argue that a well-specified
learner will never become inactive. This makes the balancing condition becomes more powerful as the optimal well-specified
learner is always being compared against when choosing which learner to play at any given iteration. This background helps
inform the general analysis of Algorithm 1 in which we combine all desired properties into a single setting of the parameters
in Section C

B.1. Well-Specified Learners Remain Active

Lemma 10 (Well-specified learners always active when bias is zero). When Algorithm 2 is used without biases (bi(t) = 0),
then all well-specified learners are active in all rounds in event E .

Proof. Without biases, the condition for learner i to be active in round t+ 1 evaluates to

Ui(t)

ni(t)
+
Ri(ni(t))

ni(t)
+ c

√
ln(M lnni(t)/δ)

ni(t)
≥ max
j∈[M ]

Uj(t)

nj(t)
− c

√
ln(M lnnj(t)/δ)

nj(t)
. (10)

Now, by the definition of event E , we have for every learner j ∈ [M ],

µ? − Uj(t)

nj(t)
+ c

√
ln(M lnnj(t)/δ)

nj(t)
≥ Regi(t)

nj(t)
≥ 0,

which implies that the RHS of Equation 10 is upper-bounded by the optimal expected reward µ∗. Similarly, we turn to the
LHS and bound

Ui(t)

ni(t)
+
Ri(ni(t))

ni(t)
+ c

√
ln(M lnni(t)/δ)

ni(t)
− µ∗ ≥ Ui(t)

ni(t)
+

Regi(t)

ni(t)
+ c

√
ln(M lnni(t)/δ)

ni(t)
− µ∗ ≥ 0,

where we first used the fact that i ∈ G is well-specified and then applied the definition of E . This implies that the LHS of
Equation 10 is lower-bounded by µ∗. Thus, i ∈ G has to be active in t+ 1. Since this holds for all t and I1 = [M ], we have
shown the desired statement.
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Algorithm 2: Simplified Dynamic Balancing Algorithm
input :M base learners

Candidate regret bound Ri for each learner
Confidence parameter δ ∈ (0, 1)

1 Ui(0) = ni(0) = 0 for all i ∈ [M ]
2 Active set: I1 ← [M ]
3 for round t = 1, 2, . . . do
4 Select learner from active set as

it ∈ argmin
i∈It

Ri(ni(t− 1))

5 Play action at of learner it and receive reward rt
6 Update learner it with rt
7 Update ni(·) and Ui(·) :

Uit(t)← Uit(t− 1) + rt
nit(t)← nit(t− 1) + 1

8 foreach learner i ∈ [M ] do
9 Compute adjusted avg. reward:

ηi(t)← Ui(t)
ni(t)

10 Compute confidence band:

γi(t)← c
√

ln(M lnni(t)/δ)
ni(t)

11 Set active learners It+1 as all i ∈ [M ] that satisfy

ηi(t) + γi(t) +
Ri(ni(t))

ni(t)
≥ max
j∈[M ]

ηj(t)− γj(t) ; // Note the sign compared to Algorithm 1

B.2. Regret Contribution of Any Active Learner

Lemma 11. In all rounds t of Algorithm 2, the regret of any learner i ∈ It+1 that is active in the next round can be bounded
in event E as

Regi(t) ≤ Ri(ni(t)) +
ni(t)

nj(t)
(Regj(t)− 1 {j /∈ It+1}Rj(nj(t)))

+ 2c

√
ni(t) ln

M ln t

δ

(
1 + 1 {j ∈ It+1}

√
ni(t)

nj(t)

)
,

where c is a universal constant and j ∈ [M ] is any learner.

Proof. Since i ∈ It+1 is active, it satisfies

Ui(t)

ni(t)
+ c

√
ln(M lnni(t)/δ)

ni(t)
+
Ri(ni(t))

ni(t)
≥ max
h∈[M ]

Uh(t)

nh(t)
− c

√
ln(M lnnh(t)/δ)

nh(t)
.

Let j ∈ [M ] be an arbitrary base learner. If j /∈ It+1 is inactive, then

Uj(t)

nj(t)
+ c

√
ln(M lnnj(t)/δ)

nj(t)
+
Rj(nj(t))

nj(t)
≤ max
h∈[M ]

Uh(t)

nh(t)
− c

√
ln(M lnnh(t)/δ)

nh(t)
,

and otherwise

Uj(t)

nj(t)
− c

√
ln(M lnnj(t)/δ)

nj(t)
≤ max
h∈[M ]

Uh(t)

nh(t)
− c

√
ln(M lnnh(t)/δ)

nh(t)
,
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Combining all inequalities above yields

Ui(t)

ni(t)
+ c

√
ln(M lnni(t)/δ)

ni(t)
+
Ri(ni(t))

ni(t)

≥ Uj(t)

nj(t)
− (1 {j ∈ It+1} − 1 {j /∈ It+1})c

√
ln(M lnnj(t)/δ)

nj(t)
+ 1 {j /∈ It+1}

Rj(nj(t))

nj(t)
.

Subtracting µ? from both sides and rearranging terms gives

µ? − Ui(t)

ni(t)
− c

√
ln(M lnni(t)/δ)

ni(t)
− Ri(ni(t))

ni(t)

≤ µ? − Uj(t)

nj(t)
+ (1 {j ∈ It+1} − 1 {j /∈ It+1})c

√
ln(M lnnj(t)/δ)

nj(t)
− 1 {j /∈ It+1}

Rj(nj(t))

nj(t)
.

Applying the definition of E , we obtain an inequality in terms of pseudo-regrets:

Regi(t)

ni(t)
− 2c

√
ln(M lnni(t)/δ)

ni(t)
− Ri(ni(t))

ni(t)

≤
Regj(t)

nj(t)
+ (1 + 1 {j ∈ It+1} − 1 {j /∈ It+1})c

√
ln(M lnnj(t)/δ)

nj(t)
− 1 {j /∈ It+1}

Rj(nj(t))

nj(t)
.

Multiplying both sides by ni(t) and rearranging terms gives

Regi(t) ≤ Ri(ni(t)) +
ni(t)

nj(t)
(Regj(t)− 1 {j /∈ It+1}Rj(nj(t)))

+ 2c

√
ni(t) ln

M ln t

δ

(
1 + 1 {j ∈ It+1}

√
ni(t)

nj(t)

)
.

Corollary 12. In all rounds t of Algorithm 2, the regret of any learner i ∈ It+1 that is active in the next round can be
bounded in event E as

Regi(t) ≤ Ri(ni(t)) + 1 {? ∈ It+1}
ni(t)

n?(t)
Reg?(t)

+ 2c

√
ni(t) ln

M ln t

δ

(
1 + 1 {? ∈ It+1}

√
ni(t)

n?(t)

)
,

where c is a universal constant and ? ∈ G is any well-specified learner.

Proof. This statement follows immediately from Lemma 11 by noting that since ? is well-specified, it satisfies Reg?(t) ≤
R?(n?(t)).

B.3. Regret Contribution with Regret Bounds of the form εiC1n+ C2
√
n

While for most of this paper, we consider regret bounds of the form Cdin
β , we now provide a sketch for the case where

learners have regret bounds of the form

Ri(n) = εiC1n+ C2

√
n,

which naturally occur in approximately linear bandits and MDPs. We decompose the regret of Algorithm 2 as

Reg(T ) =
∑
i∈G

Regi(ti) +
∑
i∈B

Regi(ti) ≤M +
∑
i∈G

Regi(t̃i) +
∑
i∈B

Regi(t̃i),
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where ti is the last time up to T that learner i was played and t̃i = ti − 1. Now by Lemma 10, the learner ? ∈ G is active in
all rounds and thus, by the learner selection criterion∑

i∈G
Regi(t̃i) ≤

∑
i∈G

Ri(ni(t̃i)) ≤
∑
i∈G

R?(n?(t̃i)) ≤WR?(T ) .

Further, for misspecified learners, we can apply Corollary 12 from above to bound

Regi(t̃i) ≤ Ri(ni(t̃i)) +
ni(t̃i)

n?(t̃i)
Reg?(t̃i) + 2c

√
ni(t̃i) ln

M lnT

δ

(
1 +

√
ni(t̃i)

n?(t̃i)

)

≤ R?(n?(t̃i)) +
ni(t̃i)

n?(t̃i)
R?(n?(t̃i)) + 2c

√
ni(t̃i) ln

M lnT

δ

(
1 +

√
ni(t̃i)

n?(t̃i)

)

Also note that we can distinguish two regimes for each regret bound:

εiC1n ≤ Ri(n) ≤ 2εiC1n when
√
n ≥ C2

C1εi

C2

√
n ≤ Ri(n) ≤ 2C2

√
n when

√
n ≤ C2

C1εi

We now go through different cases distinguishing which regime R?(n?(t̃i)) and Ri(ni(t̃i)) are in.

Case ? in linear regime: Here, we have

ni(t̃i)

n?(t̃i)
R?(n?(t̃i)) ≤ 2ε?C1ni(t̃i) and

ni(t̃i)√
n?(t̃i)

≤ C1ε?
C2

ni(t̃i)

because 1√
n?(t̃i)

≤ C1ε?
C2

. This gives

Regi(t̃i) ≤ ε?C1n?(t̃i) + 2ε?C1ni(t̃i) + 2c

√
ni(t̃i) ln

M lnT

δ
+ 2c

√
ln
M lnT

δ

C1ε?
C2

ni(t̃i) .

Case ? in square-root regime and i in linear regime: Here, we have
√
n?(t̃i) ≤ C2

C1ε?
and

√
ni(t̃i) ≥ C2

C1εi
≥ C2

C1ε?
≥√

n?(t̃i) where we used that if i is misspecified then εi ≤ ε?. The balancing condition implies

C1εini(t̃i) ≤ Ri(ni(t̃i)) ≤ R?(n?(t̃i)) ≤ 2C2

√
n?(t̃i)

and thus

ni(t̃i)√
n?(t̃i)

≤ 2C2

C1εi
≤ 2

√
ni(t̃i) .

This yields

Regi(t̃i) ≤ 6C2

√
ni(t̃i) + 6c

√
ni(t̃i) ln

M lnT

δ
.

Case ? and i in square-root regime: Here we have by the balancing condition

C2

√
ni(t̃i) ≤ Ri(ni(t̃i)) ≤ R?(n?(t̃i)) ≤ 2C2

√
n?(t̃i) .
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and thus ni(t̃i)

n?(t̃i)
≤ 4.

Regi(t̃i) ≤ 5C2

√
ni(t̃i) + 6c

√
ni(t̃i) ln

M lnT

δ
.

Combining the bounds in all cases yields

Regi(t̃i) ≤ ε?C1n?(t̃i) + 2ε?C1ni(t̃i) + 6C2

√
ni(t̃i) + 6c

√
ni(t̃i) ln

M lnT

δ
+ 2c

√
ln
M lnT

δ

C1ε?
C2

ni(t̃i)

and summing over all i ∈ B∑
i∈B

Regi(t̃i) ≤ ε?C1

∑
i∈B

n?(t̃i) + 2ε?C1

∑
i∈B

ni(t̃i) + 6C2

∑
i∈B

√
ni(t̃i)

+ 6c
∑
i∈B

√
ni(t̃i) ln

M lnT

δ
+ 2c

∑
i∈B

√
ln
M lnT

δ

C1ε?
C2

ni(t̃i)

≤ε?C1T

(
B + 2 +

2c

C2

√
ln
M lnT

δ

)
+ 6C2

√
BT + 6c

√
BT ln

M lnT

δ
.

Therefore, the total regret of Algorithm 2 is bounded as

Reg(T ) ≤M + ε?C1T

(
M + 2 +

2c

C2

√
ln
M lnT

δ

)
+ 6MC2

√
T + 6c

√
BT ln

M lnT

δ

B.4. Regret Contribution of Misspecified Learners

We now show that the regret contribution of a learner that is significantly misspecified can be bounded by a gap-dependent
quantity with logarithmic dependency on T . We first carry out the argument for the special case of

√
n candidate regret

learners and subsequently generalize the result to nβ in Lemma 14.

Lemma 13. Assume candidate regret bounds of the form Ri(n) = Cdi
√
n and let ∆ = Regi(t̃i)

ni(t̃i)
where t̃i = ti − 1 with ti

being the last round where learner i was played. Then the total regret contributed by learner i in T rounds of Algorithm 2 is
bounded by

Regi(T ) ≤1 +
5C2d2

i + 20c2 ln M lnT
δ

∆
+ 1 {? ∈ Iti}

d2
?

d2
i

5C2d2
? + 20c2 ln M lnT

δ

∆

in event E where c is a universal constant and ? ∈ [M ] is any well-specified learner..

Proof. Let ti be the last time learner i was played up to round T and t̃i = ti − 1. By Corollary 12, the regret of i is bounded
as

Regi(t̃i) ≤ Cdi
√
ni(t̃i) + 1 {? ∈ Iti}

ni(t̃i)

n?(t̃i)
Cd?

√
n?(t̃i)

+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

1 + 1 {? ∈ Iti}

√
ni(t̃i)

n?(ti)

 ,

where we used the form of the regret bounds Ri(ni(t̃i)) ≤ Cdi
√
ni(t̃i). If ? was active in round ti then the selection

criterion implies Ri(ni(ti − 1)) ≤ R?(n?(ti − 1)) because i was played in ti. Plugging in the form of both regret bounds
and rearranging terms then gives

√
ni(t̃i)/n?(t̃i) ≤ d?/di. Applying this bound to the regret bound above gives

Regi(t̃i) ≤ Cdi
√
ni(t̃i) + 1 {? ∈ Iti}

√
ni(t̃i)C

d2
?

di
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+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

(
1 + 1 {? ∈ Iti}

d?
di

)

=

√
ni(t̃i)

(
Cdi + 2c

√
ln
M ln t̃i
δ

+ 1 {? ∈ Iti}

C d2
?

di
+
d?
di

2c

√
ln
M ln t̃i
δ

).
The inequality has the form Regi(t̃i) ≤

√
ni(t̃i)D. Since i has linear regret, we further have ∆ni(t̃i) ≤ Regi(t̃i) which

implies that
√
ni(t̃i) ≤ D/∆ and Regi(t̃i) ≤ D2

∆ . When we write out the full expression for D, we have

Regi(t̃i) ≤
1

∆

(
Cdi + 2c

√
ln
M ln t̃i
δ

+ 1 {? ∈ Iti}

C d2
?

di
+
d?
di

2c

√
ln
M ln t̃i
δ

)2

≤
5C2d2

i + 20c2 ln M ln t̃i
δ

∆
+ 1 {? ∈ Iti}

d2
?

d2
i

5C2d2
? + 20c2 ln M ln t̃i

δ

∆

where the last inequality follows from (
∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i , an application of Cauchy-Schwarz inequality. Finally,

since ti is the last round where i was played, Regi(T ) = Regi(ti) ≤ Regi(t̃i) + 1, which finishes the proof.

Lemma 14. Assume candidate regret bounds of the form Ri(n) = Cdin
β and let ∆ = Regi(t̃i)

ni(t̃i)
where t̃i = ti − 1 with ti

being the last round where learner i was played. Then the total regret contributed by learner i in T rounds of Algorithm 2 is
bounded by

Regi(T ) ≤ 2(1− β) (Cdi)
1

1−β

(
12β

∆

) β
1−β

+ 1 {? ∈ Iti} 2(1− β) (Cd?)
1

1−β

(
d?
di

) 1
β
(

12β

∆

) β
1−β

+
16c2

∆
ln
M lnT

δ
+ 1 {? ∈ Iti}

16c2

∆
ln
M lnT

δ

(
d?
di

) 1
β

+ 1

in event E where c is a universal constant and ? ∈ [M ] is any well-specified learner.

Proof. Let ti be the last time learner i was played up to round T and t̃i = ti − 1. By Corollary 12, the regret of i at round t̃i
is bounded as

Regi(t̃i) ≤ Cdini(t̃i)β + 1 {? ∈ Iti}
ni(t̃i)

n?(t̃i)
Cd?n?(t̃i)

β

+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

1 + 1 {? ∈ Iti}

√
ni(t̃i)

n?(ti)

 ,

where we used the form of the regret bounds Ri(ni(t̃i)) ≤ Cdi
√
ni(t̃i). If ? was active in round ti then the selection

criterion implies Ri(ni(ti − 1)) ≤ R?(n?(ti − 1)) because i was played in ti. Plugging in the form of both regret bounds

and rearranging terms then gives ni(t̃i)

n?(t̃i)
≤
(
d?
di

)1/β

. Applying this bound to the regret bound above gives

Regi(t̃i) ≤ Cdini(t̃i)β + ni(t̃i)
β1 {? ∈ Iti}Cd?

(
d?
di

) 1−β
β

+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

(
1 + 1 {? ∈ Iti}

(
d?
di

) 1
2β

)

= ni(t̃i)
β

(
Cdi + 1 {? ∈ Iti}Cd?

(
d?
di

) 1−β
β

)
︸ ︷︷ ︸

D1
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+

√
ni(t̃i)2c

√
ln
M ln t̃i
δ

(
1 + 1 {? ∈ Iti}

(
d?
di

) 1
2β

)

= ni(t̃i)
β

(
Cdi + 1 {? ∈ Iti}Cd?

(
d?
di

) 1−β
β

)
︸ ︷︷ ︸

D′1

+

√
ni(t̃i)2c

√
ln
M ln t̃i
δ

(
1 + 1 {? ∈ Iti}

(
d?
di

) 1
2β

)
︸ ︷︷ ︸

D2

.

We now use the assumption that learner i has linear regret and thus ∆ni(t̃i) ≤ Regi(t̃i). We can therefore subtract ∆
2 ni(t̃i)

from both sides of the inequality above and get

1

2
Regi(t̃i) ≤

(
ni(t̃i)

βD1 −
∆

4
ni(t̃i)

)
+

(√
ni(t̃i)D2 −

∆

4
ni(t̃i)

)
=

(
ni(t̃i)

βD′1 −
∆

4
ni(t̃i)

)
+

(√
ni(t̃i)D2 −

∆

4
ni(t̃i)

)
.

Let us first consider the second term above, which we bound as follows√
ni(t̃i)D2 −

∆

4
ni(t̃i) ≤ max

x≥0

(√
xD2 −

∆

4
x

)
=
D2

2

∆

since the maximum is attained at
√
x = 2D2

∆ . Similarly, we can bound the first term as

ni(t̃i)
βD1 −

∆

4
ni(t̃i) ≤ max

x≥0

(
xβD1 −

∆

4
x

)
= max

x≥0
xβ
(
D1 −

∆

4
x1−β

)
=

(
4βD1

∆

) β
1−β

(1− β)D1

where the maximum is attained at x1−β = 4βD1

∆ . This bound holds both for D1 and D′1. Combining the bounds for both
terms yields

Regi(t̃i) ≤ 2(1− β)D
1

1−β
1

(
4β

∆

) β
1−β

+ 2
D2

2

∆
and

Regi(t̃i) ≤ 2(1− β)D′1
1

1−β

(
4β

∆

) β
1−β

+ 2
D2

2

∆
.

Now, by Hölder’s inequality

D2
2 ≤ 8c2 ln

M ln t̃i
δ

+ 8c21 {? ∈ Iti} ln
M ln t̃i
δ

(
d?
di

) 1
β

,

(D′1)
1

1−β ≤
(
2βCdi

) 1
1−β + 1 {? ∈ Iti}

(
2βCd?

) 1
1−β

(
d?
di

) 1
β

,

(D1)
1

1−β ≤
(
3βCdi

) 1
1−β + 1 {? ∈ Iti}

(
3βCd?

) 1
1−β

(
d?
di

) 1
β

.

Finally, combining all expressions yields the desired bound

Regi(t̃i) ≤ 2(1− β) (Cdi)
1

1−β

(
12β

∆

) β
1−β

+ 1 {? ∈ Iti} 2(1− β) (Cd?)
1

1−β

(
d?
di

) 1
β
(

12β

∆

) β
1−β

+
16c2

∆
ln
M lnT

δ
+ 1 {? ∈ Iti}

16c2

∆
ln
M lnT

δ

(
d?
di

) 1
β
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B.5. Main Regret Bounds Without Biases

B.5.1. WORST-CASE BOUND

This appendix contains the proofs our main regret bounds for Algorithm 2. Our main bound is:

Corollary 15 (Worst-Case Regret Bound without Biases). Assume that Ri(n) = Cdin
β with di ≥ 1 for all learners

i ∈ [M ]. Then the regret of Algorithm 2 is bounded with probability at least 1− δ for all rounds T ∈ N as

Reg(T ) ≤ Õ
((

M +B1−βd
1
β−1
?

)
R?(T ) + 4cd

1
2β
?

√
BT

)
,

where ? ∈ G is any well-specified learner.

Instead of proving Corollary 15 directly, we show the following version that can be sharper in some cases:

Theorem 16 (Worst-Case Regret Bound without Biases). Assume that Ri(n) = Cdin
β with di ≥ 1 and bi(t) = 0 for all

learners i ∈ [M ]. Then the regret of Algorithm 2 is bounded with probability at least 1− δ for all rounds T ∈ N as

Reg(T ) ≤

M +

(∑
i∈B

d
1/β
?

d
1/β
i

)1−β
Cd?T

β + 2c

√
BT ln

M lnT

δ
+ 2c

√√√√∑
i∈B

(
d?
di

) 1
β

√
T ln

M lnT

δ
+M .

where ? ∈ G is any well-specified learner.

Proof. We decompose the regret of Algorithm 2 as

Reg(T ) =
∑
i∈G

Regi(ti) +
∑
i∈B

Regi(ti) ≤M +
∑
i∈G

Regi(t̃i) +
∑
i∈B

Regi(t̃i).

We now bound the regret of well-specified learners as

∑
i∈G

Regi(t̃i) ≤
∑
i∈G

Ri(ni(t̃i)) =
∑
i∈G

Ri(ni(ti − 1))
(i)

≤
∑
i∈G

R?(n?(ti − 1)) ≤WCd?T
β ,

where step (i) uses the fact that i was played in round ti and ? ∈ G was active (by Lemma 10). For misspecified learners,
we apply Corollary 12 to bound their regret contribution as

∑
i∈B

Regi(t̃i) ≤
∑
i∈B

Ri(ni(t̃i)) +
∑
i∈B

ni(t̃i)

n?(t̃i)
Reg?(t̃i) + 2c

∑
i∈B

√
ni(t̃i) ln

M ln t̃i
δ

(
1 +

√
ni(t̃i)

n?(t̃i)

)

≤
∑
i∈B

Ri(ni(t̃i))︸ ︷︷ ︸
(A)

+ Cd?
∑
i∈B

ni(t̃i)

n?(t̃i)
n?(t̃i)

β

︸ ︷︷ ︸
(B)

+ 2c

√
ln
M lnT

δ

∑
i∈B

√
ni(t̃i)

(
1 +

√
ni(t̃i)

n?(t̃i)

)
︸ ︷︷ ︸

(C)

.

Before we bound each term (A), (B) and (C) individually, we first derive a bound on ni(t̃i)

n?(t̃i)
. Note that learner i was played

in round t̃i + 1 and ? is well-specified and thus active in round t̃i + 1 (by Lemma 10). Therefore, by the learner selection
criterion Cdini(t̃i)β = Ri(ni(t̃i)) ≤ R?(n?(t̃i)) = Cd?n?(t̃i)

β . Rearranging this condition yields

ni(t̃i)

n?(t̃i)
≤
(
d?
di

) 1
β

.

We now bound each term as

(A) ≤
∑
i∈B

R?(n?(t̃i)) ≤ BR?(T ) = BCd?T
β ,
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(B) =
∑
i∈B

(
ni(t̃i)

n?(t̃i)

)1−β

ni(t̃i)
β ≤

∑
i∈B

(
d?
di

) 1−β
β

ni(t̃i)
β ≤

∑
i∈B

(
d?
di

) 1−β
β

ni(t̃i)
β

≤

(∑
i∈B

d
1/β
?

d
1/β
i

)1−β (∑
i∈B

ni(t̃i)

)β
≤ d

1
β−1
?

(∑
i∈B

1

d
1/β
i

)1−β

T β ≤ d
1
β−1
? B1−βT β ,

(C) ≤
∑
i∈B

√
ni(t̃i)

(
1 +

(
d?
di

) 1
2β

)
≤
√
BT +

√
T

√√√√∑
i∈B

(
d?
di

) 1
β

≤
√
BT + d

1
2β
?

√
T

√√√√∑
i∈B

(
1

di

) 1
β

≤
√
BT + d

1
2β
?

√
BT .

Combining all terms above bounds the total regret contribution of misspecified learners as

∑
i∈B

Regi(t̃i) ≤ d
1
β
?

(∑
i∈B

1

d
1/β
i

)1−β

CT β +BCd?T
β + 2c

√
BT ln

M lnT

δ
+ 2c

√√√√∑
i∈B

(
d?
di

) 1
β

√
T ln

M lnT

δ
,

which yields a total regret bound of

Reg(T ) ≤

M +

(∑
i∈B

d
1/β
?

d
1/β
i

)1−β
Cd?T

β + 2c

√
BT ln

M lnT

δ
+ 2c

√√√√∑
i∈B

(
d?
di

) 1
β

√
T ln

M lnT

δ
+M .

B.5.2. GAP-DEPENDENT BOUND

Corollary 17 (Gap-Dependent Regret Bound without Biases). Assume that Ri(n) = Cdin
β with di ≥ 1 for all learners

i ∈ [M ]. Let us further assume that all misspecified learners i ∈ B have regret Regi(t) bounded from below as
Regi(t) ≥ ∆ini(t), for some constants ∆i > 0. Then the regret of Algorithm 2 with bi(t) = 0 for all i ∈ [M ] and t ∈ [T ]
is bounded with probability at least 1− δ for all rounds T ∈ N as

Reg(T ) ≤ Õ

min

{
WR?(T ),

∑
i∈G

Regi(T )

}
+
∑
i∈B

(
C(di + d

1/β
? d

1−1/β
i )

∆β
i

) 1
1−β

+
∑
i∈B

d
1/β
?

∆i


where c is a universal constant, ? ∈ G is any well-specified learner, and W = |G| ≤ M is the number of well-specified
learners.

This corrollary is a simplified version of this stronger bound:

Theorem 18 (Gap-Dependent Regret Bound without Biases). Assume that Ri(n) = Cdin
β with di ≥ 1 for all learners

i ∈ [M ]. Let us further assume that all misspecified learners i ∈ B have regret Regi(t) bounded from below as
Regi(t) ≥ ∆ini(t), for some constants ∆i > 0. Then the regret of Algorithm 2 is bounded with probability at least 1− δ
for all rounds T ∈ N as

Reg(T ) ≤ min

{
WR?(T ),

∑
i∈G

Regi(T )

}

+ 2(1− β)C
1

1−β
∑
i∈B

(
12β

∆i

) β
1−β

d 1
1−β
i +

d
1

β(1−β)
?

d
1
β

i

+ ln
M lnT

δ

∑
i∈B

16c2

∆i

(
1 +

d
1/β
?

d
1/β
i

)
+M ,

where c is a universal constant, ? ∈ G is any well-specified learner, and W = |G| ≤ M is the number of well-specified
learners.
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Proof. We decompose the regret of Algorithm 2 as

Reg(T ) =
∑
i∈G

Regi(ti) +
∑
i∈B

Regi(ti) ≤W +
∑
i∈G

Regi(t̃i) +
∑
i∈B

Regi(T ).

We now bound the regret of well-specified learners as∑
i∈G

Regi(t̃i) ≤
∑
i∈G

Ri(ni(t̃i)) =
∑
i∈G

Ri(ni(ti − 1))
(i)

≤
∑
i∈G

R?(n?(ti − 1)) ≤WCd?T
β ,

where step (i) uses the fact that i was played in round ti and ? ∈ G was active (by Lemma 10). For misspecified learners,
we apply Lemma 14 to bound their regret contribution as

∑
i∈B

Regi(T ) ≤ B + 2(1− β)
∑
i∈B

(
12β

∆i

) β
1−β

C
1

1−β

d 1
1−β
i +

d
1

1−β+ 1
β

?

d
1
β

i

+ ln
M lnT

δ

∑
i∈B

16c2

∆i

(
1 +

d
1/β
?

d
1/β
i

)
.

Combining all terms above bounds the total regret as

Reg(T ) ≤ min

{
WCd?T

β ,
∑
i∈G

Regi(T )

}

+ 2(1− β)
∑
i∈B

(
12β

∆i

) β
1−β

C
1

1−β

d 1
1−β
i +

d
1

1−β+ 1
β

?

d
1
β

i

+ ln
M lnT

δ

∑
i∈B

16c2

∆i

(
1 +

d
1/β
?

d
1/β
i

)
+M .

C. Regret Analysis for General Dynamic Balancing Algorithm (Algorithm 1)
In this section we provide the regret analysis of Algorithm 1. In particular, this analysis will prove Theorem 1 in Corollary 23
and 30 respectively. Note that the Theorems presented in the main text are simplified versions of the results presented here.

Further, all the results in this section assume that the value c is the same absolute constant present in Lemma 5 and Equation 6
and all results hold on event E (which holds with probability at least 1− δ).

The procedure is described in Algorithm 1. Note first of all that It is never empty so long as Ri(ni(t)) ≥ 0 for all i, as it
will always be the case that the learner which maximizes ηi(t) + γi(t) will be active.

C.1. Regret Contribution of Individual Base Learners

Now we proceed to analyze the algorithm, by first providing a refinement of Lemma 11, which applied only to the simplified
version of the method, Algorithm 2.

Lemma 19 (Regret contribution of any active learner). In all rounds t of Algorithm 1, the regret of any learner i ∈ It+1

that is active in the next round can be bounded in event E as

Regi(t) ≤ Ri(ni(t)) +
ni(t)

nj(t)
(Regj(t)− 1 {j /∈ It+1}Rj(nj(t))) + ni(t)(bj(t)− bi(t)) + 2c

√
ni(t) ln

M ln t

δ
,

where c is a universal constant and j ∈ [M ] is any learner.

Proof. Since i ∈ It+1 is active, it satisfies

Ui(t)

ni(t)
+ γi(t) +

Ri(ni(t))

ni(t)
− bi(t) ≥ max

h∈[M ]

Uh(t)

nh(t)
+ γh(t)− bh(t) .

Let j ∈ [M ] be an arbitrary base learner. If j /∈ It+1 is inactive, then

Uj(t)

nj(t)
+ γj(t) +

Rj(nj(t))

nj(t)
− bj(t) ≤ max

h∈[M ]

Uh(t)

nh(t)
+ γh(t)− bh(t) ,
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and otherwise we still have

Uj(t)

nj(t)
+ (1− 2ρ)γj(t)− bj(t) ≤ max

h∈[M ]

Uh(t)

nh(t)
+ γh(t)− bh(t) ,

Combining all inequalities above yields

Ui(t)

ni(t)
+ γi(t) +

Ri(ni(t))

ni(t)
− bi(t) ≥

Uj(t)

nj(t)
+ γj(t) + 1 {j /∈ It+1}

Rj(nj(t))

nj(t)
− bj(t) .

Adding µ? from both sides and rearranging terms gives

µ? − Ui(t)

ni(t)
− γi(t)−

Ri(ni(t))

ni(t)
+ bi(t)

≤ µ? − Uj(t)

nj(t)
− γj(t)− 1 {j /∈ It+1}

Rj(nj(t))

nj(t)
.

Applying the definition of E , we obtain an inequality in terms of pseudo-regrets:

Regi(t)

ni(t)
− 2γi(t)−

Ri(ni(t))

ni(t)
+ bi(t)

≤
Regj(t)

nj(t)
− 1 {j /∈ It+1}

Rj(nj(t))

nj(t)
+ bj(t) .

Multiplying both sides by ni(t) and rearranging terms gives

Regi(t) ≤ Ri(ni(t)) +
ni(t)

nj(t)
(Regj(t)− 1 {j /∈ It+1}Rj(nj(t))) + ni(t)(bj(t)− bi(t))

+ 2c

√
ni(t) ln

M ln t

δ
.

Corollary 20. In all rounds t of Algorithm 1, the regret of any learner i ∈ It+1 that is active in the next round can be
bounded in event E as

Regi(t) ≤ Ri(ni(t)) + 1 {? ∈ It+1}
ni(t)

n?(t)
Reg?(t) + ni(t)(b?(t)− bi(t))

+ 2c

√
ni(t) ln

M ln t

δ
,

where c is a universal constant and ? ∈ G is any well-specified learner.

Proof. This statement follows immediately from Lemma 19 by noting that since ? is well-specified, it satisfies Reg?(t) ≤
R?(n?(t)).

Lemma 21. Assume that Algorithm 1 is used with candidate regret bounds of the form Ri(n) = Cdin
β and positive biases

bi(t) > 0. Then in event E , the regret contribution of any subset D ⊆ [M ] of learners after T total rounds can be bounded
as ∑

i∈D
Regi(T ) ≤ |D|+

∑
i∈D

(
ni(t̃i)b?(t̃i) +

(
2Cdi

bi(t̃i)β

) 1
1−β
)

+ 8c2
∑
i∈D

ln M ln t̃i
δ

bi(t̃i)

+ Cv
1−β
β

? d
1/β
?

 ∑
i∈D : ?∈Iti

1

(vidi)1/β

1−β

T β .

where t̃i = ti − 1 and ti is the last round where learner i was played, ? ∈ G a well-specified learner, and c is a universal
positive constant.
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Proof. First, note that since ti was the last time i was played and the maximum instantaneous regret is 1, we have
Regi(T ) = Regi(ti) ≤ 1 + Regi(t̃i). Now applying Corollary 20 to learner i in round t̃i, we have∑
i∈D

Regi(T ) =
∑
i∈D

Regi(ti) ≤ |D|+
∑
i∈D

Regi(t̃i)

≤ |D|+
∑
i∈D

Ri(ni(t̃i)) +
∑
i∈D

1 {? ∈ Iti}
ni(t̃i)

n?(t̃i)
Reg?(t̃i) +

∑
i∈D

ni(t̃i)(b?(t̃i)− bi(t̃i))

+ 2c
∑
i∈D

√
ni(t̃i) ln

M ln t̃i
δ

= |D|+
∑
i∈D

(
Ri(ni(t̃i))−

1

2
ni(t̃i)bi(t̃i)

)
︸ ︷︷ ︸

(A)

+
∑
i∈D

ni(t̃i)b?(t̃i) +
∑
i∈D

2c

√
ni(t̃i) ln

M ln t̃i
δ

− 1

2
ni(t̃i)bi(t̃i)


︸ ︷︷ ︸

(B)

+
∑

i∈D : ?∈Iti

ni(t̃i)

n?(t̃i)
Reg?(t̃i)︸ ︷︷ ︸

(C)

.

We will now treat each of the three terms, (A), (B), and (C) separately. First, we consider (A), which we bound for each
i ∈ D as

(A) = Cdini(t̃i)
β − 1

2
ni(t̃i)bi(t̃i) ≤ sup

x≥0

{
Cdix

β − x

2
bi(t̃i)

}
≤ 2

β
1−β (ββCdi)

1
1−β

bi(t̃i)
β

1−β
≤
(

2βCdi

bi(t̃i)β

) 1
1−β

which holds because for bi(t) > 0 and β < 1, the supremum is attained at xβ−1 = bi(t̃i)
2βdiC

.

Now, we can handle (B) by again considering each i ∈ D, and defining K = 2c
√

ln M ln t̃i
δ

(B) = K

√
ni(t̃i)−

1

2
ni(t̃i)bi(t̃i) ≤ sup

x≥0

{
K
√
x− x

2
bi(t̃i)

}
≤ 2K2

bi(t̃i)

Where the supremum is computed exactly as in the argument for bounding part (A).

To handle term (C), we derive a bound on ni(t̃i)

n?(t̃i)
. Since learner i is chosen in round ti, then whenever ? ∈ Iti we have:

viRi(ni(ti − 1)) ≤ v?R?(n?(ti − 1))

Cvidini(t̃i)
β ≤ Cv?d?n?(t̃i)β

ni(t̃i)

n?(t̃i)
≤
(
v?d?
vidi

)1/β

.

Equipped with this bound on the ratio of plays of ? and i, we can bound (C) as

(C) ≤
∑

i∈D : ?∈Iti

ni(t̃i)

n?(t̃i)
R?(n?(t̃i)) = Cd?

∑
i∈D : ?∈Iti

ni(t̃i)

n?(t̃i)
n?(t̃i)

β = Cd?
∑

i∈D : ?∈Iti

(
ni(t̃i)

n?(t̃i)

)1−β

ni(t̃i)
β

≤ Cd?
∑

i∈D : ?∈Iti

(
v?d?
vidi

) 1
β−1

ni(t̃i)
β ≤ Cv

1−β
β

? d
1/β
?

 ∑
i∈D : ?∈Iti

1

(vidi)1/β

1−β

T β ,
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where the last step is an application of Hölder’s inequality. Combining the bounds for each all terms, we have shown

∑
i∈D

Regi(T ) ≤ |D|+
∑
i∈D

(
2βCdi

bi(t̃i)β

) 1
1−β

+
∑
i∈D

ni(t̃i)b?(t̃i) + 8c2 ln
M lnT

δ

∑
i∈D

1

bi(t̃i)

+ Cv
1−β
β

? d
1/β
?

 ∑
i∈D : ?∈Iti

1

(vidi)1/β

1−β

T β .

C.2. Worst-Case Regret Bound

Now, we are finally able to prove our general bound on the regret. This bound provides a setting for the parameters bi(t) and
vi that are themselves based on arbitrary user-specified parameters Z1, . . . , ZM and W1, . . . ,WM . Although in most of our
applications, we will consider the case Wi =

√
M for all i, it will be useful to allow for arbitrary Wi when matching the

Pareto frontier for multi-armed bandits in Corollary 25.

Intuitively, the value for Z? represents the multiplier that will be applied to the regret of of the optimal bound Cd?T β : the

regret will be roughly Z
1−β
β

? Cd?T
β . However, there is a tradeoff term in the regret of O

(
T β
∑
i 6=?

di
Zi

)
that prevents one

from simply setting Zi = 0 for all i.
Theorem 22. Suppose Ri(n) = Cdin

β , and let Z1, . . . , ZM and W1, . . . ,WM be arbitrary positive real numbers. Let

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cWi

√
ln M ln t

δ√
t


and set

vi =
Zβi

dβ+1
i

Then on event E , the total regret of Algorithm 1 is bounded for all rounds T ∈ N as follows:

Reg(T ) ≤ Reg?(T ) + 2cW?

√
T ln

M lnT

δ
+ 8c

√
T ln

M lnT

δ

∑
i6=?

1

Wi
+M

+ (2β−1 + β)CZ
1−β
β

? d?T
β + 3CT β

∑
i6=?

di
Zi

.

Proof. Since Reg(T ) = Reg?(T ) +
∑
i 6=? Regi(T ), applying Lemma 21 yields:

Reg(T ) ≤ Reg?(T ) +M +
∑
i6=?

(
ni(t̃i)b?(t̃i) +

(
2Cdi

bi(t̃i)β

) 1
1−β
)

+ 8c2
∑
i 6=?

ln M ln t̃i
δ

bi(t̃i)

+ Cv
1−β
β

? d
1/β
?

 ∑
i 6=? : ?∈Iti

1

(vidi)1/β

1−β

T β .

Without loss of generality, order the learners such that t̃1 ≤ t̃2 ≤ · · · ≤ t̃M . Then if j ≤ i we have nj(t̃i) ≥ nj(t̃j) so that

t̃i =

M∑
j=1

nj(t̃i) ≥
∑
j≤i

nj(t̃i) ≥
∑
j≤i

nj(t̃j) .
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Let S be the set of indices i 6= ? such that b?(t̃i) = CZ
1−β
β

i dit̃
β−1
i . Then using the above relation, we obtain

∑
i∈S

ni(t̃i)b?(t̃i) =
∑
i∈S

2CZ
1−β
β

? d?
ni(t̃i)

t̃1−βi

≤
M∑
i=1

2CZ
1−β
β

? d?
ni(t̃i)(∑

j≤i nj(t̃j)
)1−β ≤

2CZ
1−β
β

? d?
β

T β ,

where the final inequality is an application of Lemma 6. Next, let S′ be the set of indices i 6= ? such that i /∈ S. Then

∑
i∈S′

ni(t̃i)b?(t̃i) ≤ c
√

ln
M lnT

δ

∑
i∈S′

W?
ni(t̃i)√

t̃i
≤ c
√

ln
M lnT

δ

M∑
i=1

W?
ni(t̃i)√∑
j≤i nj(t̃j)

≤ 2cW?

√
T ln

M lnT

δ
,

Thus, overall

∑
i 6=?

ni(t̃i)b?(t̃i) ≤
2CZ

1−β
β

? d?
β

T β + 2cW?

√
T ln

M lnT

δ
.

Next, we bound: ∑
i 6=?

(
2Cdi

bi(t̃i)β

) 1
1−β

≤
∑
i 6=?

(
2Cdit̃

β
i

Zi

)
≤ 2CT β

∑
i 6=?

di
Zi

And similarly,

8c2
∑
i6=?

ln M ln t̃i
δ

bi(t̃i)
≤ 8c

∑
i 6=?

√
T ln M ln t̃i

δ

Wi

Finally, by Young’s inequality xy ≤ xp

p + yq

q with p = 1/β and q = 1
1−β :

Cv
1−β
β

? d
1/β
?

 ∑
i 6=? : ?∈Iti

1

(vidi)1/β

1−β

T β ≤ βCv
1−β
β2

? d
1/β2

? T β + (1− β)CT β
∑
i 6=?

1

(vidi)1/β

= βCZ
1−β
β

? d?T
β + (1− β)CT β

∑
i 6=?

di
Zi

Combining all, we have shown

Reg(T ) ≤ Reg?(T ) + 2cW?

√
T ln

M lnT

δ
+ 8c

√
T ln

M lnT

δ

∑
i6=?

1

Wi
+M

+ (2β−1 + β)CZ
1−β
β

? d?T
β + (3− β)CT β

∑
i 6=?

di
Zi

which implies the desired result.

With this theorem in hand, we can proceed to prove the fully-detailed version of Theorem 1 from the main text.

The Corollary only holds when assuming event E (as do all results in this section). However, recall the E occurs with
probability at least 1− δ, as shown in Lemma 5.
Corollary 23. Suppose Ri(n) = Cdin

β , and suppose that d1 ≤ · · · ≤ dM . Let Wi = W =
√
M for all i, and Zi = di

d1
iβ .

Set

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cW
√

ln M ln t
δ√

t


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and set

vi =
Zβi

dβ+1
i

Then if B = |B|, on event E , the total regret of Algorithm 1 is bounded for all rounds T ∈ N as follows:

Reg(T ) ≤ Reg?(T ) + 10c

√
MT ln

M lnT

δ
+M + (2β−1 + β)C

(
B

d
1/β
1

)1−β

d
1/β
? T β +

3Cd1T
βM1−β

1− β

where ? = argmini/∈B di is the index of the well-specified learner with minimum value of d?.

Proof. Notice that Z? ≤ di
d1
Bβ since any learning with di ≤ d? must be misspecified by definition of ?. Further, by

Lemma 6, ∑
i 6=?

di
Zi

=
∑
i 6=?

d1

iβ
≤ d1

1− β
M1−β

Now, apply Theorem 22:

Reg(T ) ≤ Reg?(T ) + 2cW

√
T ln

M lnT

δ
+ 8c

√
T ln

M lnT

δ

∑
i 6=?

1

W
+M + (2β−1 + β)CZ

1−β
β

? d?T
β + 3CT β

∑
i6=?

di
Zi

and the result now follows.

C.3. Worst-Case Regret Bound Recovering Corral Guarantees

Using a different setting of the parameters, we are able to recover the same bounds as available in CORRAL and stochastic
CORRAL (Agarwal et al., 2017; Pacchiano et al., 2020b):
Corollary 24. Suppose Ri(n) = Cdin

β , and suppose that d1 ≤ · · · ≤ dM . Let η be some arbitrary parameter. Set
Wi = W =

√
M for all i and Zi = ηT βCdi. Set

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cW
√

ln M ln t
δ√

t


and set

vi =
Zβi

dβ+1
i

Then on event E , the total regret of Algorithm 1 is bounded for all rounds T ∈ N as follows:

Reg(T ) ≤ Reg?(T ) + 10c

√
MT ln

M lnT

δ
+M + (2β−1 + β)η

1−β
β (Cd?)

1/βT +
3M

η

where ? = argmini/∈B di is the index of the well-specified learner with minimum value of d?.

Proof. Observe that

CZ
1−β
β

? d?T
β = η

1−β
β (Cd?)

1/βT

CT β
∑
i6=?

di
Zi

=
∑
i6=?

1

η

Now the result follows from Theorem 22.
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C.4. Worst-Case Regret Bound Recovering Pareto Frontier for Multi-Armed Bandits

We can also recover (up to log factors) the Pareto frontier for bandits (Lattimore, 2015):

Corollary 25. Consider an M -armed bandit problem for which we have M learners, each dedicated to only playing one
specific arm. Let ? be the optimal arm. Set Ri(n) =

√
n for all i. Let P1, . . . , PM be numbers satisfying for all i.

Pi ≥ min

T, ∑
j 6=i

T

Pj


Set

bi(t) =
2cPi

√
ln M ln t

δ√
t
√
T

and set

vi =

√
Pi/
√
T

Then on event E , the total regret of Algorithm 1 is bounded as

Reg(T ) ≤M +

(
10c

√
ln
M lnT

δ
+ 8

)
P?

Proof. Notice that the settings in the statement correspond to setting Zi = Wi = Z = W = Pi√
T

for all i, β = 1/2 and
C = di = 1 in Theorem 22. Thus:

Reg(T ) ≤ Reg?(T ) + 2cW

√
T ln

M lnT

δ
+ 8c

√
T ln

M lnT

δ

∑
i 6=?

1

W
+M + 5CZd?

√
T + 3C

√
T
∑
i 6=?

di
Z

= 10c

√
ln
M lnT

δ

∑
i6=?

T

Pi
+M + 5P? + 3

∑
i6=?

T

Pi
.

The result then follows after observing that by definition of P?,∑
i 6=?

T

Pi
≤ P? .

This concludes the proof.

Finally, we illustrate our ability to “bias” the dynamic balancing routine in favor of a particular learner. Specifically, if we
suspect that some learner j will be the best learner, we can bias the algorithm to have very low overhead when j = ?, at the
expense of always suffering O(CdjT

β) regret:

Corollary 26. Suppose Ri(n) = Cdin
β and d1 ≤ · · · ≤ dM . Let j be some arbitrary learner. set Wi = W =

√
M for all

i. Set Zi = di
d1
/iβ for i 6= j, and Zj = 1. Set

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cW
√

ln M ln t
δ√

t


and set

vi =
Zβi

dβ+1
i
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Then if B = |B|, on event E , the total regret of Algorithm 1 is bounded for all rounds T ∈ N as follows:

Reg(T ) ≤ Reg?(T ) + 8c

√
M ln

M lnT

δ
+M + (2β−1 + β)C

(
B

d
1/β
1

)1−β

d
1/β
? T β + 3CdjT

β +
3Cd1T

βM1−β

1− β

where ? = argmini/∈B di. Further, if j is well-specified,

Reg(T ) ≤ Reg?(T ) + 8c

√
M ln

M lnT

δ
+M + (2β−1 + β)CdjT

β +
3Cd1T

βM1−β

1− β

Proof. We have:

∑
i 6=j

di
Zi

=
∑
i 6=j

d1

iβ
≤ d1M

1−β

1− β
.

And for ? 6= j:

∑
i 6=?

di
Zi

= dj +
d1M

1−β

1− β
.

Regardless, of whether j = ?, we have ∑
i

1

Wi
≤
√
M .

Now, Apply Theorem 22:

Reg(T ) ≤ Reg?(T ) + 2cW?

√
T ln

M lnT

δ
+ 8c

√
T ln

M lnT

δ

∑
i6=?

1

Wi
+M + (2β−1 + β)CZ

1−β
β

? d?T
β + 3CT β

∑
i 6=?

di
Zi

and the result now follows from a case analysis of whether j = ?.

C.5. Gap-Dependent Regret Bounds

To show a gap-dependent bound for Algorithm 1, we first show that any algorithm that suffers a large gap between its
performance and that of the optimal action (e.g., has linear regret), must be played essentially only a constant number of
times (Lemma 27). This means that the major source of regret will be the well-specified algorithms that do not experience
such a gap in their regret. In order to bound the regret contributed by these algorithms, we leverage the particular settings of
bi and vi described in Corollary 23. These provide two main properties:

1. If i is a learner whose regret bound is larger than ?, then either ? is inactive when i is last played, or i is played fewer
times than ?. This property is a consequence of the setting for v.

2. If i is a learner whose regret bound is larger than ?, then we use the fact that bi ≥ b?, and that if Ri is a constant factor
larger than R?, then bi is also a constant factor larger than b? bound the contributions to the regret from the b? as well
as Ri.

In order to show a gap-dependent bound, we need an analog of Lemma 14:
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Lemma 27. Define ∆i by Regi(t̃i) = ni(t̃i)∆i where t̃i = ti − 1 and ti is the last round where learner i was played.

Suppose Ri(n) = Cdin
β , ? is well-specified, and b?(t) = max

[
2CZ1−β

? βd?t
β−1,

cW?

√
ln M ln t

δ√
t

]
for some Z? and W?.

Then Algorithm 1 guarantees:

Regi(t̃i) ≤ max

 (Cd?)
1

1−βZ
1/β
?

∆
β

1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β (v?d?)

1/β

(vidi)1/β∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i
,

min

ni(t̃i)cW?

√
ln M lnT

δ

2
√
t̃i

,
c2W 2

? ln M lnT
δ

4∆i

 .

Proof. First, consider the case in which ∆i ≤ 1
2b?(t̃i). In this situation, we have either

∆i ≤ CZ1−β
? βd?t̃

β−1
i

or

∆i ≤
cW?

√
ln M ln˜̃ti

δ

2
√
t̃i

.

In the former case, it must hold that:

ni(t̃i) ≤ t̃i ≤
(Cd?)

1
1−βZ

1/β
?

∆
1

1−β
i

.

And in the latter case, instead we have:

Regi(t̃i) = ni(t̃i)∆i ≤
ni(t̃i)cW?

√
ln M ln t̃i

δ

2
√
t̃i

.

Also, in the latter case we can say:

ni(t̃i) ≤ t̃i ≤
c2W 2

? ln M ln t̃i
δ

4∆2
i

Regi(t̃i) ≤
c2W 2

? ln M ln t̃i
δ

4∆i
,

so that when ∆i ≤ W?

2
√
t̃i

, we have

Regi(t̃i) ≤ min

ni(t̃i)cW?

√
ln M lnT

δ

2
√
t̃i

,
c2W 2

? ln M lnT
δ

4∆i

 .

Next, let us suppose ∆i >
1
2b?(t̃i). Then from Corollary 20, we have

Regi(t̃i) ≤ Ri(ni(t̃i)) + 1
{
? ∈ It̃i+1

} ni(t)

n?(t̃i)
Reg?(t̃i) + ni(t̃i)(b?(t̃i)− bi(t̃i)) + 2c

√
ni(t̃i) ln

M ln t̃i
δ

,

Note that if ? ∈ It̃i+1, we must have

vidini(t̃i)
β ≤ v?d?n?(t̃i)β
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that is
ni(t̃i)

n?(t̃i)
≤
(
v?d?
vidi

)1/β

.

Therefore, since ? is well-specified:

ni(t̃i)∆i ≤ Cdini(t̃i)β + 1
{
? ∈ It̃i+1

} ni(t)

n?(t̃i)
Cd?n?(t̃i)

β + ni(t̃i)(b?(t̃i)− bi(t̃i)) + 2c

√
ni(t̃i) ln

M ln t̃i
δ

≤ Cdini(t̃i)β + 1
{
? ∈ It̃i+1

}( ni(t)

n?(t̃i)

)1−β

Cd?ni(t̃i)
β + ni(t̃i)(b?(t̃i)− bi(t̃i)) + 2c

√
ni(t̃i) ln

M ln t̃i
δ

≤ Cdini(t̃i)β + Cd?

(
v?d?
vidi

) 1−β
β

ni(t̃i)
β + ni(t̃i)(b?(t̃i)− bi(t̃i)) + 2c

√
ni(t̃i) ln

M ln t̃i
δ

≤ Cdini(t̃i)β + Cd?

(
v?d?
vidi

) 1−β
β

ni(t̃i)
β +

ni(t̃i)∆i

2
+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

Thus, subtracting ni(t̃i)∆i

2 from both sides:

ni(t̃i)∆i

2
≤ Cdini(t̃i)β + Cd?

(
v?d?
vidi

) 1−β
β

ni(t̃i)
β + 2c

√
ni(t̃i) ln

M ln t̃i
δ

Now, clearing the denominator, and using the fact that x+ y + z ≤ 3 max(x, y, z):

ni(t̃i)∆i ≤ 6 max

Cdini(t̃i)β , Cd?(v?d?
vidi

) 1−β
β

ni(t̃i)
β , 2c

√
ni(t̃i) ln

M ln t̃i
δ


Now, working through the three cases yields:

ni(̃i) ≤ max

 (6Cdi)
1

1−β

∆
1

1−β
i

,
(6C)

1
1−β (v?d?)

1/β

(vidi)1/β∆
1

1−β
i

,
12c2 ln M ln t̃i

δ

∆2
i


Putting together this with the two cases at the start of the proof, we have:

Regi(t̃i) = ni(t̃i)∆i

≤ max

{
(Cd?)

1
1−βZ

1/β
?

∆
β

1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β (v?d?)

1/β

(vidi)1/β∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i
,

min

ni(t̃i)cW?

√
ln M ln t̃i

δ

2
√
t̃i

,
c2W 2

? ln M ln t̃i
δ

4∆i

} .

Next, we need an observation about the particular form of the balancing parameters used in Corollary 23:

Lemma 28. Suppose Ri(n) = Cdin
β , and suppose that d1 ≤ · · · ≤ dM . Let Wi = W =

√
M and Zi = di

d1
iβ for all i .

Set

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cW
√

ln M ln t
δ√

t


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and set

vi =
Zβi

dβ+1
i

.

Then if learners i and ? satisfy di ≥ d?, and t̃i = ti − 1 where ti is the last time at which learner i was played, Algorithm 1
guarantees for all t:

1
{
? ∈ It̃i+1

} ni(t̃i)
n?(t)

≤ 1 .

Proof. Clearly the statement holds if ? /∈ It̃i+1. Let us consider then the case ? ∈ It̃i+1. Then, since learner i was played
at time ti, we must have

viRi(ni(t̃i)) ≤ v?R?(n?(t̃i))
viCdini(t̃i)

β ≤ v?Cd?n?(t̃i)β

ni(t̃i)

n?(t̃i)
≤
(
v?d?
vidi

)1/β

=

(
(Z?/d?)

β

(Zi/di)β

)1/β

=
Z?di
d?Zi

=
iβ?
iβ

≤ 1

where the last line holds since d? ≤ di.

Next, we need a special-case version of Lemma 21 that takes advantage of Lemma 28:

Lemma 29. Suppose Ri(n) = Cdin
β , and suppose that d1 ≤ · · · ≤ dM . Let Wi = W =

√
M and Zi = di

d1
iβ for all i.

Set

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cW
√

ln M ln t
δ√

t


and set

vi =
Zβi

dβ+1
i

.

Let di ≥ d? and let t̃i = ti − 1 where ti is the last time at which learner i is played. Then in event E:

Regi(t̃i) ≤
Cd1t̃

β
i

iβ
+ 2R?(ni(t̃i)) + Reg?(t̃i) +

ni(t̃i)cW?

√
ln M ln t̃i

δ√
t̃i

+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

.

Proof. From Corollary 20, we have

Regi(t̃i) ≤ Ri(ni(t̃i)) + 1
{
? ∈ It̃i+1

} ni(t̃i)
n?(t)

Reg?(t̃i) + ni(t̃i)(b?(t̃i)− bi(t̃i)) + 2c

√
ni(t̃i) ln

M ln t̃i
δ

,
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while from Lemma 28:

≤ Ri(ni(t̃i)) + Reg?(t̃i) + ni(t̃i)(b?(t̃i)− bi(t̃i)) + 2c

√
ni(t̃i) ln

M ln t̃i
δ

.

Now, we consider two cases, either di ≤ 2d? or not.

Case di ≤ 2d?: In this case, we have Ri(ni(t̃i)) ≤ 2R?(ni(t̃i)). Also, since di ≥ d?, by our expression for bi we have
bi(t̃i) ≥ b?(t̃i). Then we have:

Regi(t̃i) ≤ 2R?(ni(t̃i)) + Reg?(t̃i) + 2c

√
ni(t̃i) ln

M ln t̃i
δ

.

Case di > 2d?: In this case, we also must have bi(t̃i) ≥ 2b?(t̃i)− 2
cW?

√
ln
M ln t̃i
δ√

t̃i
as well. Therefore:

b?(t̃i)− bi(t̃i) = b?(t̃i)−
1

2
bi(t̃i)−

1

2
bi(t̃i)

≤
cW?

√
ln M ln t̃i

δ√
t̃i

− 1

2
bi(t̃i) .

Using this, we bound the regret:

Regi(t̃i) ≤ Ri(ni(t̃i))−
ni(t̃i)bi(t̃i)

2
+ Reg?(t̃i) +

ni(t̃i)cWi

√
ln M ln t̃i

δ√
t̃i

+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

.

Now, we bound Ri(ni(t̃i))− ni(t̃i)bi(t̃i)
2 just as in Lemma 21:

Ri(ni(t̃i))−
ni(t̃i)bi(t̃i)

2
= Cdini(t̃i)

β − 1

2
ni(t̃i)bi(t̃i)

≤ sup
x≥0

{
Cdix

β − x

2
bi(t̃i)

}
≤ 2

β
1−β (ββCdi)

1
1−β

bi(t̃i)
β

1−β

≤
(

2βCdi

bi(t̃i)β

) 1
1−β

.

Now, using the fact that bi(t̃i) ≥ 2C
d
1/β
i i1−β

d
1−β
β

1 t̃1−βi

we can see that the last expression is upper bounded by

Cd1t̃
β
i

iβ
.

Combining all the bounds proves the Lemma

Now, we are ready to provide an alternative gap-dependent bound on the regret of Algorithm 1. This result (Theorem 30) is
the full version of the second part of Theorem 1 from the main text.

Now, again, the full result specifies all values for the parameters (which are the same as the specifications in the non-gap-
dependent result Corollary 23), and provides a bound that holds on event E , which itself occurs with probability at least
1− δ.
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Theorem 30. Suppose Ri(n) = Cdin
β , and suppose that d1 ≤ · · · ≤ dM . Set Wi = W =

√
M and Zi = di

d1
iβ for all i.

Set

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cWi

√
ln M ln t

δ√
t


and set

vi =
Zβi

dβ+1
i

.

Let t̃i = ti − 1 where ti is the last time at which learner i is played. Then on event E , the total regret of Algorithm 1 is
bounded for all rounds T ∈ N as follows:

Reg(T ) ≤
∑
i<?

max

C 1
1−β d

1
β−β2
? i∗

d
1/β
1 ∆

β
1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β i∗

i∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i


+ Reg?(T ) + 3MR?(T ) +

Cd1T
βM1−β

1− β
+ 6c

√
MT ln

M lnT

δ
,

where ? (or i∗) is the index of the well-specified learner with minimum value of d?, and ∆i = Regi(t̃i)

ni(t̃i)
.

Proof. As usual, we start by bounding the regret:

Reg(T ) = Reg?(T ) +
∑
i 6=?

Regi(ti) ≤ Reg?(T )M +
∑
i 6=?

Regi(t̃i) .

Now, however, we split the last sum into two parts: when i < ? and when i > ?. For i < ?, we define ∆i = Regi(t̃i)

ni(t̃i)
. Then

by Lemma 27, we have

Regi(t̃i) ≤ max

 (Cd?)
1

1−βZ
1/β
?

∆
β

1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β (v?d?)

1/β

(vidi)1/β∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i
,
ni(t̃i)cW?

√
ln M ln t̃i

δ

2
√
t̃i


≤ max

C 1
1−β d

1
β−β2
? i∗

d
1/β
1 ∆

β
1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β i∗

i∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i

+
ni(t̃i)cW?

√
ln M ln t

δ

2
√
t̃i

.

Next, let’s consider i > ?. In this case we have di ≥ d?, so by Lemma 29:

Regi(t̃i) ≤
Cd1t̃

β
i

iβ
+ 2R?(ni(t̃i)) + Reg?(t̃i) +

ni(t̃i)cW?

√
ln M ln t̃i

δ√
t̃i

+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

.

Summing over these indices i and using R?(ni(t̃i)) ≤ R?(T ) and R?(T ) ≥ Reg?(t̃i) yields:

∑
i>?

Regi(t̃i) ≤ 3MR?(T ) +
∑
i>?

Cd1t̃
β
i

iβ
+
ni(t̃i)cW?

√
M ln M lnT

δ√
t̃i

+ 2c

√
ni(t̃i) ln

M ln t̃i
δ

 .

Now, we bound the sums of the first two terms inside the summation using identical arguments as in Theorem 22:

∑
i>?

Cd1t̃
β
i

iβ
≤ CT β

∑
i 6=?

di
Zi
≤ CdiT

βM1−β

1− β
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∑
i>?

2c

√
ni(t̃i) ln

M ln t̃i
δ

≤ 2c

√
MT ln

M lnT

δ
.

So all together, we have

∑
i>?

Regi(t̃i) ≤ 3MR?(T ) +
CdiT

βM1−β

1− β
+ 6c

√
MT ln

M lnT

δ
+
∑
i>?

ni(t̃i)cW?

√
ln M ln t̃i

δ√
t̃i

.

Combining the two cases i < ? and i > ? we have:

Reg(T ) ≤ Reg?(T ) +
∑
i<?

max

C 1
1−β d

1
β−β2
? i∗

d
1/β
1 ∆

β
1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β i∗

i∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i

+
ni(t̃i)cW?

√
ln M lnT

δ

2
√
t̃i

+ 3MR?(T ) +
CdiT

βM1−β

1− β
+ 6c

√
MT ln

M lnT

δ
+
∑
i>?

ni(t̃i)cW?

√
ln M lnT

δ√
t̃i

≤ Reg?(T ) +
∑
i<?

max

C 1
1−β d

1
β−β2
? i∗

d
1/β
1 ∆

β
1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β i∗

i∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i


+ 3MR?(T ) +

CdiT
βM1−β

1− β
+ 6c

√
MT ln

M lnT

δ
+
∑
i6=?

ni(t̃i)cW?

√
ln M lnT

δ√
t̃i

.

Let’s focus on the last summation:
∑
i 6=?

ni(t̃i)W?√
t̃i

. This can again be bounded using the same argument as in the proof of

Theorem 22:
M∑
i=1

ni(t̃i)W?√
t̃i

≤ 2W?

√
T ≤ 2

√
MT .

Thus combining all the sums yields the claimed bound.

Theorem 30 does not provide any gains in the case that β < 1/2. For this scenario, we will instead show the following
bound, which demonstrates that Algorithm 1 is able to successfully eliminate all misspecified algorithms to obtain regret
O(T β), although the model selection guarantee degrades significantly. The key idea is to use the fact that the bound in
Lemma 27 actually provides a bound on the total regret of any misspecified learner that has a significant gap in the regret,
and then rely on the well-specified-ness of the remaining learners to bound their regret.

Theorem 31. Suppose Ri(n) = Cdin
β , and suppose that d1 ≤ · · · ≤ dM . Set Wi = W =

√
M and Zi = di

d1
iβ for all i.

Set

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cW
√

ln M ln t
δ√

t


and set

vi =
Zβi

dβ+1
i

.

Let t̃i = ti − 1 where ti is the last time at which learner i is played. Then on event E , the total regret of Algorithm 1 is
bounded for all rounds T ∈ N as follows:

Reg(T ) ≤ min

∑
i/∈B

Regi(T ), CT β

(∑
i/∈B

d
1

1−β
i

)1−β

, Reg?(T ) + 3MR?(T ) +
Cd1T

βM1−β

1− β
+ 6c

√
MT ln

M lnT

δ


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+M +
∑
i∈B

max

C 1
1−β d

1
β−β2
? i∗

d
1/β
1 ∆

β
1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β i∗

i∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i
,
c2W 2 ln M ln t̃i

δ

4∆i


where ? (or i∗) is the index of the well-specified learner with minimum value of d?, and ∆i = Regi(t̃i)

ni(t̃i)
.

Proof. We start splitting the regret into the sum over the misspecified learners, and the sum over the well-specified learners:

Reg(T ) ≤
∑
i/∈B

Regi(T ) +
∑
i∈B

Regi(T )

≤
∑
i/∈B

Regi(ti) +M +
∑
i∈B

Regi(t̃i)

by well-specified-ness:

≤ min

(∑
i/∈B

Regi(T ),
∑
i/∈B

Cdini(ti)
β

)
+M +

∑
i∈B

Regi(t̃i)

from Hölder’s inequality

≤ min

∑
i/∈B

Regi(T ), C

(∑
i/∈.B

d
1

1−β
i

)1−β

T β

+M +
∑
i∈B

Regi(t̃i) .

Further, the sum
∑
i/∈B Regi(T ) can also be bounded using exactly the same argument as in 30 to yield:

∑
i/∈B

Regi(T ) ≤ Reg?(T ) + 3MR?(T ) +
Cd1T

βM1−β

1− β
+ 6c

√
MT ln

M lnT

δ
.

Now, let us bound the last sum using Lemma 27:

∑
i∈B

Regi(t̃i) ≤
∑
i∈B

max

C 1
1−β d

1
β−β2
? i∗

d
1/β
1 ∆

β
1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β i∗

i∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i
,
c2W 2

? ln M lnT
δ

4∆i

 ,

as claimed.

C.6. Anytime Results with Logarithmic Factor Bounds

In this section, we briefly sketch how to extend our gap-dependent result Theorem 30 to the case that the regret bounds are
not polynomial, but instead take the form Cdi log(n)αnβ . The argument is nearly identical, so we do not go into detail.

First, we have the following analog of Lemma 21:

Lemma 32. Assume that Algorithm 1 is used with candidate regret bounds of the form Ri(n) = Cdi(1 + log(n))αnβ for
some α > 0 and positive biases bi(t) > 0. Then in event E , the regret contribution of any subset D ⊆ [M ] of learners after
T total rounds can be bounded as∑

i∈D
Regi(T ) ≤ (1 + log(T ))

α
1−β+α

β

[∑
i∈D

(
ni(t̃i)b?(t̃i) +

(
2Cdi

bi(t̃i)β

) 1
1−β
)

+ 8c2 ln
M lnT

δ

∑
i∈D

1

bi(t̃i)
+ |D|

+Cv
1−β
β

? d
1/β
?

 ∑
i∈D : ?∈Iti

1

(vidi)1/β

1−β

T β

 ,

where t̃i = ti − 1 and ti is the last round where learner i was played, ? ∈ G a well-specified learner, and c is a universal
positive constant.
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Proof. The proof is nearly identical to that of Lemma 21. The only difficulty is to keep track of the logarithmic terms.
This is easily extracted by adding a log(T )α to every instance of di or d? that appears in the numerator of the final bound,
under-approximating the log(t)α terms that appear along with dis in the denominator by 1.

Similarly, we can produce a direct analog of our main regret bounds. We provide the analog of Theorem 30 below for
concreteness:
Theorem 33. Suppose Ri(n) = Cdi(1 + log(n)))αnβ for some α > 0, and suppose that d1 ≤ · · · ≤ dM . Set
Wi = W =

√
M and Zi = di

d1
iβ for all i. Set

bi(t) = max

2CZ
1−β
β

i dit
β−1,

cWi

√
ln M lnT

δ√
t


and set

vi =
Zβi

dβ+1
i

.

Let t̃i = ti − 1 where ti is the last time at which learner i is played. Then on event E , the total regret of Algorithm 1 is
bounded for all rounds T ∈ N as follows:

Reg(T ) ≤ (1 + log(T ))
α

β−β2
∑
i<?

max

C 1
1−β d

1
β−β2
? (?)

d
1/β
1 ∆

β
1−β
i

,
(6Cdi)

1
1−β

∆
β

1−β
i

,
(6C)

1
1−β (?)

(i)∆
β

1−β
i

,
12c2 ln M ln t̃i

δ

∆i


+ Reg?(T ) + 3MR?(T ) +

Cd1 log(T )αT βM1−β

1− β
+ 6c

√
MT ln

M lnT

δ
,

where ? is the index of the well-specified learning with minimum value of d?, and ∆i = Regi(t̃i)

ni(t̃i)
.

Proof. The proof is again identical to that of Theorem 30, but now we under-approximate each instance of log(t)α for any t
in the denominators by 1, and over-approximate each instance of log(t)α in the numerators by log(T )α.

D. Example Applications
One important application of the method we presented in Section 3 is the setting of contextual linear bandits. Since this
setting is often tackled using the OFUL Algorithm, we focus on instances of this algorithm as base learners but our results
apply more generally. In the following, we first briefly review in Appendix D.1 the linear bandit setting and the OFUL
Algorithm. We then present in Appendix D.2 a modification of OFUL which is either well-specified or suffers linear regret
asymptotically. This version is particularly suited as base learner to achieve strong gap-dependent regret guarantee for
Dynamic Balancing. Finally, we discuss two additional applications in Appendix D.3 and Appendix D.2.

D.1. Brief Review of Contextual Linear Bandits and the OFUL Algorithm

To keep consistency with previous sections, we shall assume here that contexts are drawn i.i.d. from some distribution over
context space X . Yet, the algorithmic solutions we present (specifically, the OFUL algorithm) actually work unchanged
even in the more general fixed design or adaptive design scenarios.

In the contextual bandit setting, context xt determines the set of actions At ⊆ A that can be played at time t. When the
bandit setting is linear the policies we consider are of the form πθ(xt) = arg maxa∈At〈a, θ〉, for some θ ∈ Rd, and the
class of policies Π can then be thought of as a class of d-dimensional vectors Π ⊆ Rd. Moreover, rewards are generated
according to a noisy linear function, that is, rt = 〈at, θ?〉+ ξt, where θ? ∈ Π is unknown, and ξt is a conditionally zero
mean σ−subgaussian random variable. We denote the time-t optimal action as a?t = argmaxa∈At〈a, θ?〉. The learner’s
objective is to control its pseudo-regret:

Reg(T ) =

T∑
t=1

〈a?t , θ?〉 − 〈at, θ?〉 .
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Algorithm 3: OFUL (Abbasi-Yadkori et al., 2011)

1 Input: regularization parameter λ > 0, confidence scaling β1, β2, . . .
2 for round t = 1, 2, . . . do
3 Update regularized least-squares estimator θ̂t and covariance matrix Σt
4 Receive context xt/action space At
5 Play optimistic action:

at ∈ argmax
a∈At

max
θ∈Ct
〈a, θ〉 = argmax

a∈At
〈θ̂t, a〉+ βt‖a‖Σ−1

t

Receive reward rt = 〈at, θ?〉+ ξt .

OFUL Algorithm. We now recall the relevant components of the OFUL algorithm (Abbasi-Yadkori et al., 2011) shown
in Algorithm 3. Instances of this algorithm will play the role of base learners in subsequent sections. The OFUL algorithm
proceeds by computing a regularized least-squares (RLS) estimator θ̂t of the true parameter θ? using the data collected so
far:

θ̂t := Σ−1
t

(
t−1∑
`=1

a` r`

)
where Σt = λI +

t−1∑
`=1

a`a
>
` . (11)

Here, Σt is the regularized covariance matrix of the played actions up to the beginning of round t with regularization
parameter λ, and I denotes the d× d identity matrix. Using θ̂t and Σt, OFUL proceeds by computing a confidence ellipsoid

Ct := {θ : ‖θ − θ̂t‖Σt ≤ βt} (12)

that should contain the optimal parameter θ?. We will discuss a choice of the (possibly data-dependent) scaling factor
βt ∈ R+ below that ensures that this happens in all rounds with high probability. Algorithm 3 now plays any action that
achieves highest expected return in what we refer to as the optimistic model

θ̃t = argmax
θ∈Ct

max
a∈At
〈a, θ〉 . (13)

This choice of action is equivalent to picking at ∈ argmaxa∈At 〈θ̂t, a〉+ βt‖a‖Σ−1
t

. We define the event that the above-
mentioned ellipsoidal confidence set Ct contains θ∗ at all times t ∈ N as

E ′ = {θ∗ ∈ Ct, ∀t ∈ N} . (14)

In this event E ′, the optimistic model θ̃t indeed gives rise to an optimistic estimate of the expected reward in each round

〈at, θ̃t〉 ≥ max
a∈At
〈a, θ?〉 = 〈a?t , θ?〉 . (15)

Abbasi-Yadkori et al. (2011) show that the following choice for βt is sufficient to make E ′ happen with high probability:
Lemma 34 (Theorem 2 in (Abbasi-Yadkori et al., 2011)). For any δ ∈ (0, 1), let the confidence scaling be

βt :=

√
2σ2 ln

(
det(Σt)1/2 det(λI)−1/2

δ

)
+
√
λS ≤

√
σ2d ln

(
1 + tL2/λ

δ

)
+
√
λS (16)

where S is a known bound on the parameter norm maxθ∈Π ‖θ‖2 and L is a known bound on the action norm in all rounds,
i.e., maxa∈At ‖a‖2 ≤ L for all t. Then θ? is contained in the confidence ellipsoid with high probability, i.e., P (E ′) ≥ 1− δ.

In event E ′, one can show that the regret of Algorithm 3 is bounded for all t ∈ [T ] as

Reg(t) ≤
T∑
t=1

2βt‖at‖Σ−1
t
≤ 2βmax

√
dt

(
1 +

L2

λ

)
ln
dλ+ tL

dλ
,

where βmax = maxk∈[t] βk. We reproduce a slightly more general version of the standard proof for this regret bound in the
following in Lemma 35. The right side of the above inequality will play the role of our presumed regret bound R(ni(t))
when OFUL is used as a base learner.
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Lemma 35 (Regret Bound for OFUL). Assume OFUL (Algorithm 3) uses regularization parameter λ > 0 and chooses the
each action as

at ∈ argmax
a∈At

〈θ̂t, a〉+ βt‖a‖V −1
t
,

where θ̂t is a parameter estimate, βt ∈ R is a confidence width and Vt < λI +
∑t−1
l=1 ala

>
l is a covariance matrix. In the

event that the true parameter θ? was contained at all times in the confidence ellipsoid, that is, ‖θ? − θ̂t‖Vt ≤ βt for all
t ∈ [T ], the (pseudo-)regret is bounded as

Reg(t) ≤ 2βmax

√
dt

(
1 +

L2

λ

)
ln
dλ+ tL2

dλ
,

where βmax = maxt∈[T ] βt is the largest confidence width during all rounds and L = maxa∈
⋃
tAt ‖a‖2 be a bound on the

action norms.

Remark 2. This regret bound for OFUL holds for any, possibly random, sequence of confidence widths as long as the true
parameter is contained in the confidence ellipsoid. It does not assume any specific form or monotonicity or βt ≥ 1. It also
does not prescribe that the covariance matrix exactly matches λI +

∑t−1
l=1 ala

>
l . This makes this regret bounds applicable

to the case where θ̂t includes additional observations besides the ones from previous rounds played by the algorithm.

Proof. The immediate regret at time t (defined as the difference of the expected reward of the optimal action choice
a?t ∈ argmaxaAt〈θ?, a〉 and the action at taken by the algorithm) is bounded as

〈θ?, a?t − at〉
(i)

≤ 〈θ̂t, a?t 〉+ βt‖a?t ‖V −1
t
− 〈θ?, at〉

(ii)

≤ 〈θ̂t, at〉+ βt‖at‖V −1
t
− 〈θ?, at〉

(iii)

≤ 2βt‖at‖V −1
t

(iv)

≤ 2βt‖at‖Σ−1
t
,

where Σt = λI +
∑t−1
l=1 ala

>
l . Step (i) follows from ‖θ? − θ̂t‖Vt ≤ βt, step (ii) from the algorithm’s action choice

and step (iii) again from the confidence ellipsoid ‖θ? − θ̂t‖Vt ≤ βt. Finally, step (iv) follows from the assumption that
Vt < λI +

∑t−1
l=1 ala

>
l = Σt.

Since L is a bound of the action norm and Σt < λI , we have ‖at‖Σ−1
t

= ‖Σ−1/2
t at‖2 ≤ L√

λ
. Thus, we can bound the

regret as

Reg(T ) ≤ 2

T∑
t=1

βt‖at‖Σ−1
t

≤ 2

√√√√ T∑
t=1

β2
t

√√√√ T∑
t=1

‖at‖2Σ−1
t

(Cauchy-Schwarz)

≤ 2βmax

√√√√T

T∑
i=1

L2

λ
∧ ‖at‖2Σ−1

t

≤ 2βmax

√
T

(
1 +

L2

λ

)
ln

det ΣT+1

det Σ1
(Lemma 7)

≤ 2βmax

√
dT

(
1 +

L2

λ

)
ln
dλ+ TL2

dλ
.
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D.2. OFUL with misspecification test

In this section, we describe a variant of the OFUL algorithm for stochastic linear bandits that that incorporates a misspec-
ification test. This will cause the regret to satisfy two possibilities. Either the regret bound will be essentially the same
as the ordinary OFUL algorithm’s regret bound, or it will be asymptotically linear in T . Moreover, if the algorithm is
well-specified in the sense that the rewards are indeed a linear function of the contexts, then the regret is guaranteed to match
the OFUL regret.

We again compute the regularized least-squares estimator θ̂t of the true parameter θ? using the data collected so far:

θ̂t := Σ−1
t

(
t−1∑
`=1

a` r`

)
where Σt = λI +

t−1∑
`=1

a`a
>
` . (17)

However, in a slight deviation from the standard OFUL algorithm, we define the confidence sets:

C′t :=

t⋂
i=1

Ci = {θ : ‖θ − θ̂i‖Σi ≤ βi ∀ i ≤ t} (18)

along with the corresponding event:
E ′ = {θ∗ ∈ C′t ∀t ∈ N} , (19)

where βt is defined as in Lemma 34. Our algorithm again computes

θ̃t = argmax
θ∈C′t

max
a∈At
〈a, θ〉 . (20)

and takes the action at = argmaxa∈At〈a, θ̃t〉. We add one small twist: we specify some values of γ1, γ2, . . . and if at any
time t it does not hold that

∣∣∣∣∣
t∑
i=1

ri − clip
(
〈θ̂i, ai〉

)∣∣∣∣∣ ≤ γt, (21)

then we conclude that the rewards are not linear in the contexts and terminate the algorithm (or play actions uniformly at
random which has linear regret). Here, clip (x) = min{1,max{0, x}} clips the value of x to the range [0, 1].

We are now ready to state the main guarantee for this modified OFUL algorithm:

Theorem 36. Suppose that the action norms satisfy maxa∈At ‖a‖ ≤ L for all t and set

γt = c

√
t ln

ln t

δ
+ βt

√
dt

(
1 +

L2

λ

)
ln

(
dλ+ tL2

dλ

)
where c is the same constant as in the definition of Ẽ . Let the modified version of OFUL described above be run with γt
on any sequential decision process with stochastic contexts that may or may not be a linear bandit. Then the following
statements hold with probability at least 1− 2δ:

• Whenever the regret violates the bound Reg(τ) ≤ 4γτ ≈ Õ(βτ
√
dτ) for some τ ∈ N, the algorithm either stops or

suffers linear regret for large enough T . More precisely, it has regret Reg(T ) ≥ γτ
2τ T for all T large enough (in this

case T ' 36τ is sufficient).

• If rewards are generated by a linear bandit instance and the confidence ellipsoids contain the true parameter vector,
then the misspecification test never triggers and Reg(T ) ≤ 4γT .

Proof. We first show the second part. As long as the misspecification test does not trigger, this OFUL version behaves
identical to the standard OFUL algorithm except that confidence sets can never increase. We can follow the standard analysis
outlined in Lemma 35 to show that, despite this small change, OFUL still satisfies the the regret bound in Lemma 35 which
is upper-bounded by γT . It therefore only remains to show that regret bound test never triggers when rewards are indeed
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generated by a linear bandit: Here, rt = 〈θ?, at〉+ ξt for all t for some θ? ∈ Rd with ‖θ?‖ ≤ S and sub-Gaussian noise ξt.
Now, we can write the quantity in the LHS of the misspecification in Equation 21 as

t∑
i=1

ri − clip
(
〈θ̂i, ai〉

)
=

t∑
i=1

(ri − 〈θ?, ai〉) +

t∑
i=1

(
〈θ?, ai〉 − clip

(
〈θ̂i, ai〉

))
.

Using standard concentration arguments, the magnitude of the first term is at most c
√
t ln ln t

δ with probability 1− δ for all
t. The magnitude of the second term can be bounded on event E ′ (where the confidence ellipsoids contain θ?) as∣∣∣∣∣

t∑
i=1

〈θ∗, ai〉 − clip
(
〈θ̂i, ai〉

)∣∣∣∣∣ ≤
∣∣∣∣∣
t∑
i=1

〈θ∗ − θ̂i, ai〉

∣∣∣∣∣ ≤
t∑
i=1

‖θ∗ − θ̂i‖Σi‖ai‖Σ−1
i
≤ βt

t∑
i=1

‖ai‖Σ−1
i

≤ βt

√
dt

(
1 +

L2

λ

)
ln

(
dλ+ tL2

dλ

)
,

where the first step uses the fact that expected rewards are in [0, 1] and the last step follows the same logic as the proof of
Lemma 35. Thus from our definition of γt, the misspecification test will never trigger.

Let us now move on to show the first part of the theorem. We here look at

T∑
t=1

E
[
µ?t − clip

(
〈θ̃t, at〉

)
| Ft−1

]
,

the total amount that the algorithm underestimates the optimal reward per round in expectation over the current context xt.
Using this quantity, we define the stopping time

τ = min

{
T ∈ N :

T∑
t=1

E
[
µ?t − clip

(
〈θ̃t, at〉

)
| Ft−1

]
> γT or

∣∣∣∣∣
T∑
t=1

rt − clip
(
〈θ̂t, at〉

)∣∣∣∣∣ > γT

}

as the first time the misspecification test triggers or the total underestimation amount surpasses γT . Here Ft−1 is the
sigma-field of everything up to round t− 1 (before the context xt is revealed).

Regret in rounds T < τ : We now show that up to time τ , the regret of the algorithm is well-behaved. To that end, we
decompose the regret for any round T ≤ τ as

Reg(T ) =

T∑
t=1

(µ?t − E[rt|xt, at])

=

T∑
t=1

(
µ?t − clip

(
〈θ̃t, at〉

))
︸ ︷︷ ︸

(A)

+

T∑
t=1

[clip
(
〈θ̃t, at〉

)
− clip

(
〈θ̂t, at〉

)
]︸ ︷︷ ︸

(B)

(22)

+

T∑
t=1

(
clip

(
〈θ̂t, at〉

)
− rt

)
︸ ︷︷ ︸

(C)

+

T∑
t=1

(rt − E[rt|Ft−1, at])︸ ︷︷ ︸
(D)

, (23)

and bound each term individually. Starting with (A), we can apply the definition of τ and a concentration argument to get
(with probability at least 1− δ for all T ≤ τ )

(A) = c

√
T ln

lnT

δ
+

T∑
t=1

E
[
µ?t − clip

(
〈θ̃t, at〉

)
| Ft−1

]
≤ c
√
T ln

lnT

δ
+ γT .
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Moving on to the second term, we can apply the standard machinery of the OFUL analysis (see Lemma 35) to get

(B) ≤
T∑
t=1

〈θ̃t − θ̂t, at〉 ≤
T∑
t=1

‖θ̃t − θ̂t‖Σt‖at‖Σ−1
t
≤

T∑
t=1

βt‖at‖Σ−1
t
≤ βT

√√√√T

T∑
t=1

‖at‖2Σ−1
t

≤ βT

√
dT

(
1 +

L2

λ

)
ln

(
dλ+ TL2

dλ

)
.

Note that this bound follows directly from the construction of at and θ̃t in OFUL and does not require the ellipsoid
confidence sets to be valid. Again, by the definition of τ , term (C) ≤ γT . Finally, term (D) can be bounded using standard

concentration arguments as (D) ≤ c
√
T ln lnT

δ for all T ∈ N with probability 1− δ. Combining all terms, we have shown
that with probability at least 1− 2δ, the regret for all rounds T ≤ τ is bounded as

Reg(T ) ≤ 2γT + 2c

√
T ln

lnT

δ
+ βT

√
dT

(
1 +

L2

λ

)
ln

(
dλ+ TL2

dλ

)
≤ 4γT .

Regret in rounds T ≥ τ where misspecification test has not triggered yet: Consider now rounds T ≥ τ after τ but
where the misspecification test has not triggered yet. In this case, it must hold that

∑τ
t=1 E

[
µ?t − clip

(
〈θ̃t, at〉

)
| Ft−1

]
>

γτ and thus, there must be a round t ≤ τ which satisfies E
[
µ?t − clip

(
〈θ̃t, at〉

)
| Ft−1

]
> γτ

τ . We now show that this has
to also hold for all future rounds. Let T ≥ t. Then

E
[
µ?T − clip

(
〈θ̃T , aT 〉

)
| FT−1

]
= E [µ?T | FT−1]− E

[
clip

(
max
a∈AT

sup
θ∈C′T
〈θ, a〉

)
| FT−1

]

≥ E [µ?T | FT−1]− E

[
clip

(
max
a∈AT

sup
θ∈C′t
〈θ, a〉

)
| FT−1

]

= E [µ?t | Ft−1]− E

[
clip

(
max
a∈At

sup
θ∈C′t
〈θ, a〉

)
| Ft−1

]
= E

[
µ?t − clip

(
〈θ̃t, at〉

)
| Ft−1

]
≥ γτ

τ

where we first used that the confidence sets satisfy C′1 ⊇ C′2 ⊇ C′3 . . . and that the distribution of the context (here At) is the
same across all rounds t. We now return to the regret decomposition in Equation 23 but lower-bound each term instead of
upper-bounding them. Starting with term (A), we have

(A) ≥
T∑
t=1

E
[
µ?t − clip

(
〈θ̃t, at〉

)
| Ft−1

]
− c
√
T ln

lnT

δ
≥ γτ + (T − τ)

γτ
τ
− c
√
T ln

lnT

δ
=
Tγτ
τ
− c
√
T ln

lnT

δ
,

which holds for all T with probability at least 1− δ, as above. For term (B), we have

(B) =

T∑
t=1

[clip
(
〈θ̃t, at〉

)
− clip

(
〈θ̂t, at〉

)
] ≥ 0

since 〈θ̃t, at〉 ≥ 〈θ̂t, at〉 by construction of θ̃t. We also have (C) ≥ −γT because the algorithm has not stopped yet. Finally,

term (D) is again bounded by (D) ≥ −c
√
T ln lnT

δ by standard concentration (for all T with probability at least 1− δ).
Combining the individual terms yields

Reg(T ) ≥ Tγτ
τ
− 2c

√
T ln

lnT

δ
− γT ≥

Tγτ
τ
− 3γT .

Therefore, for T large enough so that γτ6τ ≥
γT
T , the regret is lower-bounded as Reg(T ) ≥ γτ

2τ T .
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D.3. Linear Markov Decision Processes with Nested Model Classes

We can instantiate the regret bound in Corollary 2 to the episodic linear MDP setting of Jin et al. (2020), again with nested
feature classes of doubling dimension, as in Section 5.1. Here, each round t of Algorithm 1 corresponds to one episode of
H time steps in the MDP, and contexts xt are the initial state of the episode in the MDP. Jin et al. (2020) prove that their
LSVI-UCB algorithm achieves regret O(H2

√
d3K ln(dK/δ)) after K episodes when used with a realizable function class

of dimension d. We deploy M = O(ln dmax) instances of LSVI-UCB as base learners with presumed regret bounds

Ri(n) = H2
√
d3
in ln

dmaxT

δ
.

Since the total reward per episode (= round) is in [0, H] instead of [0, 1] in this setting, we scale the biases as well as the
constant c in Algorithm 1 by H . By Corollary 2 the total regret of Algorithm 1 after T episodes is bounded as

Reg(T ) = O

((
d3
?

√
ln d? +

√
d3
? +

√
ln dmax

)
H2
√
T ln

dmaxT

δ

)
with probability 1−Mδ. Similar to the contextual bandit setting above, we can achieve a tighter bound if all misspecified
learners suffer linear regret Regi(t) ≥ ∆ni(t) for some ∆ > 0. Then applying Corollary 2 yields

Reg(T ) = O

(
H2
√
d3
?T ln(dmax) ln(dmaxT/δ) +

H4d6
?

∆
ln(dmaxT/δ)

2 ln(d?)

)
which, up to log factors and gap-dependent lower order terms, again coincides with the regret bound of the best base learner
in hindsight.

D.4. Linear Bandits and MDPs with Unknown Approximation Error

Zanette et al. (2020) presents an algorithm for learning a good policy in episodic MDPs where the value functions are
all close to a linear feature space of dimension d. Their algorithm admits a high-probability regret bound of order7

Õ(Hd
√
T +H

√
dεT ) for all T when a bound ε on the inherent Bellman error is known a-priori. For details of the setting

and the exact definition of inherent Bellman error see Zanette et al. (2020). Unfortunately, in most practical applications,
one does not know ε ahead of time and picking a conservative value (large ε) makes the algorithm over-explore and suffer
large regret.

We can address this limitation by applying the simplified balancing algorithm in Algorithm 2 with several instances of their
algorithm as base-learners, each associated with a certain value of the inherent Bellman error εi = 21−i

√
d

and the putative

regret bound Ri(n) = CHd
√
n+CH

√
dεin for an appropriate value C that depends at most logarithmically on d, T or H .

It is sufficient to use M = d1 + 1
2 log2(T/d2)e base learners since the putative regret bound of learner 1 (with ε1 = 1/

√
d

and R1(n) ≥ Hn) always holds, while the putative regret bound of learner M is at most RM (T ) ≤ 2CHd
√
T , which is a

constant factor worse than the regret when ε = 0.

By the bound given in Appendix B.3, the total regret of Algorithm 2 with these base learners is

Reg(T ) = O

(
ε?CH

√
dT

(
M +

1

CHd

√
ln
M lnT

δ

)
+MCHd

√
T +

√
BT ln

M lnT

δ

)
= Õ

(
MHd

√
T +MH

√
dε?T

)
with probability 1−Mδ. Hence, up to at most logarithmic factors (M is logarithmic here), our model-selection framework
can recover the best regret bound without requiring knowing the inherent Bellman error ahead of time. Notice also that
the special case H = 1 recovers the standard linear bandit setting and the algorithm by Zanette et al. (2020) reduces to
OFUL with a confidence ellipsoid that accounts for εi. In this bandit case ε? is the absolute approximation error of expected
rewards.

Recently, Foster et al. (2020a) have shown that an adaptation to unknown approximation errors ε? is possible in contextual
bandits, but their model-selection approach requires base learners that work with importance weights, and whose importance-
weighted regret admits a favorable dependency on εi. Here we have shown that a similar result (up to logarithmic factors)

7The Õ notation is similar to the O-notation but hides poly-logarithmic dependencies.
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Algorithm 4: EpochBalancing

1 Input: set of learners I
2 for round t = 1, 2, . . . do
3 Receive context xt
4 foreach learner i ∈ I do
5 Ask learner i for a lower bound Bt,i on the value of its proposed action

6 Sample it ∼ p ∝ 1
zi

for i ∈ I (see Equation (24))
7 Play learner it and receive reward rt
8 Update base learner it with rt

9 Test for misspecification by checking
∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
< max

i∈I

t∑
k=1

Bk,i

10 if above condition is triggered then
11 Return ; // At least one learner must be misspecified

can be achieved with standard optimistic base learners such as OFUL. Our result also matches the regret guarantee by
Pacchiano et al. (2020b) but does not require their smoothing procedure for base learners. Importantly, our result proves that
an adaptation to unknown approximation errors ε? is also possible without any modification to base learners in the MDP
setting where base-learners that achieve the importance-weighted regret guarantee required by Foster et al. (2020a) are
(still) unavailable. Note also that our framework is not specific to instances of the algorithm by Zanette et al. (2020) as base
learners. Our model selection algorithm can, for example, also be used with approximate versions of LSVI-UCB by Jin et al.
(2020) and achieve similar regret guarantees in their setting and for their notion of approximation error.

E. Extension to Adversarial Contexts
In this section, we show that the dynamic balancing principle can also be used for model selection when the contexts xt are
generated in an adversarial manner. For the sake of concreteness, we present our extension for the setting from Section 5.1,
but our techniques for adversarial contexts can be easily adapted to all other bandit applications discussed in Section 5
and likely to episodic MDP settings with adversarial start states as well. We consider the setting from Section 5.1. Since
the entries of the true parameter θ? are 0 for all dimensions above di? , where i? ∈ [M ] is an unknown index, all learners
i?, i?+1, . . .M are well-specified with high probability. We focus our analysis on the event E ′ where this is the case. Unlike
Section 5.1 where contexts are assumed to be drawn i.i.d., we here consider the setting where contexts xt (corresponding
to the action set At at round t) are generated adversarially. Since each base learner operates only in a lower-dimensional
subspace, we allow the bound on the action norm Li, the bound on the parameter norm Si, and the range of expected return
Rmax
i to vary per base learner i (potentially depending on the number of dimension di). Yet, for the sake of simplicity, we

assume that all learners use regularization parameter λ = 1.

Algorithm 1, which assumes stochastic contexts, compares upper- and lower-confidence bounds on the optimal reward value
µ? obtained from learners that were executed on two disjoint subsets of rounds to determine misspecification. This strategy
does not work with adversarial contexts since the optimal policy that an algorithm could have achieved depends on the
contexts in the rounds that it was played. One algorithm may only have seen “bad” contexts with low µ?t , while another may
only have encountered favorable contexts with high µ?t . A direct comparison is therefore meaningless.

In order to be able to handle adversarial contexts and address this challenge, we modify our dynamic balancing algorithm
in two ways: (1) we randomize the learner’s choice for regret balancing, and (2) we change the misspecfication test to
compare upper and lower confidence bounds on the optimal policy value of all rounds played to far. The resulting algorithm
is presented in Algorithm 5. The algorithm operates in epochs, where the subroutine in Algorithm 4 is executed. We start by
discussing the regret balancing subroutine in the next section before presenting the main algorithm and its regret guarantee
afterwards.
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E.1. The Epoch Balancing Subroutine

The subroutine in Algorithm 4 takes in input a set of active base learners I = {s, s+ 1, . . . ,M} and ensures by randomized
regret bound balancing that its total regret is controlled for all rounds until it terminates.

In addition to the putative boundRi on its regret, Algorithm 4 requires that each learner i can also provide a lower-confidence
bound on E[rt|at,i, xt], the expected reward of the action it would play in the current context xt. Since each base learner i is
an instance of OFUL, we can choose these bounds at round t as

Ri(ni(t)) = 2
∑

k∈Ti(t)

(
βk,i‖ak,i‖Σ−1

k,i
∧Rmax

i

)
and

Bt,i =
(
〈θ̂t,i, at,i〉 − βt,i‖at,i‖Σ−1

t,i

)
∨ −Rmax

i ,

where Rmax
i ∈ [1, LiSi] is the range of expected rewards8 and Li ≥ maxt ‖at,i‖ and Si ≥ ‖θ?‖ are the norm bounds used

by the OFUL base learners. Further, θ̂t,i, Σt,i and βt,i are the parameter estimate (11), the covariance matrix (11), and the
ellipsoid radius (13) of base learner i at time t, respectively. In a similar spirit,

at,i ∈ argmax
a∈At

〈θ̂t,i, a〉+ βt,i‖at,i‖Σ−1
t,i

denotes the action that base learner i would take at time t. Note that we mean here the truncated action in Rdi and the
covariance matrix in Rdi×di .

At each round t, Algorithm 4 first requests these bounds from each base learner to be later used in the misspecification
test. The algorithm then selects one of the base learners in I by sampling an index it ∼ Categorical(p) from a categorical
distribution with probabilities

pi =
1/zi∑
j∈I 1/zj

, (24)

where zi = (d2
i + diS

2
i )
(
Rmax
i ∧ L2

i

)
for i ∈ I. Since the regret of OFUL scales roughly at a rate of

√
ziT , this learner

selection rule approximately equalizes the regret of all learners in expectation. The algorithm proceeds by playing the
action proposed by it, gathering the associated reward rt, and updating it’s internal state.9 Finally, Algorithm 4 performs a
misspecification test and terminates if this test triggers. We refer to the execution of Algorithm 4 as an epoch.

Unlike the misspecification test in Algorithm 1 which considers the hypothesis that a specific learner i is well specified, the
misspecification test in Algorithm 4 tests the hypothesis that all active learners are well-specified. If all OFUL learners
i ∈ I are well-specified, in the sense that their ellipsoid confidence sets contain θ? for all rounds t so far, then each Bt,i is
also a lower-bound on the optimal value in round t, since

Bt,i ≤ E[rt|at,i, xt] ≤ max
a∈At

E[rt|a, xt] = µ?t .

Hence, the right-hand side of the misspecification test in Algorithm 4 is a lower-bound on the optimal value of all rounds
so far, that is, it satisfies maxj∈I

∑t
k=1Bk,j ≤

∑t
k=1 µ

?
t . Similarly, when all learners are well-specified and satisfy their

putative regret bounds, then the left-hand side of the misspecification test is an upper-bound on
∑t
k=1 µ

?
k. We can see this

as follows. First, by basic concentration arguments, the realized rewards cannot be much smaller than their conditional

expectations with high probability, that is,
∑
i∈I Ui(t) ≥

∑t
k=1 E[rt|at, xt]− c

√
t ln ln(t)

δ . This implies that

∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ

8We specifically assume that E[rt|at, xt] ∈ [−Rmax
? ,+Rmax

? ] where ? is the smallest base learner whose model class contains the
optimal parameter θ?.

9We may also pass on the observation to all base learners when base learners can accept off-policy samples (which do not necessarily
come from the proposed action), as is the case for OFUL.
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≥
t∑

k=1

E[rt|at, xt] +
∑
i∈I

Ri(ni(t))

=
∑
i∈I

 ∑
k∈Ti(t)

E[rt|at, xt] +Ri(ni(t))


≥
∑
i∈I

 ∑
k∈Ti(t)

E[rt|at, xt] + Regi(t)


=
∑
i∈I

∑
k∈Ti(t)

µ?k

=

k∑
k=1

µ?k,

where the last inequality holds because Ri(ni(t)) ≥ Regi(t) when i is well-specified. Thus, if all learners are well-specified,
the misspecification test cannot trigger (with high probability). The following theorem formalizes this argument:

Theorem 37. With probability at least 1 − δ, Algorithm 4 does not terminate if all base learners are well-specified and
their elliptical confidence sets contain θ? at all times.

Therefore, if the test does trigger, at least one learner in I has to be misspecified, that is, either their putative regret bound
Ri or a lower bound Bk,i does not hold. However, until the test triggers, the condition in the test is sufficient to control the
regret as the next theorem formalizes.

In this result, we assume that the base learner regret bounds zi (see text surrounding Eq. (24)) are sufficiently apart, i.e.
2zi ≤ zi+1 holds for all i ∈ I \ {M}. Note that this assumption can always be ensured by first filtering the base learners.
This filtering can increase the regret by at most a factor of 2.

Theorem 38. Assume that Algorithm 4 is run with instances of OFUL as base learners that use different dimensions di
and norm bounds Li, Si with 2zi ≤ zi+1. All base learners use expected reward range Rmax

i = 1 and λ = 1. Denote by ?
the smallest index of the base learner so that all base learners j ∈ I with dj ≥ d? are well-specified and their elliptical
confidence sets always contain the true parameter. Then, with probability at least 1 − 2δ, the regret is bounded for all
rounds t until termination as

Reg(t) = Õ
((
d? +

√
d?S? + |I|

)
(d? +

√
d?S?)

√
t
)
.

Here, we highlighted the regret bound of the single best well-specified learner ? in green, and assumed that the range of
expected rewards is known and equal to 1. If this is not the case and we have to rely on the expected reward range induced
by the vector norms Li and Si, then we have an additional lower-order term:

Theorem 39. Assume that Algorithm 4 is run with instances of OFUL as base learners that use different dimensions di and
norm bounds Li, Si and Rmax

i = LiSi with 2zi ≤ zi+1. Denote by ? the smallest index of the base learner so that all base
learners j ∈ I with dj ≥ d? are well-specified and their elliptical confidence sets always contain the true parameter. Then,
with probability at least 1− 2δ, the regret is bounded for all rounds t until termination as

Reg(t) = Õ

((
d?L? +

√
d?S?L? + |I|

)
(d? +

√
d?S?)L?

√
t+
∑
i∈I

LiSi

)
.

The proofs of Theorem 39 and Theorem 38 are similar to the proof of Corollary 2 but requires a randomized version of the
standard elliptical potential lemma that we prove in Lemma 8.

E.2. Main Algorithm

We now show how to obtain a robust model selection algorithm for adversarial contexts with the help of the Epoch Balancing
subroutine from the previous section. Since Theorem 38 guarantees that the regret of Epoch Balancing is controlled in each
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Algorithm 5: Regret Bound Balancing and Elimination with Adversarial Contexts

1 for s = 1, . . . ,M do
2 EpochBalancing ({s, s+ 1. . . . ,M}) in Algorithm 4

epoch, all that is left it to ensure that the number of epochs is small. When Algorithm 4 terminates, we know that one of the
base learners must have been misspecified but we do not know which one. We here use the hierarchy of base learners: It is
safe to remove the learner imin = mini∈I di with the smallest dimension as its model class is a subset of the model classes
of other base learners. Thus, if there is a model class that fails to contain θ?, this must also be the case for imin. Therefore,
our main algorithm shown in Algorithm 5 calls Epoch Balancing (Algorithm 4) repeatedly, removing the smallest index
from the active learner set each time.

Note that once di ≥ d? for all i ∈ I = {s, s+ 1, . . . ,M}, Epoch balancing will not terminate with high probability because
all remaining learners are well-specified and their bounds hold (see Theorem 37). Therefore, there can only be i? ≤ M
epochs where di? = d? and the total regret Reg(T ) of Algorithm 5 is just the sum of the regret in each epoch up to the
total number of T rounds. We denote by t(s)(T ) the total number of rounds in the first s epochs after a total of T rounds.
Note that t(s)(T ) are stopping times. The regret in the s-th epoch is referred to as Reg(s)(t(s)(T ) − t(s−1)(T )) where
t(s)(T )− t(s−1)(T ) is the number of rounds in episode s. Therefore, we can write the total regret as

Reg(T ) =

M∑
s=1

Reg(s)(t(s)(T )− t(s−1)(T )) . (25)

The regret incurred within each epoch can be bound using Theorem 38, which yields the main result of this section:

Theorem 40 (Model Selection for Adversarial Contexts in Stochastic Linear Bandits). Assume that Algorithm 5 is run with
instances of OFUL as base learners that use different dimensions di and norm bounds Li, Si with 2zi ≤ zi+1 (see text
surrounding Eq. (24)). All base learners use regularizer λ = 1. With probability at least 1− 3(M + 1)δ the total regret of
Algorithm 5 is bounded for all rounds T ∈ N as

Reg(T ) = Õ
((√

Bd? +
√
Bd?S? +

√
BM

)
(d? +

√
d?S?)

√
T
)
,

if base the learners use a common expected reward range Rmax
i = 1. Here, B is the number of base learners that use a

misspecified model that cannot represent θ?. If base learners use instead Rmax
i = LiSi, then the regret bound is

Reg(T ) = Õ

((√
Bd?L? +

√
Bd?S?L? +

√
BM

)
(d? +

√
d?S?)L?

√
T +B

∑
i∈I

LiSi

)
.

Proof. First, we consider the event where all learners with di ≥ d? are well-specified in the sense that their elliptical
confidence intervals contain θ? at all times. This happens with probability at least 1 −Mδ by Lemma 34. Further, only
consider outcomes where Theorem 38 and Theorem 37 hold in all epochs.10 By a union bound, all these assumptions hold
with probability at least 1− (3M + 1)δ. We now consider the decomposition in Eq. (25) and bound

Reg(T ) =

M∑
s=1

Reg(s)(t(s)(T )− t(s−1)(T ))

(i)
=

i?∑
s=1

Reg(s)(t(s)(T )− t(s−1)(T ))

(ii)

≤
i?∑
s=1

C(s)
√
t(s)(T )− t(s−1)(T ) + 8.12

∑
i∈I(s)

Rmax
i ln

5.2M ln(2T )

δ


10We note that both theorems hold for arbitrary sequences of contexts and therefore also when the s-th instance of Epoch Balancing is

started after a random number of rounds t(s−1)(T ).
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≤ max
s∈[i?]

C(s)

√√√√i?

i?∑
s=1

(t(s)(T )− t(s−1)(T )) + 8.12 i?
∑
i∈I(s)

Rmax
i ln

5.2M ln(2T )

δ

= max
s∈[i?]

C(s)
√
i?T + 8.12 i?

∑
i∈I(s)

Rmax
i ln

5.2M ln(2T )

δ
,

where (i) follows from Theorem 37 and (ii) from Theorem 38 with epoch-dependent factor
C(s) ≤ Õ

((
d? +

√
d?S? +M

)
(d? +

√
d?S?)

)
or Theorem 39 with epoch-dependent factor C(s) ≤

Õ
((
d?L? +

√
d?S?L? +M

)
(d? +

√
d?S?)

)
L?.

E.3. Epoch Balancing Termination (Proof of Theorem 37)

Theorem 37. With probability at least 1 − δ, Algorithm 4 does not terminate if all base learners are well-specified and
their elliptical confidence sets contain θ? at all times.

Proof. Since all base learners are well-specified and their lower-confidence bounds Lt,i satisfy Lt,i ≤ E[rt|at,i, xt] ≤ µ?k,
the right-hand side of the misspecification test satisfies

max
j∈I

t∑
k=1

Bk,j ≤
t∑

k=1

µ?k

for all t ∈ N. Further, with probability at least 1− δ, by Lemma 42, the left-hand side of the misspecification test satisfies
for all t ∈ N ∑

i∈I
[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
≥

t∑
k=1

µ?k .

Thus, the misspecification test never triggers and Algorithm 4 does not terminate.

Let’s define the event E ′′ under which the sum of the cumulative rewards of all active algorithms in I are close to the sum of
their pseudorewards. Let δ ∈ (0, 1). Define:

E ′′ =

{
∀t ∈ N :

∣∣∣∣∣∑
i∈I

Ui(t)−
t∑

k=1

E[rk|ak, xk]

∣∣∣∣∣ ≤ c
√
t ln

ln(t)

δ

}
, (26)

where c > 0 is an absolute constant such that c
√
t ln ln(t)

δ ≥ 0.85
√
t (ln ln(4t) + 0.72 ln(10.4/δ)) .

Lemma 41. Event E ′′ holds with probability at least 1− δ.

Proof. Let Ft = σ(x1, i1, a1, r1, . . . , xt−1, it−1, at−1, rt−1, xt−1, it−1, at−1) be the sigma-field induced by all variables
up to the reward at round t. Hence, Xk = rk − E[rk|ak, xk] is a martingale-difference sequence w.r.t. Fk. We will now
apply a Hoeffding-style uniform concentration bound from Howard et al. (2021). Using the terminology and definition in
this article, by case Hoeffding I in Table 4 therein the process Sk =

∑k
j=1Xk is sub-ψN with variance process Vk = k/4.

Thus by using the boundary choice in Equation (11) of Howard et al. (2021), we get

Sk ≤ 1.7
√
Vk (ln ln(8Vk) + 0.72 ln(5.2/δ))

= 0.85
√
k (ln ln(4k) + 0.72 ln(5.2/δ))

for all k with probability at least 1− δ. Applying the same argument to −Sk gives that∣∣∣∣∣
t∑

k=1

(rk − E[rk|ak, xk])

∣∣∣∣∣ ≤ 0.85
√
t (ln ln(4t) + 0.72 ln(10.4/δ))

holds with probability at least 1 − δ for all t. Since
∑
i∈I Ui(t) =

∑t
k=1 rk, the statement follows. Note that this

concentration argument holds for all t uniformly and therefore also when t is random.

51



Dynamic Balancing for Model Selection in Bandits and RL

Lemma 42 (Upper-confidence bound on optimal reward). In event E ′′ from Equation 26, the following holds. If at time t all
learners i ∈ I are well-specified, then the left-hand side in the misspecification test of Algorithm 4 is a lower-bound on the
optimal rewards, i.e., ∑

i∈I
[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
≥

t∑
k=1

µ?k .

Proof. Whenever E ′′ holds, we have∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ

≥
∑
i∈I

Ri(ni(t)) +

t∑
k=1

E[rk|ak, xk] (by definition of E ′′)

≥
∑
i∈I

Regi(t) +

t∑
k=1

E[rk|ak, xk] (each learner is well-specified)

=
∑
i∈I

Regi(t) +
∑

k∈Ti(t)

E[rk|ak, xk]


=
∑
i∈I

∑
k∈Ti(t)

µ?k =

t∑
k=1

µ?k (by definition of regret).

E.4. Regret Bound for Epoch Balancing (Proof of Theorem 38)

Theorem 38. Assume that Algorithm 4 is run with instances of OFUL as base learners that use different dimensions di
and norm bounds Li, Si with 2zi ≤ zi+1. All base learners use expected reward range Rmax

i = 1 and λ = 1. Denote by ?
the smallest index of the base learner so that all base learners j ∈ I with dj ≥ d? are well-specified and their elliptical
confidence sets always contain the true parameter. Then, with probability at least 1 − 2δ, the regret is bounded for all
rounds t until termination as

Reg(t) = Õ
((
d? +

√
d?S? + |I|

)
(d? +

√
d?S?)

√
t
)
.

Proof. We apply Theorem 43 (see below) which immediately yields the desired bound

Reg(t) = Õ
((
d? +

√
d?S? + |I|

)
(d? +

√
d?S?)

√
t
)
.

Theorem 39. Assume that Algorithm 4 is run with instances of OFUL as base learners that use different dimensions di and
norm bounds Li, Si and Rmax

i = LiSi with 2zi ≤ zi+1. Denote by ? the smallest index of the base learner so that all base
learners j ∈ I with dj ≥ d? are well-specified and their elliptical confidence sets always contain the true parameter. Then,
with probability at least 1− 2δ, the regret is bounded for all rounds t until termination as

Reg(t) = Õ

((
d?L? +

√
d?S?L? + |I|

)
(d? +

√
d?S?)L?

√
t+
∑
i∈I

LiSi

)
.

Proof. We apply Theorem 43 (see below) which yields

Reg(t) = Õ

((
d?L? +

√
d?S?L? + |I|

)
(d? +

√
d?S?)L?

√
t+
∑
i∈I

LiSi ln ln(t)

)
.
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Theorem 43 (General Regret Bound of Epoch Balancing). Assume that Algorithm 4 is run with instances of OFUL as base
learners which use different dimensions di, Si, Li, Rmax

i and regularization parameter λ = 1. Denote by ? the index of the
base learner so that all base learners j ∈ I with dj ≥ d? are well-specified and their elliptical confidence sets always
contain the true parameter. Then, with probability at least 1− 2δ, the regret is bounded for all rounds t as

Reg(t) ≤
√

(d2
? + d?S2

?)|I| (Rmax
? ∧ L?)

√
t(2 + 2c)x(t) + (d2

? + d?S
2
?) (Rmax

? ∧ L?)2
√
M̄t(2 + 2c)x(t)

+ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
,

where M̄ = |I| for general zi and M̄ = 2 when zi are exponentially increasing (i.e., 2zi ≤ zi+1 for all i ∈ I). In the above,
x(t) is a short-hand for O(ln tLmax

δ + ln ln(Rmax
max t∧Lmaxt)), where Lmax = maxi∈[M ] Li, and Rmax

max = maxi∈[M ]R
max
i ,

and c is a universal constant.

Proof. Since learner i? is well-specified and its elliptical confidence set contains θ?, it holds that

t∑
k=1

µ?k ≤
t∑

k=1

max
a∈Ak

[
〈θ̂k,?, a〉+ βk,?‖a‖Σ−1

k,?

]
=

t∑
k=1

〈θ̂k,?, ak,?〉+ βk,?‖ak,?‖Σ−1
k,?
.

Thus, we can write the total regret up to round t as

Reg(t) =

t∑
k=1

[µ?k − E[rk|ak, xk]] =

t∑
k=1

µ?k −
t∑

k=1

E[rk|ak, xk]

≤
t∑

k=1

µ?k −
∑
i∈I

Ui(ni(t)) + c

√
t ln

ln(t)

δ
,

where the inequality holds in event E ′′. If Algorithm 4 does not stop in iteration t, then the misspecification test does not
trigger for any learner, and in particular for learner i?. This implies that

∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
≥

t∑
k=1

Bk,? .

Rearranging terms and plugging this inequality back into the regret bound from above yields

Reg(t) ≤
t∑

k=1

[µ?k −Bk,?] +
∑
i∈I

Ri(ni(t)) + 2c

√
t ln

ln(t)

δ
. (27)

We bound the first term in Equation 27 as

t∑
k=1

[µ?k −Bk,?]

(i)

≤
t∑

k=1

[
Rmax
? ∧ (〈θ̂k,?, ak,?〉+ βk,?‖ak,?‖Σ−1

k,?
)− (−Rmax

? ∨ (〈θ̂k,?, ak,?〉 − βk,?‖ak,?‖Σ−1
k,?

))
]

≤
t∑

k=1

[
2Rmax

? ∧ 2βk,?‖ak,?‖Σ−1
k,?

]
≤ 2βt,?

t∑
k=1

[
Rmax
?

βt,?
∧ ‖ak,?‖Σ−1

k,?

]
(ii)

≤ 2βt,?

√√√√t

t∑
k=1

[(
Rmax
?

βt,?

)2

∧ L
2

λi
∧ ‖ak,?‖2Σ−1

k,?

]

where (i) follows from the definition of Bk,i and the fact that the ellipsoid confidence set of ? contain the true parameter
and (ii) applies the Cauchy-Schwarz inequality. We now apply a randomized version of the elliptical potential lemma which
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we prove in Lemma 8. This yields

t∑
k=1

[µ?k −B?,k] ≤ 4βt,?

√
t

p?
(1 + b2?) ln

5.2 ln(2b2?t ∨ 2) det Σt,?
δ det Σ0,?

≤ 4βt,?

√
td?
p?

(1 + b2?) ln
5.2 ln(2b2?t ∨ 2)(d?λ? + tL2

?)

δd?λ?

where b? =
Rmax
?

βt,?
∧ L?√

λ?
. For the second term in Equation 27, we apply Lemma 44 (see below) as

∑
i∈I

Ri(ni(t)) ≤ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2

∑
i∈I

βt,i

√
3dipit (1 + b2i ) ln

diλi + tpiL2
i

diλi
.

Combining the terms for both bounds, we arrive at the regret bound

Reg(t) ≤ 4βt,?

√
td?
p?

(1 + b2?) ln
5.2 ln(2b2?t ∨ 2)(d?λ? + tL2

?)

δd?λ?

+ 2
∑
i∈I

βt,i

√
3dipit (1 + b2i ) ln

diλi + tpiL2
i

diλi

+ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2c

√
t ln

ln(t)

δ

≤ x(t)

√
z?t

p?
+ x

∑
i∈I

√
zipit+ 8.12

∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2c

√
t ln

ln(t)

δ
,

where

zi = (σ2di + λiS
2
i )di(1 + b2i ) ≤ 2(d2

i + diS
2
i ) (Rmax

i ∧ Li)2

and
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i∈I

√
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(
1 + tL2

i /λi
δ

)
ln

5.2 ln(2b2i t ∨ 2)(diλi + tL2
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(
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i

δ

)
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δ

≤ 12 ln
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δ
.

We now use the definition of pi ∝ 1
zi

and bound

∑
i∈I

√
zipi =

∑
i∈I

√
1∑

i∈I z
−1
i

=
|I|√∑
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−1
i
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z−1
?
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√
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where the inequality uses the fact that ? ∈ I. Further√
z?
p?

= z?

√∑
i∈I

1

zi
≤ z?

√
|I|

holds for any zi but if we know that z1 ≤ 1
2z2 ≤ 1

4z3 · · · ≤ 1
2MzM

, then√
z?
p?

= z?

√∑
i∈I

1

zi
≤ 2z?.
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Thus, we can bound the total regret as

Reg(t) ≤ (|I|
√
z? + z?

√
M̄)x(t)

√
t+ 8.12

∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2c

√
t ln

ln(t)

δ

≤
√

(d2
? + d?S2

?)|I| (Rmax
? ∧ L?)

√
t(2 + 2c)x(t)

+ (d2
? + d?S

2
?) (Rmax

? ∧ L?)2
√
M̄t(2 + 2c)x(t)

+ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
,

where M̄ = |I| for general zi and M̄ = 2 when zi are exponentially increasing. Note that since this bound holds in the
penultimate round of Algorithm 4 and the regret in the final round can be at most 1, this bound holds for all rounds t played
by Algorithm 4, including the last one.

Lemma 44 (Regret bounds are balanced). Let δ ∈ (0, 1) be arbitrary but fixed. With probability at least 1− δ, the sum of
regret bounds satisfy in all iterations t of Algorithm 4 the following upper-bound

∑
i∈I

Ri(ni(t)) ≤ 8.12
∑
i∈I

Rmax
i ln

5.2|I| ln (2t)

δ
+ 2

∑
i∈I
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√
3dipit (1 + b2i ) ln

λidi + 3tpiL2
i

λidi
,

where bi =
Rmax
i

2βt,i
∧ Li√

λi
.

Proof. By the choice of regret bounds we have

Ri(ni(t)) =
∑

k∈Ti(t)

[
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k,i
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i

]
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where bi =
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i

2βt,i
∧ Li√

λi
and the last inequality follows from of Lemma 7. To control the the number of times each learner

was chosen, we use Lemma 45 (see below). This gives with probability at least 1 − δ for all iterations t simultaneously
ni(t) ≤ 3tpi ∨ 8.12 ln 5.2|I| ln(2t)

δ . This yields a regret bound of

Ri(ni(t)) ≤ 8.12Rmax
i ln

5.2|I| ln (2t)

δ
∨ 2βt,i

√
3dipit (1 + b2i ) ln

λi + 3tpiL2
i /di
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.

Summing over Ri and plugging in βt,i yields

∑
i∈I

Ri(ni(t)) ≤ 8.12
∑
i∈I
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i ln

5.2|I| ln (2t)

δ
+ 2
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λi + 3tpiL2
i /di
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,

as claimed.

Lemma 45. The number of times each a learner i ∈ I has been played in Algorithm 4 after t iterations is bounded with
probability at least 1− δ for all t ∈ N and i ∈ I as

ni(t) ≤
3

2
tpi + 4.06 ln

5.2|I| ln (2t)

δ
≤ 3tpi ∨ 8.12 ln

5.2|I| ln (2t)

δ
.
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Proof. Fix an i ∈ I and consider the martingale difference sequence Xt = 1{it = i} − pi. The process St =
∑t
k=1Xk

with variance process Wt = tpi(1− pi) satisfies the sub-ψP condition of Howard et al. (2021) with constant c = 1 (see
Bennett case in Table 3 of Howard et al. (2021)). By Lemma 9, the bound

St ≤ 1.44

√
(Wt ∨m)

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
+ 0.41

(
1.4 ln ln (2(Wt/m ∨ 1)) + ln

5.2

δ

)
holds for all t ∈ N with probability at least 1− δ. We set m = tpi and upper-bound the RHS further, so as to obtain

St ≤ 1.44

√
tpi

(
1.4 ln ln (2t) + ln

5.2

δ

)
+ 0.41

(
1.4 ln ln (2t) + ln

5.2

δ

)
≤ tpi

2
+ 1.45

(
1.4 ln ln (2t) + ln

5.2

δ

)
,

where used the AM-GM inequality in the final step. We therefore get that with probability at least 1 − δ, the following
upper-bound in the number of times learner i was selected by time t holds for all i ∈ I and t ∈ N:

ni(t) ≤
3

2
tpi + 2.9

(
1.4 ln ln (2t) + ln

5.2|I|
δ

)
≤ 3

2
tpi + 4.06 ln

5.2|I| ln (2t)

δ
.

We can now distinguish between two cases. When 3
2 tpi ≤ 4.06 ln 5.2|I| ln(2t)

δ we have

ni(t) ≤ 8.12 ln
5.2|I| ln (2t)

δ
.

In the opposite case, we simply have ni(t) ≤ 3tpi. Putting together concludes the proof.

F. Experiment Details
Linear bandit instances. We generated the 3 linear bandit instances used in our experiments as follows. All instances
have dimensionality d = 10 and 100 actions. We drew both the true parameter θ ∈ Rd and each of the 100 actions a(i) ∈ Rd
independently and uniformly from the d-dimensional unit sphere. The actions are kept fixed throughout all rounds. The
reward in each round t was generated as rt = 〈at, θ〉+ εt where εt ∼ N (0, σ2) is independent Gaussian noise and at is the
action chosen by the algorithm. The three instances are generated in the same fashion but vary in the standard-deviation
of the noise: σ = 1.0, σ = 0.3 and σ = 0.05. The problem instances were kept fixed across different runs of the same
algorithm and across different algorithms.

The results shown in Figure 1 of the main body of the paper are the averages of 60, 10, 10 independent runs for each of the
three instances. We used more seeds for the first instance since the noise level is generally higher but still could not detect a
statistically significant difference between Dynamic Balancing and Stochastic Corral.

Dynamic Balancing. In our experiments, we used the simple version of Dynamic Balancing described in Appendix B and
shown in Algorithm 2 which does not use reward biases bi(t) or scaling factors vi in the balancing condition. Appendix B.5
carefully lays out the regret guarantees of this version of Dynamic Balancing. They are similar to the full version in
Algorithm 1 but have additional factors on the number of learners M . For each base learner, we use the following regret
bound,

Ri(ni(t)) =
∑

k∈Ti(t)

min
{

1, 2βk,i‖ak‖Σ−1
k,i

}
,

where Σk,i and βk,i are the covariance matrix and confidence radius used by the i-th learner in round k. As discussed in
Appendix D.1, this is a valid regret bound of OFUL.

Stochastic Corral. While the description of base learner wrapper of Stochastic Corral by Pacchiano et al. (2020b) assumes
that the learner executes a previous policy at every second round, this comes with infeasible memory costs. Instead, we only
maintained a set of 1000 previous policies using reservoir sampling which ensures that it is a representative sample of the
entire history. We do not expect that this has any impact on practical performance.
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