
Dynamic Balancing for Model Selection in Bandits and RL

Ashok Cutkosky * 1 Christoph Dann * 2 Abhimanyu Das * 3 Claudio Gentile * 2 Aldo Pacchiano * 4

Manish Purohit * 3

Abstract

We propose a framework for model selection by
combining base algorithms in stochastic bandits
and reinforcement learning. We require a candi-
date regret bound for each base algorithm that
may or may not hold. We select base algorithms
to play in each round using a “balancing condition”
on the candidate regret bounds. Our approach si-
multaneously recovers previous worst-case regret
bounds, while also obtaining much smaller re-
gret in natural scenarios when some base learners
significantly exceed their candidate bounds. Our
framework is relevant in many settings, includ-
ing linear bandits and MDPs with nested function
classes, linear bandits with unknown misspecifi-
cation, and tuning confidence parameters of algo-
rithms such as LinUCB. Moreover, unlike recent
efforts in model selection for linear stochastic
bandits, our approach can be extended to consider
adversarial rather than stochastic contexts.

1. Introduction
Multi-armed bandits are a sequential learning framework
whereby a learning agent repeatedly interacts with an un-
known environment across a sequence of T rounds. During
each round, the learner picks an action from a set of available
actions (possibly after observing some context information
for that round), and the environment generates a feedback
signal in the form of a reward value, associated with the
chosen action for that context. Given a class of policies, the
goal of the learning agent is to accumulate a total reward
during the T rounds which is not much smaller than that of
the best policy in hindsight within the class.

This problem has been extensively studied under diverse as-
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sumptions about the class of policies, the source generating
reward signals, the shape of the action space, etc. (e.g. see
Auer et al., 2002; Langford & Zhang, 2008; Beygelzimer
et al., 2011; Lattimore & Szepesvári, 2020; Agarwal et al.,
2014). Many of these algorithms have different behaviors
in different environments; for instance, one algorithm might
do much better if the average reward is a linear function
of the context, while another might do better when reward
and context are independent. This plethora of prior algo-
rithms necessitates “meta-decisions”: If the environment is
not known in advance, which algorithm should be used for
the task at hand? This is especially important for industrial
deployment, where the complexity and diversity of the avail-
able solutions typically require being able to select among
several alternatives, like selecting the best within a pool of
bandit algorithms, or even alternative configurations of the
same algorithm (as in, e.g., hyper-parameter optimization).

We model the above meta-decision by assuming we have
access to a pool of M base bandit algorithms, and our goal
is to design a bandit meta-algorithm, whose actions are the
base algorithms themselves, such the total regret experi-
enced by the meta-algorithm is comparable to that of the
best base algorithm in hindsight for the environment at hand.
In each round t, the meta-algorithm needs to choose one
of the base algorithms, and plays the action suggested by
that algorithm. Since we do not know in advance which
base algorithm will perform best, we need to address this
problem in an online fashion. We call this problem online
model selection for bandit algorithms. In this paper, we
focus on this problem for stochastic environments.

The bandit model selection problem has received a lot of re-
cent attention, as witnessed by a flurry of recent works (e.g.,
Foster et al., 2019; Abbasi-Yadkori et al., 2020; Pacchiano
et al., 2020b; Arora et al., 2021; Ghosh et al., 2021; Chatterji
et al., 2020; Bibaut et al., 2020; Foster et al., 2020a; Lee
et al., 2021). A pioneering prior work in this domain has
considered the adversarial setting (Agarwal et al., 2017)
and utilizes an adversarial meta algorithm based on mirror
descent. However their algorithm (CORRAL) needs some
technical stability conditions for the base learners, thus re-
quiring each base algorithm to be individually modified.
Recently, Pacchiano et al. (2020b) extended CORRAL for
the stochastic setting, while dispensing with the stability
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conditions on the base algorithms.

In this paper, we propose a general-purpose meta-algorithm
that can be used in combination with any set of stochastic
base bandit algorithms (without requiring any modifica-
tions or stability conditions on the base algorithms). Our
algorithm is based on the principle of dynamic regret bal-
ancing, which generalizes an approach by Abbasi-Yadkori
et al. (2020). We require only a putative (or candidate)
regret bound for each base learner that may or may not
hold. In each round, the algorithm maintains a set of “active”
base-learners based on a misspecification criterion, and then
chooses a base learner among them so as to make all puta-
tive regret bounds (evaluated at the number of rounds that
the respective base learner was played) to be roughly equal,
up to carefully-chosen bias and scale factors. Under the
assumption that at least one of the base learners’ putative
regret bound is indeed valid, we show that our algorithm’s
total regret, in many settings, is only a multiplicative factor
of the regret of the best base algorithm in hindsight. Besides,
the parameters of our algorithm are solely derived from the
putative regret bounds, so that once these putative bounds
are available, no further parameters have to be tuned.

Our technique is both different and simpler than previous
model selection techniques such as those by Pacchiano et al.
(2020b), while still recovering (and in some settings, im-
proving on) their regret guarantees. For example, when each
base learner comes with a putative regret bound of di

√
T ,

we obtain regret guarantees that recover the regret of the
best learner up to a multiplicative factor of

√
Bd? where B

is the number of misspecified base learners, and ? is the best
well-specified base learner. This improves on the

√
Md?

result of Pacchiano et al. (2020b) when there are only a
few misspecified base learners. The simplicity of our algo-
rithm also comes with a much smaller memory requirement
(O(M) compared to O(TM) of Pacchiano et al. (2020b)).

Furthermore, our algorithm can simultaneously provide gap-
dependent regret bounds under various suitable “gap” as-
sumptions on the base learners, that can avoid the

√
T limit

of the previous adversarial meta-algorithm approaches. This
lets us provide overall regret bounds that depend only on a
multiplicative factor of the best learner, even for the case
when the base learners have o(

√
T ) putative regret (includ-

ing the case ofO(log(T )) base learners). Arora et al. (2021)
showed that gap-dependent results are possible in the related
problem of corralling stochastic multi-armed bandit algo-
rithms. Furthermore, Lee et al. (2021) recently also obtained
gap-dependent regret bounds for model-selection in rein-
forcement learning – however, their algorithm has a weaker
gap-independent regret bound with a T 2/3 dependence.

Unlike most prior model-selection work, our regret guaran-
tees can also be made non-uniform over the base learners
by utilizing the user-specified biases over the base algo-

rithms in our regret balancing algorithm. This lets us capture
some notion of “prior knowledge” over the base algorithms
and allows us to obtain more delicate trade-offs between
their performances in a manner reminiscent of (Lattimore,
2015). Additionally, unlike previous work, our approach
also extends to the case when contexts are generated from
an adversarial environment, rather than a stochastic one.

Our results can be specialized to various model-selection
applications such as linear bandits and MDPs with nested
function classes (Foster et al., 2019), linear bandits with
unknown misspecification, and confidence-parameter tuning
for contextual linear bandits. For the case of linear bandits
with nested model classes, we show that using our gap-
dependent bounds, we can recover the optimal d∗

√
T regret

dependence in the infinite action space setting.

To summarize, our contributions significantly advance the
state of the art, especially when compared to Abbasi-
Yadkori et al. (2020); Pacchiano et al. (2020b), which are
the references closest to this work. In particular:

• Our worst-case regret Õ(d2
?

√
BT ) improves the best

known rate of Õ(d2
?

√
MT ) by Pacchiano et al.

(2020b).

• Unlike Abbasi-Yadkori et al. (2020); Pacchiano et al.
(2020b), we provide simultaneous

√
T worst-case and

ln(T ) gap-dependent regret bounds under general con-
ditions.

• Our gap-dependent guarantees allow us to prove model
selection bounds in a number of relevant settings which
strongly outperform existing results, e.g., our d∗

√
T

bound in Section 5.1 for nested model classes.

• We have several other new results that cannot be ob-
tained by prior work, e.g., adversarial contexts (Sec-
tion 6) and demonstrate the usefulness of our approach
empirically in Section 7.

2. Setup and Assumptions
We consider contextual sequential decision making prob-
lems described by a context space X , an action space A,
and a policy space Π = {π : X → A}. At each round t, a
context xt ∈ X is drawn1 i.i.d. from some distribution, the
learner observes this context, picks a policy πt ∈ Π, thereby
playing action at = πt(xt) ∈ A, and receives an associated
reward rt ∈ [0, 1] drawn from some fixed distribution that
may depend on the current action and context. The expected
reward of the optimal policy at the context xt at round t will
be denoted by µ?t = maxπ′∈Π E[r|π′(xt), xt]and, when
contexts are stochastic, the expectation of µ?t over contexts

1This assumption will actually be relaxed in Section 6.
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simply as µ? = Ex [µ?t ] which is a fixed quantity and inde-
pendent of the round t.

Base learners. Our learning policy in fact relies on base
learners which are in turn learning algorithms operating in
the same problem 〈X ,A,Π〉. Specifically, there are M base
learners which we index by i ∈ [M ] = {1, . . . ,M}.2 In
each round t, we select one of the base learners to play, and
receive the reward associated with the action played by the
policy deployed by that base learner in that round. Let us
denote by Ti(t) ⊆ N the set of rounds in which learner
i was selected up to time t ∈ N. Then the pseudo-regret
Regi our algorithm incurs over rounds k ∈ Ti(t) due to the
selection of base learner i is

Regi(t) =
∑

k∈Ti(t)

(µ?k − E[rk|πk(xk), xk]) ,

and the total pseudo-regret Reg of our algorithm is then
Reg(t) =

∑M
i=1 Regi(t). Similarly, we denote the total

reward accumulated by base learner i after a total of t rounds
as Ui(t) =

∑
k∈Ti(t) rk.

Putative regret bounds. Each base learner i comes with a
putative (or candidate) regret (upper) bound Ri : N→ R+,
which is a function of the number of rounds this base learner
has been played. This bound is typically known a-priori
to us, and can also be a random variable, as long as its
current value is observable, that is, we assume Ri(ni(t))
is observable for all i ∈ [M ] and t ∈ N, where ni(t) =
|Ti(t)| is the number of rounds learner i was played after
t total rounds. Our notion of regret bound measures regret
comparing to µ?t , the best expected reward overall.

Well- and misspecified learners. We call learner i well-
specified if Regi(t) ≤ Ri(ni(t)) for all t ∈ [T ], with high
probability over the involved random variables (see later
sections for more details and examples), and otherwise mis-
specified (or bad). A well-specified base learner i is then
one for which the candidate regret bound Ri(·) is a reliable
upper bound on the actual regret of that learner.

For a given set of base learners with candidate regret upper
bounds, we denote the set of bad learners by B ⊆ [M ], and
the set of good (well-specified) ones by

G = {i∈ [M ] : ∀t∈ [T ] Regi(t)≤Ri(ni(t))} = [M ] \ B.

Notice that sets G and B are random sets. As a matter of
fact, these sets do also depend on the time horizon T , but we
leave this implicit in our notation. We assume in our regret-
analysis that there is always a well-specified learner, that is
G 6= ∅. We will show that in the applications we consider,

2A learner may choose to internally work on a smaller policy
class / only use a subset of the context.

this happens with high probability. The index i? ∈ G (or
just ? for short) will be used for any well-specified learner.

Problem statement. Our goal is to devise sequential de-
cision making algorithms that have access to base learners
as subroutines and associated candidate regret bounds Ri(·),
and are guaranteed to have regret that is comparable to the
smallest regret bound among all well-specified base learners
in G, without knowing a-priori G and B.

3. Dynamic Balancing
In this section, we describe the intuition behind our algo-
rithm. There are two main conceptual components: a bal-
ancing scheme, and a de-activation scheme. For the balanc-
ing part, in each round, the algorithm chooses a base learner
with minimum value ofRi(ni(t)). To see why this is a good
idea, assume for now that all base learners are well-specified.
Then, because the regret of each base learner is at most its
candidate regret bound, and these regret bounds are approxi-
mately equal, the total regret our algorithm incurs is at most
M times worse than had we only played the algorithm with
the best putative regret bound:

Reg(T ) =

M∑
i=1

Regi(T ) ≤
M∑
i=1

Ri(ni(T ))

≈M min
i∈[M ]

Ri(ni(T )) ≤M min
i∈[M ]

Ri(T ) .

Yet, the above only works if all base learners are well speci-
fied, which may not be the case. Besides, if all base learners
were well specified, we could simply single out at the be-
ginning the learner whose regret bound is lowest at time
T , and select that learner from beginning to end. In order
to handle the situation where some putative regret bounds
may not hold, we pair the above regret bound balancing
principle with a test to identify misspecified base learners.
This test compares the time-average rewards Ui(t)/ni(t)
and Uj(t)/nj(t) achieved by two base learners i and j. Up
to martingale concentration terms, a well-specified learner
should satisfy Ui+Ri(ni(t))

ni(t)
≥ µ?, because

Regi(ni(t)) = ni(t)µ? − E[Ui(t)] ≤ Ri(ni(t)) ,

while for all learners, we have E[Ui(t)/ni(t)] ≤ µ?. There-
fore, we should be “suspicious” of any learner for which
Ui(t)+Ri(ni(t))

ni(t)
. maxj∈[M ]

Uj(t)
nj(t)

.

Our approach is to (temporarily) de-activate learners that do
not satisfy this “misspecification test”, and only balance the
regret bounds among the currently active learners.

However, in order to obtain more refined bounds, we will
add two twists to this procedure. First, we introduce some
bias functions bi(t). The bi(t) represents a “budget” of
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Algorithm 1: The Dynamic Balancing Algorithm
input :M base learners

Candidate regret bound Ri for each learner
Confidence parameter δ ∈ (0, 1)
Reward bias bi(·) and scaling coefficient vi

1 Ui(0) = ni(0) = 0 for all i ∈ [M ]
2 Active set: I1 ← [M ]
3 for round t = 1, 2, . . . do
4 Select learner from active set as

it ∈ argmin
i∈It

viRi(ni(t− 1))

5 Play action at of learner it and receive reward rt
6 Update learner it with rt
7 Update ni(·) and Ui(·) :

Uit(t)← Uit(t− 1) + rt
nit(t)← nit(t− 1) + 1

8 foreach learner i ∈ [M ] do
9 Compute adjusted avg. reward:

ηi(t)← Ui(t)
ni(t)

− bi(t)
10 Compute confidence band:

γi(t)← c
√

ln(M lnni(t)/δ)
ni(t)

11 Set active learners It+1 as all i ∈ [M ] that satisfy

ηi(t)+γi(t)+
Ri(ni(t))

ni(t)
≥ max
j∈[M ]

ηj(t)+γj(t)

extra regret over learner i’s regret that we are willing to
experience in the event that learner i is indeed the optimal
well-specified learner. Intuitively, a learner with a very large
putative regret bound can be safely ignored during early
iterations, perhaps at the cost of a constant factor more
regret. Thus, we will give such learners larger values for
bi(t), and utilize the following misspecification test:

Ui(t) +Ri(ni(t))

ni(t)
− bi(t) ≥ max

j∈[M ]

Uj(t)

nj(t)
− bj(t) . (1)

This test forces the algorithm to de-activate learners for
whom the regret bound is not higher than the bias. The
formal test is provided in line 11 of Algorithm 1, including
an extra term arising from martingale concentration bounds.

The second twist is the use of scaling coefficients vi. Specif-
ically, instead of playing the active learner with minimum
regret bound, we instead play the active learner with mini-
mum scaled regret bound viRi(ni(t)). This will cause the
values for viRi(ni(t)) to remain roughly balanced among
all active learners. By decreasing vi, we play algorithm i
more frequently. Together, these twists allow us to improve
dependencies on M in the regret.

4. Regret Guarantees for Dynamic Balancing
We now give general regret bound guarantees for Algo-
rithm 1 that hold in the presence of a well-specified learner
in the pool of base learners. We separate between gap-
independent (or worst case) guarantees, which do not de-
pend on how much the misspecified learners violate their
candidate regret bounds (“gap” of the learner) from the
gap-dependent guarantees where, when misspecified, the
base learners exceed their candidate bounds by a significant
amount. We emphasize that the same algorithm (with the
same parameter settings) simultaneously obtains both the
worst-case and gap-dependent guarantees, reminiscent of
a best-of-both-worlds guarantee. For simplicity of presen-
tation, we significantly abbreviate results here. The full
bound in can be found in the supplementary material (Corol-
lary 23 for the gap independent result, Theorem 30 for the
gap-dependent result).
Theorem 1 (General Regret Bound). Let Ri(n) = Cdin

β ,
where 1 = d1 ≤ . . . ≤ dM , β ∈ (0, 1), and C is some
positive constant independent of n and i. Let bi(t) =

max

[
2Cd

1
β

i · i1−β · tβ−1,
c
√
M ln M ln t

δ√
t

]
and vi = iβ

2

di
de-

note the bias and scaling coefficients for each learner, where
c is an absolute constant.3 Then the regret Reg(T ) of Al-
gorithm 1 is bounded with probability at least 1− δ for all
rounds T ∈ N as

Õ
(√

MT + (B1−βd
1/β
? + d? +M1−β)CT β

)
.

Further, if we assume that all misspecified learners i ∈ B
have regret Regi(t) bounded from below as Regi(t) ≥
∆ini(t), for some constants ∆i > 0. Then the regret
Reg(T ) of Algorithm 1 is bounded with probability at least
1− δ for all rounds T ∈ N as

Õ

(
MCd?T

β +
√
MT +

∑
i∈B

BC
1

1−β d
1

β−β2
?

∆
β

1−β
i

+
1

∆i

)
.

Here ? ∈ G is the smallest well-specified learner, B = |B|
is the number of misspecified learners and the Õ notation
hides any log factors.

Theorem 1 shows that for any β ≥ 1/2, our worst-case re-
gret bound recovers the optimal T β rate. On the other hand,
when β < 1/2, our bound scales sub-optimally as

√
T .

This is not surprising since the lower bound by Pacchiano
et al. (2020b) indicates a Ω(

√
T ) barrier for model-selection

based on observed rewards without additional assumptions.
The second part of the theorem yields gap-dependent guar-
antees, where the term gap refers to a property of the base
learners, rather than the underlying action space. Compar-
ing the two regret guarantees, we see that in the latter the

3Constant c is a known constant stemming from our analysis –
see the appendix for details.
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multiplicative factor in front of the best well-specified regret
bound is only O(M), as compared to the presence of extra
d? factors without a gap-assumption. Further, while the
extra additive term in the gap-dependent bound may have a
dependency on a potentially large di, this term only scales
with T as ln lnT (see the precise statement in the appendix),
and is thus virtually constant.

Importantly, through a slightly different analysis of the exact
same algorithm we can also achieve the optimal scaling in T
even when β < 1

2 so that the additional
√
T -term occurring

in the corresponding gap-independent bound can be avoided
(see Theorem 31). This result is in contrast with existing
approaches such as Pacchiano et al. (2020b), where the
adoption of an adversarial aggregation algorithm makes the√
T dependence inevitable.

Remark 1. It is worth emphasizing that the statement of
Theorem 1 (as well as the statement of Corollary 2 below),
does not imply extra parameters to tune in Algorithm 1: The
choice of bi(t) and vi is solely dictated by the shape of the
putative regret bounds Ri(n). For instance, in a standard
contextual bandit scenario like the one considered in Section
5.1, Ri(n) = Cdi

√
n, where d1 < . . . < dM are known

input dimensionalities each base learner operates with. The
regret upper boundsRi(n) are those provided by a LinUCB-
like analysis, so that also constant C is known in advance.
Thus, once the putative bounds Ri(·) are known, there are
no constants whatsoever to tune in Algorithm 1, Theorem 1
or Corollary 2 below.

For the typical case of β = 1/2, the following corollary
shows that we obtain the regret bound of the best well-
specified learner up to a multiplicative factor of only

√
Bd?.

Corollary 2. Suppose the candidate regret bounds are given
by Ri(n) = Cdi

√
n where 1 = d1 ≤ . . . ≤ dM and

C is some positive constant independent of n and i. Let

bi(t) = 1√
t

max

{
2Cd2

i

√
i , c

√
M ln M ln t

δ

}
and vi =

i1/4

di
denote the bias and scaling coefficients for each learner,

where c is an absolute constant. Then with probability at
least 1− δ, the regret of Algorithm 1 is bounded as follows

Reg(T ) = Õ
(√

MT + (
√
Bd2

? + d? +
√
M)C

√
T
)
.

If we further assume that all misspecified learners i ∈ B
have regret Regi(t) ≥ ∆ini(t), for some constants ∆i > 0,
then with probability at least 1−δ, the regret of Algorithm 1
is bounded as follows

Reg(T ) = Õ

(
MCd?

√
T +
√
MT +BC2d4

?

∑
i∈B

1

∆i

)
.

Comparison to prior results. The CORRAL algorithms
of Agarwal et al. (2017); Pacchiano et al. (2020b) each

involve a learning rate parameter η. In general, they obtain
regret:

√
MT +

M

η
+ Tη + T (Cd?)

1
β η

1−β
β (2)

after which various values of η are deployed to obtain useful
bounds. With an appropriate setting for bi(t) and vi depend-
ing on η, we recover exactly this bound (Corollary 24), so
our algorithm is at least as powerful as these prior works.

In Lee et al. (2021) the authors consider an episodic MDP
setting with a nested sequence of policy classes, where each
base learner operates on one class. Each base learner is
assumed to be well-specified w.r.t. its own policy class (that
is, it satisfies its candidate regret bound Ri w.r.t. to the
policy class it operates on). In our notation, their regret
bound reads as

Cd?
√
T +M

√
T +M2d4

?

∑
i<?

1

∆3
i

, (3)

whereas ours from Corollary 2 is of the form

Cd?
√
TM +

√
MT +M d4

?

∑
i<?

1

∆i
. (4)

The two bounds are incomparable for a number of reasons:
(i) Eq. (3) has constant one in front of the regret Cd?

√
T

of the best learner, while (4) has constant M ; on the other
hand, the dependence on the gaps in (3) is far worse than
the one in (4); (ii) Eq. (3) only holds under the restricting
assumption of well-specification for all base learners w.r.t.
their policy class, and only applies to nested policy classes,
which is not the case for Eq. (4).

In Arora et al. (2021), the authors study the special
case of a K-armed bandits problem where each base
learner is an instance of UCB restricted to some sub-
set Si of the arms. Assuming only one algorithm is
in command of the optimal arm (i.e. the existence of
only one well-specified algorithm), they study two algo-
rithms that achieve logarithmic expected regret bounds of
the form log(T )E[Reg?(T )] + O

(∑
i∈B

|Si| log(T )2

∆i

)
and

E[Reg?(T )]+O
(∑

i∈B
|Si| log(T )5

∆i

)
respectively. Reg?(T )

is the actual regret rather than the regret bound R?(T ).
Thus, since UCB obtains logarithmic regret, the overall
regret is logarithmic. From Theorem 1, such logarith-
mic bounds appear out of reach due to the O(

√
T ) term.

Fortunately, a more refined analysis of Dynamic Balanc-
ing is possible in this case. Using the worst-case bounds
Ri(n) = Õ(

√
|Si|n), by Theorem 31 in the appendix, Al-

gorithm 1 has a high-probability bound

Reg(T ) ≤ Reg?(T ) + Õ

(∑
i∈B

M |S?|2

∆i

)
.
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Thus, we can recover logarithmic regret bounds in this set-
ting as well. That said, our bound is generally incomparable
to the two bounds of Arora et al. (2021). While the M and
|Si| factors multiplied by 1

∆i
in our result are worse, we

avoid the log(T ) scaling on Reg?(T ) of their first bound
and have a better log(T ) dependence of at most log(T )4 in
the 1

∆i
terms compared log(T )5 in their second bound.

Trading-off regret guarantees. Theorem 1 provides re-
sults for a particularly attractive setting for the parameters
bi(t) and vi, but we could use different settings to achieve
other tradeoffs between the base learners. For example,
suppose we have a “guess” that some learner j will be per-
form best. In this case, we would like to decrease vj and
bj(·) to encourage Algorithm 1 to choose learner j more
often, thus reducing the model-selection overhead when
our guess is correct. In particular, with vj = 1/d

3/2
j and

bi(t) = max(
√
M,dj)/

√
t, Corollary 26 shows that we

can obtain the bound:

Reg(T ) ≤ (1 {? 6= j}
√
Bd2

? + dj + d? +
√
M)C

√
T .

So that we no longer suffer the d2
? term if ? = j, but in

payment we must always suffer a dj term in the regret. This
might be particularly useful if many of the base learners in
fact have the same candidate regret bound, and the difficulty
lies in detecting the misspecified learners. In fact, even more
subtle tradeoffs are possible. In Corollary 25, we show that
we are able to recover the Pareto frontier of regret bounds
for multi-armed bandit by setting vi and bi(t) appropriately.

A number of consequences of Theorem 1 and Corollary 2
applied to linear bandits and MDPs are spelled out in the
next section. Further results are contained in the appendix.

5. Applications
5.1. Linear Bandits with Nested Model Classes

An important area of application of our Dynamic Balanc-
ing approach are contextual linear bandits. In this set-
ting, the context xt determines the set of actions At ⊆ A
that can be played at time t and the policies we consider
are of the form πθ(xt) = arg maxa∈At〈a, θ〉, for some
θ ∈ Rd. The class of policies Π can thus be identified
with a class d-dimensional vectors: Π ⊆ Rd. Moreover,
rewards are generated according to a noisy linear func-
tion: rt = 〈at, θ?〉 + ξt, where θ? ∈ Π is unknown,
and ξt is a conditionally zero mean σ−subgaussian ran-
dom variable. We denote the optimal action at time t as
a?t = argmaxa∈At〈a, θ?〉. The learner’s objective is to con-
trol its pseudo-regret Reg(T ) =

∑T
t=1〈a?t , θ?〉 − 〈at, θ?〉 .

When the dimensionality d? is known a-priori, the OFUL
(Abbasi-Yadkori et al., 2011) algorithm achieves regret
O(d?

√
T ) (we provide a brief review of this algorithm and

the precise regret bound in Appendix D.1).

We can apply our Dynamic Balancing approach to contex-
tual linear bandits where the true dimensionality d? of the
model θ? is unknown a-priori. In this standard scenario,
considered by many recent papers in the model selection
literature for bandit algorithms (e.g. Foster et al., 2019; Pac-
chiano et al., 2020b), the learner chooses among actions
At ⊆ Rdmax of dimension dmax but only the first d? dimen-
sions are relevant (that is, (θ?)i = 0 for i > d?).

In Appendix D.2, we show that a variant of the OFUL
algorithm of dimensionality d can be combined with a mis-
specification test to obtain a regret bound that satisfies one
of two possibilities - either (i) the regret is bounded by
Reg(t) ≤ O(d

√
t), or (ii) the algorithm suffers linear regret

Reg(t) ≥ ∆t for some constant ∆ for sufficiently large t.
Further, whenever the algorithm is well-specified, the former
regret upper bound applies. Equipped with such a suitably
modified OFUL algorithm, one can perform model selec-
tion in this setting as follows: We use log2 dmax instances
of modified OFUL (Appendix D.2) as base learners4. Each
instance i first truncates the actions to dimension di = 2i

and only then applies the OFUL update. Based on the OFUL
regret guarantees (as described in Appendix D.1 and D.2),
we use Ri(n) = diC

√
ln(n)n, with suitable constant C.

Although our previously discussed results technically do not
cover log factors, it is relatively straightforward to modify
the arguments to obtain the same bound multiplied by a log
factor (e.g. see Theorem 33 in Appendix for the formal
analog of Theorem 30 with log factors in the regret bounds).

By the regret guarantee of OFUL, with probability at least
1−Mδ, any base learner i such that di ≥ d? will be well
specified, while the others may be misspecified. That is, we
have M = O(ln dmax) total base learners, out of which at
most B = O(ln d?) are misspecified. Let us consider the
case that each of the misspecified learners experiences some
gap ∆, which is an intuitively reasonable situation to occur.
Then applying Corollary 2 (extracting the log(T ) factors
from the more detailed result in Theorem 33) yields

Reg(T )

= Õ

(
ln(dmax)d?C

√
T + ln(d?)

C2d4
?

∆

)
≈ O

(
ln(dmax)d?

√
T lnT +

d4
? ln d?

∆
(lnT )2

√
ln lnT

)
.

This bound is appealing because the dominant T -dependent
term is Õ(d?

√
T ), which matches the best base learner.

However, this bound only holds under our gap assumption,
so we would like to have a more generic result. To accom-
plish this, we will deploy our modified OFUL algorithm

4Here we assume d? and dmax are powers of 2 for convenience
but our results also hold generally up to a constant factor of 2.
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with misspecification test (D.2), which is constructed so as
to guarantee that all misspecified learners suffer asymptot-
ically linear regret: for large enough t, Regi(t)

ni(t)
≥ ∆i for

some fixed ∆i > 0. In other words, this algorithm essen-
tially ensures that a gap will exist, although it makes no
guarantees about how big that gap will be. Employing this
modified OFUL as our base algorithms, for large enough
T we have Reg(T ) = O(ln(dmax)d?C

√
T ln(T )), so that

asymptotically we are able to recover the desired model-
selection guarantee. Note that this need not be the ideal
model selection bound because we do not have any bounds
on the ∆i: for any fixed finite T there may be a linear bandit
instance for which some ∆i is O(1/T ), so that our gap-
based regret bound is vacuous. However, since ∆i is solely
a function of the problem instance, which is fixed at the first
time step, we obtain the desired result asymptotically by
allowing the time horizon to grow without bound.

A standard goal in model selection is to obtain sub-linear re-
gret bounds even in the case where the model complexity of
the target class is allowed to grow sub-linearly with T , e.g.,
as bound of the form

√
d?T (Foster et al., 2020b). However,

such goals are stated for finite action spaces. We are dealing
with infinite action spaces, and the best one can hope for in
this case is indeed d?

√
T (see e.g. Rusmevichientong &

Tsitsiklis, 2010, Section 2).

Comparison to prior results. Ghosh et al. (2021) also
recover the optimal model selection guarantee up to additive
terms but require a specialized algorithm for this setting.
In their case, the additive terms depend on the magnitude
of the smallest non-zero component of θ?. Their approach
combines OFUL with phases of uniform exploration which
(implicitly) requires the action-set to be well-conditioned
(e.g. by assuming the action space to be the unit sphere).
Similarly, the specialized MODCB approach by Foster et al.
(2019) also interleaves phases of uniform exploration with
a bandit algorithm, EXP-IX in their case of finite action
spaces. They make the conditioning of the action space
explicit in their guarantees through a dependence on the
smallest eigenvalue of the feature covariance matrix. While
we avoid such a dependence, our bounds are generally in-
comparable due to the dependence on gaps.

5.2. Confidence Parameter Tuning in OFUL

A common problem that arises in the practical deployment
of contextual bandit algorithms like OFUL is that they are
extremely sensitive to the tuning of their upper-confidence
parameter that rules the actual trade-off between exploration
and exploitation. The choice of confidence parameters sug-
gested by theory (see e.g. Lemma 34 in the appendix) is
often too conservative in practice. This is due to approxi-
mations in the derivation of such bounds but may also be
the case when the actual noise variance is smaller than the

assumed σ2 variance. While there are concentration results
(empirical Bernstein bounds) that can adapt to favorable
low-variance noise for scalar parameters (e.g., in unstruc-
tured multi-armed bandits), such adaptive bounds are still
unavailable for least-squares estimators. Scaling down the
confidence radii β1, . . . , βT used in OFUL by a factor κ < 1
can often achieve significantly better empirical performance
but comes at the cost of losing any theoretical guarantee.
Our model-selection framework can be used to tune the
confidence parameter online and simultaneously achieve
a regret guarantee. Specifically, we look at ways to com-
pete against the instance of the OFUL algorithm which is
equipped with the optimal scaling of its upper-confidence
value, in the sense of the following definition:
Definition 3. Denote by β̄t the standard confidence-
parameter choice (see Appendix D.1) and let κ ∈ R+ be
a scaling factor. Further, let θ̂S(κ) and ΣS(κ) be the it-
erates of least squares estimator and covariance matrix
obtained by running OFUL with scaled confidence param-
eters (κβ̄t)t∈N on a subset of rounds S ⊆ [T ]. Then, for
a given range [κmin, 1], the optimal confidence parameter
scaling for OFUL is defined as

κ? = min
κ∈[κmin,1]

max
S⊆[T ]

‖θ̂S(κ)− θ?‖ΣS(κ)−1

β̄|S|
.

In words, the optimal κ? is the smallest scaling factor of
confidence parameters that ensures that no matter to what
subset of rounds we would apply OFUL to, the optimal
parameter θ? is always contained in the confidence ellipsoid.
Observe that κ? is a random quantity, i.e., κ? is the best
scaling factor for the given realizations in hindsight. While
P(κ? ≤ 1) ≥ 1− δ, empirical observations suggest that κ?
is much smaller in many events and bandit instances.

OFUL with confidence parameters κβ̄t admits a regret
bound of the form5 Reg(n) . κd

√
n ln(n) if κ ≥ κ? (see

Appendix D.1). Since κ? is unknown, we run Algorithm 1
withM = (1+log2

1
κmin

) instances of OFUL as base learn-
ers, each with a scaling factor κi = 21−i, i = 1, . . . ,M ,
and putative regret bound Ri(n) ≈ κid ln(T )

√
n. Then, by

Corollary 2 (with C = d ln(T )κmin and di = κi
κmin

≥ 1),
with probability at least 1− δ we have:

Reg(T )

.

(√
Mκmin + κ? +

√
B

κ2
?

κmin

)
d ln(T )

√
T

= Õ

((
κmin

κ?

√
ln

1

κmin
+

κ?
κmin

√
ln

κ?
κmin

)
κ?d
√
T

)
.

Note that this is a problem-dependent bound because it de-
pends on κ?. In cases where κ? .

√
κmin

ln(1/κmin)1/4
, this bound

5For simplicity of presentation, we set here λ = 1 and disre-
garded the dependence on other parameters like L, S, and σ.
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strictly improves on the standard OFUL bound relying on
κ = 1, which is often way too conservative in practice. In
Section 7, we empirically demonstrate the performance of
our model selection approach in this setting.

5.3. Further Applications

Our results can also be specialized to other applications in
bandits and reinforcement learning. These include:

• Reinforcement learning in linear MDPs with nested
model classes (see Appendix D.3);

• ε-approximate linear bandits with unknown approxi-
mation error ε (see Appendix D.4).

6. Adversarial Contexts for Linear Bandits
In this section, we show that the dynamic regret balancing
principle can also be used for model selection in linear
stochastic bandits when the contexts xt are generated in an
adversarial manner. Our technique can be easily adapted
to the various applications discussed in Section 5 but, for
the sake of concreteness, we present our extension for the
setting of nested linear models described in Section 5.1.
We lift the assumption that contexts are drawn i.i.d., and
consider instead the one where contexts xt (corresponding
to the action set At at round t) are generated adversarially.

Algorithm 1, which assumes stochastic contexts, compares
the sum of rewards from learners that were executed on
two disjoint subsets of rounds to determine misspecifica-
tion. This strategy no longer works with adversarial con-
texts, since the optimal rewards that an algorithm could
have achieved depends on the contexts in the rounds that
the algorithm was played. To address this challenge, we
modify the basic form of Algorithm 1 in two ways: (1) we
randomize the learner’s choice for regret balancing, and (2)
we change the activation condition to compare upper and
lower confidence bounds on the optimal policy value of all
rounds played so far. The resulting algorithm (for details
and pseudocode see Appendix E) operates in epochs.

In each epoch, there is a set of active learners I whose candi-
date regret bounds are balanced via a randomized procedure.
Specifically, in each round of the epoch a learner is picked
from I by sampling an index it ∼ Categorical(p) from a
categorical distribution with probabilities

pi =
1/zi∑
j∈I 1/zj

, where zi ≈ d2
i . (5)

An epoch ends whenever the algorithm detects that there
is a misspecified learner in the active set I. This happens
when the following condition is triggered:∑
i∈I

[Ui(t) +Ri(ni(t))] + c

√
t ln

ln(t)

δ
< max

i∈I

t∑
k=1

Bk,i ,

whereBk,i is a lower-confidence bound from learner i on the
expected reward of the action it would have played in round
k had it been selected. This test bears some similarity with
the test in (1) for the stochastic case but instead of comparing
the rewards and regret bound of a single algorithm to the
rewards of another algorithm, we here compare the sum of
rewards and regret bounds across all active learners with the
lower-confidence bounds on optimal reward obtained from
each learner. For details, see Appendix E. We prove the
following regret guarantee:

Theorem 4. Assume that Algorithm 5 in Appendix E is
run with M instances of OFUL as base learners that use
different dimensions di and norm bounds Li, Si with 2zi ≤
zi+1 (see Eq. (5)). Then, with probability at least 1− δ, the
regret is bounded for all rounds T as

Reg(T ) = Õ
((
d? +

√
d?S? +M

)√
BR?(T )

)
,

where ? is the index of the smallest well-specified base
learner and R?(T ) ≈ d?

√
T is its regret bound.

7. Experiments
To investigate the practical usefulness of our Dynamic Bal-
ancing approach and compare it against existing methods,
we conducted experiments on synthetic linear bandit in-
stances with 100 actions of dimension 10 each. We use
the application described in Section 5.2 and optimize over
exploration-exploitation trade-off. Specifically, we use 10
instances of OFUL as base learners with confidence scaling
parameters on a geometric grid in [ 1

100 , 1], where a scaling
of 1 makes OFUL explore more compared to scaling 1

100 .

To test the versatility of our model selection approach, we
evaluate it on three bandit instances with reward noise of
standard deviation σ = 1, σ = 0.3 and σ = 0.05 each. We
found that when running each base learner individually, the
best confidence scaling is κ ≈ 0.36, κ ≈ 0.13 and κ ≈ 0.07,
respectively, which are all significantly smaller than κ = σ
required by the OFUL theoretical regret analysis.

We compare three model-selection algorithms: Corral (Agar-
wal et al., 2017), Stochastic Corral (Pacchiano et al., 2020b)
and a basic version of Algorithm 1 without biases and scal-
ing factors (bi(t) = 0, vi = 1). This version of dynamic
balancing is discussed and analyzed in detail in Appendix B.
For putative regret bounds of the form Ri(n) = Cdi

√
n (as

in Corollary 2), this version achieves a regret of

Reg(T ) = Õ((M + d?
√
B)Cd?

√
T )

as well as gap-dependent regret bounds comparable to Corol-
lary 2. Thus, this basic version recovers the theoretical
guarantees of Algorithm 1 up to factors of M and B that
are typically small in practice (≤ 10 here). When this is
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Figure 1. Empirical comparison of Dynamic Balancing: We select among 10 OFUL instances (dotted grey) with different confidence
parameters in [ 1

100
, 1] on 3 linear bandit problems; Left: reward noise σ = 1, middle: σ = 0.3, right: σ = 0.05. Results are averages of

10 independent runs with shaded areas representing 95% confidence bands for model selection algorithms. For details, see Appendix F.

the case, we expect the basic algorithm with bi(t) = 0 and
vi = 1 to perform empirically better, due to fewer conserva-
tive overestimates in the computation of bi(·), which is why
we chose it for our experiments.

Both Corral and Stochastic Corral require a learning rate
which we set to ξ√

T
where ξ was picked as the value from

{1, 10, 100, 1000} that was most competitive for each al-
gorithm across the 3 problem instances. Note that a more
extensive learning rate optimization would defeat the pur-
pose of model-selection in practice: we did not perform any
parameter tuning at all for Dynamic Balancing. As puta-
tive regret bound, we used the sum of confidence widths in
OFUL of all past rounds where the base learner was played.
This has the same

√
T rate as the analytical regret bound

of OFUL but possibly tighter constants, and is consistent
with theory. Finally, for Stochastic Corral and Dynamic
Balancing, we updated all base learners with each observa-
tion (Corral requires an update with importance-weighted
rewards instead). We emphasize that our setup is consistent
with the assumptions needed for theoretical guarantees to
hold.6

Figure 1 shows our experimental results for the three bandit
instances. The y-axis is cumulative regret divided by

√
T ,

so good learners should have a flat line with small offset.
Across all instances, Corral performs much worse than the
other methods due to the high variance of the importance-
sampling estimator used in the updates of the base learners.
While the performance of Stochastic Corral and Dynamic
Balancing is similar for the large reward noise instance,
Dynamic Balancing significantly outperforms Stochastic
Corral on the other two instances. Importantly, the regret of
Dynamic Balancing is close to the second best base learner,
which demonstrates that it can be a highly effective tool for
tuning confidence parameters and making algorithms adap-
tive to the typically unknown noise level in linear bandits.

6For the regret guarantees of this particular version of Dynamic
Balancing, see Appendix B.5.

8. Conclusion
We have presented a simple but powerful dynamic balanc-
ing technique for model selection in stochastic bandit and
reinforcement learning tasks. Our algorithm’s total regret is
bounded by the regret of the best base learner times a multi-
plicative factor. Using our framework, we not only recover
the best previously known model selection regret guaran-
tees, but also obtain stronger gap-dependent regret bounds
that also apply to base learners with o(

√
T ) candidate regret.

Our approach can be instantiated for a number of relevant
applications ranging from nested model classes in (linear)
contextual bandits and MDPs to mis-specified models to
hyperparameter tuning of contextual bandit algorithms. The
flexibility of our approach is also witnessed by our ability
to extend our linear bandit analysis to adversarial contexts.
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