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Abstract

We consider a robust linear regression model y � Xβ∗ + η, where an adversary
oblivious to the design X ∈ �n×d may choose η to corrupt all but an α fraction of
the observations y in an arbitrary way. Prior to our work, even for Gaussian X, no
estimator for β∗ was known to be consistent in this model except for quadratic sample
size n & (d/α)2 or for logarithmic inlier fraction α > 1/log n. We show that consistent
estimation is possible with nearly linear sample size and inverse-polynomial inlier
fraction. Concretely, we show that the Huber loss estimator is consistent for every
sample size n � ω(d/α2) and achieves an error rate of O(d/α2n)1/2 (both bounds are
optimal up to constant factors). Our results extend to designs far beyond the Gaussian
case and only require the column span of X to not contain approximately sparse
vectors (similar to the kind of assumption commonly made about the kernel space for
compressed sensing).We provide two technically similar proofs. One proof is phrased in
terms of strong convexity, extending work of [TJSO14], and particularly short. The other
proof highlights a connection between the Huber loss estimator and high-dimensional
median computations. In the special case of Gaussian designs, this connection leads us
to a strikingly simple algorithm based on computing coordinate-wise medians that
achieves nearly optimal guarantees in linear time, and that can exploit sparsity of β∗.
The model studied here also captures heavy-tailed noise distributions that may not
even have a first moment.
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1 Introduction
Linear regression is a fundamental task in statistics: given observations
(x1, y1), . . . , (xn , yn) ∈ �d+1 following a linear model yi � 〈xi , β∗〉 + ηi , where β∗ ∈ �d is
the unknown parameter of interest and η1, . . . , ηn is noise, the goal is to recover β∗ as
accurately as possible.

In the most basic setting, the noise values are drawn independently from a Gaussian
distribution with mean 0 and variance σ2. Here, the classical least-squares estimator β̂
achieves an optimal error bound 1

n ‖X(β∗ − β̂)‖2 . σ2 · d/n with high probability, where the
design X is has rows x1, . . . , xn . Unfortuantely, this guarantee is fragile and the estimator
may experience arbitrarily large error in the presence of a small number of benign outlier
noise values.

In many modern applications, including economics [RL05], image recognition
[WYG+08], and sensor networks [HBRN08], there is a desire to cope with such out-
liers stemming from extreme events, gross errors, skewed and corrupted measurements. It
is therefore paramount to design estimators robust to noise distributions that may have
substantial probability mass on outlier values.

In this paper, we aim to identify the weakest possible assumptions on the noise
distribution such that for a wide range of measurement matrices X, we can efficiently
recover the parameter vector β∗ with vanishing error.

The design of learning algorithms capable of succeeding on data sets contaminated
by adversarial noise has been a central topic in robust statistics (e.g. see [DKK+19, CSV17]
and their follow-ups for some recent developments). In the context of regression with
adaptive adversarial outliers (i.e. depending on the instance) several results are known
[CT05, CRT05, KKM18, KKK19, LLC19, LSLC18, KP18, DT19, RY20]. However, it turns out
that for adaptive adversaries, vanishing error bounds are only possible if the fraction of
outliers is vanishing.

In order to make vanishing error possible in the presence of large fractions of outliers,
we consider weaker adversary models that are oblivious to the design X. Different
assumptions can be used to model oblivious adversarial corruptions. [SZF19] assume the
noise distribution satisfies �

[
ηi

�� xi
]
� 0 and �

[��ηi
��1+δ] < ∞ for some 0 6 δ 6 1, and show

that if X has constant condition number, then (a modification of) the Huber loss estimator
[Hub64] is consistent for1 n > Õ((‖X‖∞ · d)(1+δ)/2δ) (an estimator is consistent if the error
tends to zero as the number of observation grows, 1

n ‖X(β̂ − β∗)‖2 → 0).
Without constraint on moments, a useful model is that of assuming the noise vector

η ∈ �n to be an arbitrary fixed vector with α · n coordinates bounded by 1 in absolute value.
This modelalso captures random vectors η � ζ + w, where ζ ∈ �n is αn-sparse and w is a
random vector with i.i.d. entries with bounded variance independent of the measurement

1We hide absolute constant multiplicative factors using the standard notations .,O(·). Similarly, we hide
multiplicative factors at most logarithmic in n using the notation Õ.
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matrix X, and conveniently allows us to think of the α fraction of samples with small noise
as the set of uncorrupted samples. In these settings, the problem has been mostly studied
in the context of Gaussian design x1, . . . , xn ∼ N(0,Σ). [BJKK17a] provided an estimator
achieving error Õ(d/(α2 · n)) for any α larger than some fixed constant. This result was then
extended in [SBRJ19], where the authors proposed a near-linear time algorithm computing
a Õ(d/(α2 · n))-close estimate for any2 α & 1/log log n. That is, allowing the number of
uncorrupted samples to be o(n). Considering even smaller fractions of inliers, [TJSO14]
showed that with high probability the Huber loss estimator is consistent for n > Õ(d2/α2),
thus requiring sample size quadratic in the ambient dimension.

Prior to this work, little was known for more general settings when the design matrix X
is non-Gaussian. From an asymptotic viewpoint, i.e., when d and α are fixed and n →∞, a
similar model was studied 30 years ago in a seminal work by Pollard [Pol91], albeit under
stronger assumptions on the noise vector. Under mild constraints on X, it was shown that
the least absolute deviation (LAD) estimator is consistent.

So, the outlined state-of-the-art provides an incomplete picture of the statistical and
computational complexity of the problem. The question of what conditions we need to
enforce on the measurement matrix X and the noise vector η in order to efficiently and
consistently recover β∗ remains largely unanswered. In high-dimensional settings, no
estimator has been shown to be consistent when the fraction of uncontaminated samples
α is smaller than 1/log n and the number of samples n is smaller than d2/α2, even in the
simple settings of spherical Gaussian design. Furthermore, even less is known on how we
can regress consistently when the design matrix is non-Gaussian.

In this work, we provide a more comprehensive picture of the problem. Concretely, we
analyze the Huber loss estimator in non-asymptotic, high dimensional setting where the
fraction of inliers may depend (even polynomially) on the number of samples and ambient
dimension. Under mild assumptions on the design matrix and the noise vector, we show
that such algorithm achieves optimal error guarantees and sample complexity.

Furthermore, a by-product of our analysis is an strikingly simple linear-time estimator
based on computing coordinate-wise medians, that achieves nearly optimal guarantees for
standard Gaussian design, even in the regime where the parameter vector β∗ is k-sparse
(i.e. β∗ has at most k nonzero entries).

1.1 Results about Huber-loss estimator
We provide here guarantees on the error convergence of the Huber-loss estimator, defined
as a minimizer of the Huber loss f : �d → �>0,

f (β) � 1
n

n∑
i�1

Φ[(Xβ − y)i] ,

2More precisely, their condition is α & 1
log n for consistent estimation and α & 1

log log n to get the error
bound Õ( d

α2n ) .
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where Φ : �→ �>0 is the Huber penalty,3

Φ[t] def
�

{
1
2 t2 if |t | 6 2 ,
2|t | − 2 otherwise.

Gaussian design. The following theorem states our the Huber-loss estimator in the
case of Gaussian designs. Previous quantitative guarantees for consistent robust linear
regression focus on this setting [TJSO14, BJKK17a, SBRJ19].

Theorem 1.1 (Guarantees for Huber-loss estimator with Gaussian design). Let η ∈ �n

be a deterministic vector. Let X be a random4 n-by-d matrix with iid standard Gaussian entries
Xi j ∼ N(0, 1).

Suppose n > C · d/α2, where α is the fraction of entries in η of magnitude at most 1, and C > 0
is large enough absolute constant.

Then, with probability at least 1 − 2−d over X , for every β∗ ∈ �d , given X and y � Xβ∗ + η,
the Huber-loss estimator β̂ satisfies 

β∗ − β̂

2

6 O
(

d
α2n

)
.

The above result improves over previous quantitative analyses of the Huber-loss
estimator that require quadratic sample size n & d2/α2 to be consistent [TJSO14]. Other
estimators developed for this model [BJKK17b, SBRJ19] achieve a sample-size bound
nearly-linear in d at the cost of an exponential dependence on 1/α. These results require
for consistent estimation a logarithmic bound on the inlier fraction α & 1/log d to achieve
sample-size bound nearly-linear in d . In constrast our sample-size bound is nearly-linear
in d even for any sub-polynomial inlier fraction α � 1/do(1). In fact, our sample-size bound
and estimation-error bound is statistically optimal up to constant factors.5

The proof of the above theorem also applies to approximate minimizers of the Huber
loss and it shows that such approximations can be computed in polynomial time.

We remark that related to (one of) our analyses of the Huber-loss estimator, we develop
a fast algorithm based on (one-dimensional) median computations that achieves estimation
guarantees comparable to the ones above but in linear time O(nd). A drawback of this fast
algorithm is that its guarantees depend (mildly) on the norm of β∗.

Several results [CT05, CRT05, KP18, DKS19, DT19] considered settings where the noise
vector is adaptively chosen by an adversary. In this setting, it is possible to obtain a unique

3Here, we choose 2 as transition point between quadratic and linear penalty. Other transition points can
also be used. For example, for a bit more general model where αn entries of η are bounded by some σ > 0,
one can work with transition point 2σ.

4As a convention, we use boldface to denote random variables.
5 In the case η ∼ N(0, σ2 · Id), it’s well known that the optimal Bayesian estimator achieves expected error

σ2 · d/n. For σ > 1, the vector η has aΘ(1/σ) fraction of entries of magnitude at most 1 with high probability.
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estimate only if the fraction of outliers is smaller than 1/2. In contrast, Theorem 1.1 implies
consistency even when the fraction of corruptions tends to 1 but applies to settings where
the noise vector η is fixed before sampling X and thus it is oblivious to the data.

Deterministic design. The previous theorem makes the strong assumption that the
design is Gaussian. However, it turns out that our proof extends to a much broader class of
designs with the property that their columns spans are well-spread (in the sense that they
don’t contain vectors whose `2-mass is concentrated on a small number of coordinates,
see [GLW08]). In order to formulate this more general results it is convenient to move
the randomness from the design to the noise vector and consider deterministic designs
X ∈ �n×d with probabilistic n-dimensional noise vector η,

y � Xβ∗ + η . (1.1)

Here, we assume that η has independent, symmetrically distributed entries satisfying
�{|ηi | 6 1} > α for all i ∈ [n].

This model turns out to generalize the one considered in the previous theorem. Indeed,
given data following the previous model with Gaussian design and deterministic noise,
we can generate data following the above model randomly subsampling the given data
and multiplying with random signs (see Appendix A for more details).

Theorem 1.2 (Guarantees for Huber-loss estimator with general design). Let X ∈ �n×d be a
deterministic matrix and let η be an n-dimensional random vector with independent, symmetrically
distributed (about zero) entries and α � mini∈[n] �{|ηi | 6 1}.

Suppose that for every vector v in the column span of X and every subset S ⊆ [n] with
|S | 6 C · d/α2,

‖vS‖ 6 0.9 · ‖v‖ , (1.2)

where vS denotes the restriction of v to the coordinates in S, and C > 0 is large enough absolute
constant.

Then, with probability at least 1− 2−d over η, for every β∗ ∈ �d , given X and y � Xβ∗ + η, the
Huber-loss estimator β̂ satisfies

1
n



X(β∗ − β̂)


2
6 O

(
d
α2n

)
.

In particular, Theorem 1.2 implies that under condition Eq. (1.2) and mild noise
assumptions, the Huber loss estimator is consistent for n > ω

(
d/α2) .

We say a vector subspace of �n is well-spread, if all vectors from this subspace satisfy
Eq. (1.2). As we only assume the column span of X to be well-spread, the result applies
to a substantially broader class of design matrices X than Gaussian, naturally including
those studied in [TJSO14, BJKK17a, SBRJ19]. Well-spread subspaces are closely related to
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`1-vs-`2 distortion6, and have some resemblance with restricted isometry properties (RIP).
Indeed both RIP and distortion assumptions have been successfully used in compressed
sensing [CT05, CRT05, KT07, Don06] but, to the best of our knowledge, they were never
observed to play a fundamental role in the context of robust linear regression. This is a key
difference between our analysis and that of previous works. Understanding how crucial
this well-spread property is and how to leverage it allows us to simultaneously obtain
nearly optimal error guarantees, while also relaxing the design matrix assumptions. It is
important to remark that a weaker version of property Eq. (1.2) is necessary as otherwise it
may be information theoretically impossible to solve the problem (see Lemma A.5).

We derive both Theorem 1.1 and Theorem 1.2 using the same proof techniques explained
in Section 2.

Remark (Small failure probability). For both Theorem 1.1 and Theorem 1.2 our proof also
gives that for any δ ∈ (0, 1), the Huber loss estimator achieves error O

(
d+log(1/δ)

α2n

)
with

probability at least 1 − δ as long as n & d+ln(1/δ)
α2 , and, in Theorem 1.2, the well-spread

property is satisfied for all sets S ⊆ [n] of size |S | 6 O
(

d+log(1/δ)
α2

)
.

1.2 Results about fast algorithms
The Huber loss estimator has been extensively applied to robust regression problems
[TSW18, TJSO14, EvdG+18]. However, one possible drawback of such algorithm (as well
as other standard approaches such as L1-minimization [Pol91, KP18, NT13]) is the non-
linear running time. In real-world applications with large, high dimensional datasets, an
algorithm running in linear time O(nd) may make the difference between feasible and
unfeasible.

In the special case of Gaussian design, previous results [SBRJ19] already obtained
estimators computable in linear time. However these algorithms require a logarithmic
bound on the fraction of inliers α & 1/log n. We present here a strikingly simple algorithm
that achieves similar guarantees as the ones shown in Theorem 1.1 and runs in linear time:
for each coordinate j ∈ [d] compute the median β̂ j of y1/X1 j , . . . , yn/Xn j subtract the
resulting estimation X β̂ and repeat, logarithmically many times, with fresh samples.

Theorem 1.3 (Guarantees for fast estimator with Gaussian design). Let η ∈ �n and β∗ ∈ �d

be deterministic vectors. Let X be a random n-by-d matrix with iid standard Gaussian entries
Xi j ∼ N(0, 1).

Let α be the fraction of entries in η of magnitude at most 1, and let ∆ > 10+ ‖β∗‖. Suppose that

n > C · d
α2 · ln∆ · (ln d + ln ln∆) ,

where C is a large enough absolute constant.

6Our analysis also applies to design matrices whose column span has bounded distortion.
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Then, there exists an algorithm that given ∆, X and y � Xβ∗ + η as input, in time7 O(nd)
finds a vector β̂ ∈ �d such that 

β∗ − β̂

2

6 O
(

d
α2n
· log d

)
,

with probability at least 1 − d−10.

The algorithm in Theorem 1.3 requires knowledge of an upper bound ∆ on the norm of
the parameter vector. The sample complexity of the estimator has logarithmic dependency
on this upper bound. This phenomenon is a consequence of the iterative nature of the
algorithm and also appears in other results [SBRJ19].

Theorem 1.3 also works for non-spherical settings Gaussian design matrix and provides
nearly optimal error convergence with nearly optimal sample complexity, albeit with
running time Õ(nd2). The algorithm doesn’t require prior knowledge of the covariance
matrix Σ. In these settings, even though time complexity is not linear in d, it is linear in n,
and if n is considerably larger than d, the algorithm may be very efficient.

Sparse linear regression. For spherical Gaussian design, the median-based algorithm
introduced above can naturally be extended to the sparse settings, yielding the following
theorem.

Theorem 1.4 (Guarantees of fast estimator for sparse regression with Gaussian design).
Let η ∈ �n and β∗ ∈ �d be deterministic vectors, and assume that β∗ has at most k 6 d nonzero
entries. Let X be a random n-by-d matrix with iid standard Gaussian entries Xi j ∼ N(0, 1).

Let α be the fraction of entries in η of magnitude at most 1, and let ∆ > 10+ ‖β∗‖. Suppose that

n > C · k
α2 · ln∆ · (ln d + ln ln∆) ,

where C is a large enough absolute constant.
Then, there exists an algorithm that given k, ∆, X and y � Xβ∗ + η as input, in time O(nd)

finds a vector β̂ ∈ �d such that 

β∗ − β̂

2
6 O

(
k
α2n
· log d

)
,

with probability at least 1 − d−10.
7By time we mean number of arithmetic operations and comparisons of entries of y and X . We do not

take bit complexity into account.
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2 Techniques
In this section we discuss the model from Theorem 1.2 (with deterministic X and random
η). The model from Theorem 1.1 (with Gaussian X and deterministic η) can be studied in a
very similar way.

Recall our linear regression model,

y � Xβ∗ + η , (2.1)

where we observe (a realization of) the random vector y, the matrix X ∈ �n×d is a known
design, the vector β∗ ∈ �n is the unknown parameter of interest, and the noise vector η has
independent, symmetrically distributed8 coordinates with9 α � mini∈[n] �{|ηi | 6 1}.

To simplify notation in our proofs, we assume 1
n XTX � Id. (For general X, we can

ensure this property by orthogonalizing and scaling the columns of X.)
We consider the Huber loss estimator β̂, defined as a minimizer of the Huber loss f ,

f (β) :� 1
n

n∑
i�1

Φ[(Xβ − y)i] ,

where Φ : �→ �>0 is the Huber penalty,10

Φ[t] �
{

1
2 t2 if |t | 6 2 ,
2|t | − 2 otherwise.

2.1 Statistical guarantees from strong convexity
In order to prove statistical guarantees for this estimator, we follow a well-known approach
that applies to a wide range of estimators based on convex optimization (see [NRWY09]
for a more general exposition), which also earlier analyses of the Huber loss estimator
[TJSO14] employ. This approach has two ingredients: (1) an upper bound on the norm of
the gradient of the loss function f at the desired parameter β∗ and (2) a lower bound on
the strong-convexity curvature parameter of f within a ball centered at β∗. Taken together,
these ingredients allow us to construct a global lower bound for f that implies that all
(approximate) minimizers of f are close to β∗. (See Theorem 3.1 for the formal statement.)

An important feature of this approach is that it only requires strong convexity to hold
locally around β∗. (Due to its linear parts, the Huber loss function doesn’t satisfy strong
convexity globally.) It turns out that the radius of strong convexity we can prove is the main
factor determining the strength of the statistical guarantee we obtain. Indeed, the reason

8The distributions of the coordinates are not known to the algorithm designer and can be non-identical.
9The value of α need not be known to the algorithm designer and only affects the error guarantees of the

algorithms.
10Here, in order to streamline the presentation, we choose {±2} as the transition points between quadratic

and linear penalty. Changing these points to {±2δ} is achieved by scaling t 7→ δ2Φ(t/δ).
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why previous analyses11 of the Huber loss estimator [TJSO14] require quadratic sample
size n & (d/α)2 to ensure consistency is that they can establish strong convexity only within
inverse-polynomial radius Ω(1/

√
d) even for Gaussian X ∼ N(0, 1)n×d . In contrast, our

analysis gives consistency for any super-linear sample size n � ω(d/α2) for Gaussian X
because we can establish strong convexity within constant radius.

Compared to the strong-convexity bound, which we disucss next, the gradient bound
is straightforward to prove. The gradient of the Huber loss at β∗ for response vector
y � Xβ∗ + η takes the following form,

∇ f (β∗) � 1
n

n∑
i�1

Φ′[ηi] · xi with Φ′[t] � sign(t) ·min{|t |, 2} ,

where x1, . . . , xn ∈ �d form the rows of X. Since η1, . . . , ηn are independent and symmet-
rically distributed, the random variables Φ′[ηi] are zero-mean, independent and bounded
by 2 in absolute value. Now, for a unit vector u ∈ �d , using Hoeffding’s inequality, we get
with probability at least 1 − e−t ,

〈∇ f (β∗), u〉 6 1
n
· O

(√
t · ‖Xu‖

)
.

Finally, using a union bound over 1/2-net in unit sphere in �n , we get

 f (β∗)


 6 O

(√
d/n

)
with high probability.

Proving local strong convexity for Huber loss. For response vector y � Xβ∗ + η and
arbitrary u ∈ �d , the Hessian12 of the Huber loss at β∗ + u has the following form,

H f (β∗ + u) � 1
n

n∑
i�1

Φ′′[(Xu)i − ηi] · xixi
T with Φ′′[t] � ~ |t | 6 2� .

Here, ~·� is the Iverson bracket (0/1 indicator). To prove local strong convexity within
radius R, we are to lower bound 〈u ,H f (β∗ + u)u〉 uniformly over all vectors u ∈ �d with
‖u‖ 6 R.

We do not attempt to exploit any cancellations between Xu and η and work with the
following lower bound M(u) for the Hessian,

H f (β∗ + u) � M(u) :� 1
n

n∑
i�1
~ |〈xi , u〉| 6 1� · ~ |ηi | 6 1� · xi xi

T . (2.2)

11We remark that the results in [TJSO14] are phrased asymptotically, i.e., fixed d and n →∞. Therefore, a
radius bound independent of n is enough for them. However, their proof is quantiative and yields a radius
bound of 1/

√
d a we will discuss.

12The second derivative of the Huber penalty doesn’t exit at the transition points {±2} between its
quadratic and linear parts. Nevertheless, the second derivative exists as an L1-function in the sense that
Φ′[b] −Φ′[a] �

∫ b
a ~ |t | 6 2� dt for all a , b ∈ �. This property is enough for our purposes.
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Here, � denotes the Löwner order.
It’s instructive to first consider u � 0. Here, the above lower bound for the Hessian

satisfies,

�[M(0)] � 1
n

n∑
i�1
�{|ηi | 6 1} · xi xi

T � αId .

Using standard (matrix) concentration inequalities, we can also argue that this random
matrix is close to its expectation with high-probability if n > Õ(d/α) under some mild
assumption on X (e.g., that the row norms are balanced so that ‖x1‖ , . . . , ‖xn ‖ 6 O(

√
d)).

The main remaining challenge is dealing with the quantification over u. Earlier analyses
[TJSO14] observe that the Hessian lower bound M(·) is constant over balls of small enough
radius. Concretely, for all u ∈ �d with ‖u‖ 6 1/maxi ‖xi ‖, we have

M(u) � M(0) ,

because |〈xi , u〉| 6 ‖xi ‖·‖u‖ 6 1 byCauchy-Schwarz. Thus, strong convexitywith curvature
parameter α within radius 1/maxi ‖xi ‖ follows from the aforementioned concentration
argument for M(0). However, since maxi ‖xi ‖ >

√
d, this argument cannot give a better

radius bound than 1/
√

d, which leads to a quadratic sample-size bound n & d2/α2 as
mentioned before.

For balls of larger radius, the lower bound M(·) can vary significantly. For illustration,
let us consider the case η � 0 and let us denote the Hessian lower bound by M(·) for this
case. (The deterministic choice of η � 0 would satisfy all of our assumptions about η.) As
we will see, a uniform lower bound on 〈u ,M(u)u〉 over a ball of radius R > 0 implies that
the column span of X is well-spread in the sense that every vector v in this subspace has a
constant fraction of its `2 mass on entries with squared magnitude at most a 1/R2 factor
times the average squared entry of v. (Since we aim for R > 0 to be a small constant, the
number 1/R2 is a large constant.) Concretely,

min
‖u‖�R

1
R2 〈u ,M(u)u〉 � min

‖u‖�R
1

R2 · 1
n

n∑
i�1
~〈xi , u〉2 6 1� · 〈xi , u〉2

� min
v∈col.span(X)

1
‖v‖2

n∑
i�1

�
R2 · v2

i 6
1
n ‖v‖

2�
· v2

i

C κR . (2.3)

(The last step uses our assumption XTX � Id.)
It turns out that the above quantity κR in Eq. (2.3) indeed captures up to constant factors

the radius and curvature parameter of strong convexity of the Huber loss function around
β∗ for η � 0. In this sense, the well-spreadness of the column span of X is required for the
current approach of analyzing the Huber-loss estimator based on strong convexity. The
quantity κR in Eq. (2.3) is closely related to previously studied notions of well-spreadness
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for subspaces [GLW08, GLR10] in the context of compressed sensing and error-correction
over the reals.

Finally, we use a covering argument to show that a well-spread subspace remains
well-spread even when restricted to a random fraction of the coordinates (namely the
coordinates satisfying |ηi | 6 1). This fact turns out to imply the desired lower bound on
the local strong convexity parameter. Concretely, if the column space of X is well-spread in
the sense of Eq. (2.3) with parameter κR for some R > ÕκR( d

αn )1/2, we show that the Huber
loss function is locallyΩ(α · κR)-strong convex at β∗ within radiusΩ(R). (See Theorem 3.4.)
Recall that we are interested in the regime n & d/α2 (otherwise, consistent estimation
is impossible). In this case, with high probability Gaussian X satisfies κR > 0.1 even for
constant R.

Final error bound. The aforementioned general framework for analyzing estimators via
strong convexity (see Theorem 3.1) allows us to bound the error ‖β̂ − β∗‖ by the norm
of the gradient ‖∇ f (β∗)‖ divided by the strong-convexity parameter, assuming that this
upper bound is smaller than the strong-convexity radius.

Consequently, for the case that our design X satisfies κR > 0.1 (corresponding to the
setting of Theorem 1.2), the previously discussed gradient bound and strong-convexity
bound together imply that, with high probability over η, the error bound satisfies

‖β̂ − β∗‖ 6 O

(√
d
n

)
︸    ︷︷    ︸

gradient bound

· O

(
1
α

)
︸ ︷︷ ︸

strong-convexity bound

� O
(

d
α2n

)1/2
,

assuming R &
√

d/α2n. (This lower bound on R is required by Theorem 3.1 and is stronger
than the lower bound on R required by Theorem 3.4.)

2.2 Huber-loss estimator and high-dimensional medians
We discuss here some connections between high-dimensional median computations and
efficient estimators such as Huber loss or the LAD estimator. This connection leads to a
better understanding of why these estimators are not susceptible to heavy-tailed noise.
Through this analysis we also obtain guarantees similar to the ones shown in Theorem 1.2.

Recall our linear regression model y � Xβ∗ + η as in Eq. (2.1). The noise vector η has
independent, symmetrically distributed coordinates with α � mini∈[n] �

{��ηi
�� 6 1

}
. We

further assume the noise entries to satisfy

∀t ∈ [0, 1] , �
(��ηi

�� 6 t
)
> Ω(α · t) .

This can be assumed without loss of generality as, for example, we may simply add a
Gaussian vector w ∼ N(0, Idn) (independent of y) to y (after this operation parameter α
changes only by a constant factor).

12



The one dimensional case: median algorithm. To understand how to design an efficient
algorithmrobust to

(
1 −

√
d/n

)
·n corruptions, it is instructive to look into the simple settings

of one dimensional Gaussian design X ∼ N(0, Idn). Given samples (y1,X1), . . . , (yn ,Xn)
for any i ∈ [n] such that |Xi | > 1/2, consider

yi/Xi � β
∗
+ ηi/Xi .

By obliviousness the random variables η′i � ηi/Xi are symmetric about 0 and for any
0 6 t 6 1, still satisfy �(−t 6 η′i 6 t) > Ω(α · t). Surprisingly, this simple observation
is enough to obtain an optimal robust algorithm. Standard tail bounds show that with
probability 1− exp

{
−Ω

(
α2 · ε2 · n

)}
the median β̂ of y1/X1, . . . , yn/Xn falls in the interval[

−ε + β∗,+ε + β∗
]
for any ε ∈ [0, 1]. Hence, setting ε & 1/

√
α2 · n we immediately get that

with probability at least 0.999,


β∗ − β̂

2

6 ε2 6 O(1/(α2 · n)).

The high-dimensional case: from themedian to theHuber loss. In the one dimensional
case, studying the median of the samples y1/X1, . . . yn/Xn turns out to be enough to obtain
optimal guarantees. The next logical step is to try to construct a similar argument in high
dimensional settings. However, the main problem here is that high dimensional analogs of
the median are usually computationally inefficient (e.g. Tukey median [Tuk75]) and so this
doesn’t seem to be a good strategy to design efficient algorithms. Still in our case one such
function provides fundamental insight.

We start by considering the sign pattern of Xβ∗, we do not fix any property
of X yet. Indeed, note that the median satisfies

∑
i∈[n] sign

(
yi/Xi − β̂

)
≈ 0 and so∑

i∈[n] sign
(
yi − β̂Xi

)
sign(Xi) ≈ 0. So a natural generalization to high dimensions is

the following candidate estimator

β̂ � argminβ∈�d max
u∈�d

�� 1
n 〈sign

(
y − Xβ

)
, sign(Xu)〉

�� . (2.4)

Such an estimator may be inefficient to compute, but nonetheless it is instructive to reason
about it. We may assume X, β∗ are fixed, so that the randomness of the observations
y1, . . . , yn only depends on η. Since for each i ∈ [n], the distribution of ηi has median
zero and as there are at most nO(d) sign patterns in

{
sign(Xu)

�� u ∈ �d
}
, standard ε-net

arguments show that with high probability

max
u∈�d

1
n

���〈sign
(
y − Xβ̂

)
, sign(Xu)〉

��� 6 Õ
(√

d/n
)
, (2.5)

and hence
max
u∈�d

1
n

���〈sign
(
η + X

(
β∗ − β̂

))
, sign(Xu)〉

��� 6 Õ
(√

d/n
)
.

Consider 1(z) � 1
n 〈sign

(
η + Xz

)
, sign(Xz)〉 6 Õ(d/n) for z ∈ �d . Now the central observa-

tion is that for any z ∈ �d ,

�
η
1(z) � 1

n

∑
i∈[n]
�
η

sign
(
ηi + 〈Xi , z〉

)
· sign(〈Xi , z〉)

13



> 1
n

∑
i∈[n]
�
(
0 > sign(〈Xi , z〉) · ηi > −|〈Xi , z〉|

)
> 1

n

∑
i∈[n]

Ω(α) ·min{1, |〈Xi , z〉|} .

By triangle inequality � 1(z) 6 |1(z)| + |1(z) −� 1(z)| and using a similar argument as in
Eq. (2.5), with high probability, for any z ∈ �d ,

|1(z) −� 1(z)| 6 Õ
(√

d/n
)
.

Denote with z :� β∗ − β̂ ∈ �d . Consider 1(z), thinking of z ∈ �d as a fixed vector. This
allows us to easily study �η 1(z). On the other hand, since our bounds are based on ε-net
argument, we don’t have to worry about the dependency of z on η.

So without any constraint on the measurement X we derived the following inequality:

1
n

∑
i∈[n]

min{1, |〈Xi , z〉|} 6 Õ
(√

d/(α2 · n)
)
.

Now, our well-spread condition Eq. (1.2) will allow us to relate 1
n
∑

i∈[n]min{1, |〈Xi , z〉|}
with 1

n
∑

i∈[n]〈Xi , z〉2 and thus obtain a bound of the form

1
n




X
(
β∗ − β̂

)


2
6 Õ

(
d/(α2n)

)
. (2.6)

So far we glossed over the fact that Eq. (2.4) may be hard to compute, however it is easy
to see that we can replace such estimator with some well-known efficient estimators and
keep a similar proof structure. For instance, one could expect the LAD estimator

β̂ � min
β∈�d



y − Xβ




1 (2.7)

to obtain comparable guarantees. For fixed d and α and n tending to infinity this is indeed
the case, as we know by [Pol91] that such estimator recovers β∗. The Huber loss function
also turns out to be a good proxy for Eq. (2.4). Let 1(u) :� 1

n
∑

i∈[n]
〈Φ′h(ηi + 〈Xi , u〉),Xu〉

where Φh : �→ �>0 is the Huber penalty function and z � β∗ − β̂. Exploiting only first
order optimality conditions on β̂ one can show

� 1(z) 6 |1(z) −� 1(z)| 6 Õ
(√

d/n
)
,

using a similar argument as the one mentioned for Eq. (2.5). Following a similar proof
structure as the one sketched above, we can obtain a bound similar to Eq. (2.6). Note that
this approach crucially exploits the fact that the noise η has median zero but does not rely
on symmetry and so can successfully obtain a good estimate of Xβ∗ under weaker noise
assumptions.
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2.3 Fast algorithms for Gaussian design
The one dimensional median approach introduced above can be directly extended to
high dimensional settings. This essentially amounts to repeating the procedure for each
coordinate, thus resulting in an extremely simple and efficient algorithm. More concretely:

Algorithm 1Multivariate linear regression iteration via median

Input: (y ,X)where y ∈ �n , X ∈ �n×d .
for all j ∈ [d] do
for all i ∈ [n] do
Compute zi j �

y
Xi j

.
end for
Let β̂ j be the median of

{
zi j

}
i∈[n].

end for
Return β̂ :�

(
β̂1, . . . , β̂d

)T.
If X1, . . . ,Xn ∼ N(0, Idd), the analysis of the one dimensional case shows that with

high probability, for each j ∈ [d], the algorithm returns β̂ j satisfying (β∗j − β̂ j)2 6

O
(

1+‖β∗‖2
α2 · log d

)
. Summing up all the coordinate-wise errors, Algorithm 1 returns a

O
(

d(1+‖β∗‖2)
α2 · log d

)
-close estimation. This is better than a trivial estimate, but for large

β∗

 it is far from the O(d · log d/(α2 · n)) error guarantees we aim for. However, using

bootstrapping we can indeed improve the accuracy of the estimate. It suffices to iterate
log



β∗

 many times.

Algorithm 2Multivariate linear regression via median

Input: (y ,X,∆)where X ∈ �n×d , y ∈ �n and ∆ is an upper bound to


β∗

.

Randomly partition the samples y1, . . . , yn in t :� Θ(log∆) sets S1, . . . ,St , such that all
S1, . . . ,St−1 have sizes Θ

(
n

log∆

)
and St has size bn/2c.

for all i ∈ [t] do
Run Algorithm 1 on input

©­«yS i − XS i

©­«
∑

j<i−1
β̂( j)

ª®¬,XS i

ª®¬ ,
and let β̂(i) be the resulting estimator.

end for
Return β̂ :�

(
β̂1, . . . , β̂d

)T.
15



As mentioned in Section 1.2, Algorithm 2 requires knowledge of an upper bound ∆ on
the norm of β∗. The algorithm only obtains meaningful guarantees for

n &
d
α2 log∆

(
log d + log log∆

)
and as such works with nearly optimal (up to poly-logarithmic terms) sample complexity
whenever



β∗

 is polynomial in d/α2.
In these settings, since each iteration i requires O(|S i | · d) steps, Algorithm 2 runs in

linear time O(n · d) and outputs a vector β̂ satisfying

β̂ − β∗

2
6 O

(
d

α2 · n · log d
)
,

with high probability.
Remark (On learning the norm of β∗). As was noticed in [SBRJ19], one can obtain a rough
estimate of the norm of η by projecting y onto the orthogonal complement of the columns
span of X[n/2]. Since the ordinary least square estimator obtains an estimate with error
∆ � O(

√
d


η

/n) with high probability, if ‖η‖ is polynomial in the number of samples, we

obtain a vector β̂LS such that


β∗ − β̂LS



 6 ∆ � nO(1). The median algorithm can then be
applied on

(
y � X[n]\[n/2](β∗ − β̂LS) + η, X[n]\[n/2], ∆

)
. Note that since X[n/2] and X[n]\[n/2]

are independent, β∗ − β̂LS is independent of X[n]\[n/2].

3 Huber-loss estimation guarantees from strong convexity
In this section, we prove statistical guarantees for the Huber loss estimator by establishing
strong convexity bounds for the underlying objective function.

The following theorem allows us to show that the global minimizer of the Huber loss is
close to the underlying parameter β∗. To be able to apply the theorem, it remains to prove
(1) a bound on the gradient of the Huber loss at β∗ and (2) a lower bound on the curvature
of the Huber loss within a sufficiently large radius around β∗.

Theorem 3.1 (Error bound from strong convexity, adapted from [NRWY09, TJSO14]). Let
f : �d → � be convex differentiable function and let β∗ ∈ �d . Suppose f is locally κ-strongly
convex at β∗ within radius R > 0:

∀u ∈ �d , ‖u‖ 6 R . f (β∗ + u) > f (β∗) + 〈∇ f (β∗), u〉 + κ
2
‖u‖2 . (3.1)

If ‖∇ f (β∗)‖ < 1
2 · Rκ, then every vector β ∈ �d such that f (β) 6 f (β∗) satisfies

‖β − β∗‖ 6 2 · ‖∇ f (β∗)‖/κ . (3.2)

Furthermore, if If ‖∇ f (β∗)‖ < 0.49 · Rκ, then every vector β ∈ �d such that f (β) 6 f (β∗)+ ε,
where ε � 0.01 · ‖∇ f (β∗)‖2/κ, satisfies

‖β − β∗‖ 6 2.01 · ‖∇ f (β∗)‖/κ . (3.3)
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Proof. Let β ∈ �d be any vector that satisfies f (β) 6 f (β∗) + ε. Write β � β∗ + t · u such that
‖u‖ 6 R and t � max{1, ‖β − β∗‖/R}. Since β′ � β∗ + u lies on the line segment joining β∗
and β, the convexity of f implies that f (β′) 6 max{ f (β), f (β∗)} 6 f (β∗)+ ε. By local strong
convexity and Cauchy–Schwarz,

ε > f (β′) − f (β∗) > −‖∇ f (β∗)‖ · ‖u‖ + κ
2
· ‖u‖2 .

If ε � 0, we get ‖u‖ 6 2 · ‖∇ f (β∗)‖/κ < R. By our choice of t, this bound on ‖u‖ implies
t � 1 and we get the desired bound.

If ε � 0.01 · ‖∇ f (β∗)‖2/κ and ‖∇ f (β∗)‖ < 0.49 · Rκ, by the quadratic formula,

‖u‖ 6
‖∇ f (β∗)‖ +

√
‖∇ f (β∗)‖2 + 2κε
κ

6
2.01‖∇ f (β∗)‖

κ
< 2.01 · 0.49 · R < R .

Again, by our choice of t, this bound on ‖u‖ implies t � 1. We can conclude ‖β − β∗‖ �
‖u‖ 6 2.01‖∇ f (β∗)‖/κ as desired. �

We remark that the notion of local strong convexity Eq. (3.1) differs from the usual
notion of strong convexity in that one evaluation point for the function is fixed to be β∗.
(For the usual notion of strong convexity both evaluation points for the function may vary
within some convex region.) However, it is possible to adapt our proof of local strong
convexity to establish also (regular) strong convexity inside a ball centered at β∗.

A more general form of the above theorem suitable for the analysis of regularized
M-estimators appears in [NRWY09] (see also [Wai19]). Earlier analyses of the Huber-loss
estimator also use this theorem implicitly [TJSO14]. (See the the discussion in Section 2.1.)

The following theorem gives an upper bound on the gradient of the Huber loss at β∗ for
probabilistic error vectors η.

Theorem 3.2 (Gradient bound for Huber loss). Let X ∈ �n×d with XTX � Id and β∗ ∈ �d .
Let η be an n-dimensional random vector with independent symmetrically-distributed entries.

Then for any δ ∈ (0, 1), with probability at least 1 − δ/2, the Huber loss function f (β) �
1
n
∑n

i�1Φ[(Xβ − y)i] for y � Xβ∗ + η satisfies

‖∇ f (β∗)‖ 6 8

√
d + ln(2/δ)

n
.

Proof. Let z be the n-dimensional random vector with entries zi � Φ
′(ηi), where Φ′(t) �

sign(t) · min{2, |t |}. Then, ∇ f (β∗) � 1
n
∑n

i�1 zi · xi . Since ηi is symmetric, � zi � 0. By
the Hoeffding bound, every unit vector u ∈ �d satisfies with probability at least 1 −
2 exp(−2(d + ln(2/δ))).

n ·
��〈∇ f (β∗), u〉

�� � |〈z ,Xu〉| 6 4
√

d + ln(2/δ) · ‖Xu‖ � 4
√
(d + ln(2/δ))n .
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Hence, by union bound over a 1/2-covering of the d-dimensional unit ball of size at most
5d , we have with probability at least 1 − 2 exp(−2 ln(2/δ)) > 1 − δ/2,

max
‖u‖61

��〈∇ f (β∗), u〉
�� 6 4

√
(d + ln(2/δ))/n + max

‖u‖61/2

��〈∇ f (β∗), u〉
��

� 4
√
(d + ln(2/δ))/n +

1
2 max
‖u‖61

��〈∇ f (β∗), u〉
�� .

Since u �
1

‖∇ f (β∗)‖∇ f (β∗) satisfies 〈∇ f (β∗), u〉 � ‖∇ f (β∗)‖, we get the desired bound. �

Proof of local strong convexity. The following lemma represents the second-order
behavior of the Huber penalty as an integral. To prove local strong convexity for the
Huber-loss function, we will lower bound this integral summed over all sample points.

Lemma 3.3 (Second-order behavior of Huber penalty). For all h , η ∈ �,

Φ(η + h) −Φ(η) −Φ′(η) · h � h2 ·
∫ 1

0
(1 − t) · 1|η+t·h |62 dt >

h2

2
· 1|η|61 · 1|h |61 . (3.4)

Proof. A direct consequence of Taylor’s theorem and the integral form of the remainder of
the Tayler approximation. Concretely, consider the function 1 : �→ �with 1(t) � Φ(η+t ·h).
The first derivative of 1 at 0 is 1′(0) � Φ′(η) · h. The function 1′′(t) � h2 · 1|η+th |62 is the
second derivative of 1 as an L1 function (so that

∫ b
a 1′′(t)dt � 1′(b) − 1′(a) for all a , b ∈ �).

Then, the lemma follows from the following integral form of the remainder of the first-order
Taylor expansion of 1 at 0,

1(1) − 1(0) − 1′(0) �
∫ 1

0
(1 − t) · 1′′(t)dt .

Finally, we lower bound the above right-hand side by > 1
2 1|η|61 · 1|h |61 using

∫ 1
0 (1− t)dt � 1

2
and the fact 1′′(t) > h2 · 1|η|61 · 1|h |61 for all t ∈ [0, 1]. �

Theorem 3.4 (Strong convexity of Huber loss). Let X ∈ �n×d with XTX � Id and β∗ ∈ �d . Let
η be an n-dimensional random vector with independent entries such that α � mini �{|ηi | 6 1}.
Let κ > 0 and δ ∈ (0, 1). Suppose that every vector v in the column span of X satisfies

n∑
i�1

�
r2 · v2

i 6
1
n ‖v‖

2�
· v2

i > κ · ‖v‖
2 , (3.5)

with √
50 ·

(
d · ln

( 100
ακ

)
+ ln(2/δ)

)
καn

6 r 6 1 .

Then, with probability at least 1 − δ/2, the Huber loss function f (β) � 1
n
∑n

i�1Φ[(Xβ − y)i]
for y � Xβ∗ + η is locally 0.5κα-strongly convex at β∗ within radius r/2 (in the sense of Eq. (3.1)).
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Proof. By Lemma 3.3, for every u ∈ �d ,

f (β∗ + u) − f (β∗) − 〈∇ f (β∗), u〉 � 1
n

n∑
i�1

Φ(〈xi , u〉 − ηi) −Φ(−ηi) −Φ′(−ηi) · 〈xi , u〉

> 1
2n

n∑
i�1
〈xi , u〉2 · 1|〈xi ,u〉|61 · 1|ηi |61 . (3.6)

It remains show that with high probability over the realization of η, the right-hand side
Eq. (3.6) is bounded from below uniformly over all u ∈ �d in a ball.

To this end, we will show, using a covering argument, that with probability at least
1 − δ/2 over η, for every unit vector u ∈ �d , the vector v � Xu satisfies the following
inequality,

1
n

n∑
i�1
~v2

i 6 4/r2� · v2
i · ~ |ηi | 6 1� > ακ/2 . (3.7)

(Since 1
n XTX � Id and ‖u‖ � 1, the vector v has average squared entry 1.)

Let Nε be an ε-covering of the unit sphere in �d of size |Nε | 6 (3/ε)d for a parameter
ε to be determined later. Let u ∈ �d be an arbitrary unit vector and let v � Xu. Choose
u′ ∈ Nε such that ‖u − u′‖ 6 ε and let v′ � Xu′. We establish the following lower bound
on the left-hand side of Eq. (3.7) in terms of a similar expression for v′,

1
n

n∑
i�1
~(v′i)

2 6 1/r2� · (v′i)
2 · ~ |ηi | 6 1� (3.8)

6 ε2
+

1
n

n∑
i�1
~v2

i 6 4/r2� · ~(v′i)
2 6 1/r2� · (v′i)

2 · ~ |ηi | 6 1� (3.9)

6 2ε + ε2
+

1
n

n∑
i�1
~v2

i 6 4/r2� · ~(v′i)
2 6 1/r2� · v2

i · ~ |ηi | 6 1� (3.10)

The first step Eq. (3.9) uses that each term in the first sum that doesn’t appear in the
second sum corresponds to a coordinate i with |v′i | 6 1/r and |vi | > 2/r, which means
that (vi − v′i)

2 > 1/r2. Since each term has value at most 1/r2, the sum of those terms is
bounded by ‖v − v′‖2 6 ε2n. For the second step Eq. (3.10), let (w′i)

2 be the terms of the
second sum and w2

i the terms of the third sum. Then, the difference of the two sums is
equal to 〈w − w′, w + w′〉 6 ‖w − w′‖ · ‖w + w′‖. We have ‖w − w′‖ 6 ‖v − v′‖ 6 ε

√
n and

‖w + w′‖ 6 ‖v‖ + ‖v′‖ � 2
√

n.
It remains to lower bound the expressionEq. (3.8) over all u′ ∈ Nε. Let zi � αi−~ |ηi | 6 1�,

where αi � �{|ηi | 6 1} > α. The random variables z1, . . . , zn are independent, centered,
and satisfy |zi | 6 1. Let ci � ~(v′i)

2 6 1/r2� · (v′i)
2. By Bernstein inequality, for all t > 1,

�


n∑

i�1
ci · zi > t ·

√∑
i∈[n]

αic2
i + t2/r2

 6 e−t2/4 .
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Since c2
i 6 ci/r2, we have

∑
i∈[n] αi c2

i 6
1
r2

∑
i∈[n] αici . Denote b �

1
n
∑

i∈[n] αi ci . Note that
b > ακ.

Choosing ε � 0.03ακ, t � 2
√

d ln(3/ε) + ln(2/δ), by the union bound over Nε, it follows
that with probability at least 1 − δ/2, for every u′ ∈ Nε, the vector v′ � Xu′ satisfies,

1
n

n∑
i�1
~(v′i)

2 6 1/r2� · (v′i)
2 · ~ |ηi | 6 1� > b −

√
t2b
r2n
− t2

r2n

> b −
√

0.1 ·
√

b ·
√
ακ − 0.08 · ακ

> 0.6ακ .

As discussed before, this event implies that for all unit vectors u ∈ �d , the vector v � Xu
satisfies

1
n

n∑
i�1
~v2

i 6 4/r2� · v2
i · ~ |ηi | 6 1� > 0.6ακ − 2ε − ε2 > 0.5ακ .

�

Putting things together. In this paragraph, we proof Theorem 1.2 by combining previous
results in this section.

We start with the definition of well-spread property:

Definition 3.5. Let V ⊆ �n be a vector space. V is called (m , ρ)-spread, if for every v ∈ V
and every subset S ⊆ [n]with |S | > n − m,

‖vS‖ > ρ‖v‖ .

Theorem 3.6. Let X ∈ �n×d be a deterministic matrix and let η be an n-dimensional random
vector with independent, symmetrically distributed entries and α � mini∈[n] �{|ηi | 6 1}.

Let ρ ∈ (0, 1) and δ ∈ (0, 1) and suppose that column span of X is (m , ρ)-spread for

m �
104 ·

(
d · ln(10/ρ) + ln(2/δ)

)
ρ4 · α2 .

Then, with probability at least 1 − δ over η, for every β∗ ∈ �d , given X and y � Xβ∗ + η, the
Huber-loss estimator β̂ satisfies

1
n



X(β∗ − β̂)


2
6 2000 · d + ln(2/δ)

ρ4 · α2 · n .

Proof. Note that if column span of X is (m , ρ)-spread, then Eq. (3.5) holds for all v from
column span of X with r2 � m/n and κ � ρ2. Indeed, the set

{
i ∈ [n]

�� v2
i >

1
r2n ‖v‖

2} has

size at most r2n � m, so
∑

i∈[n]\S v2
i > ρ

2‖v‖2 � κ‖v‖2. Hence for m �
104(d ln(10/ρ)+ln(2/δ))

ρ4α2 ,
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the conditions of Theorem 3.4 are satisfied and f is locally 0.5ρ2α-strongly convex in the
ball of radius 0.5

√
m/n with probability at least 1 − δ/2.

By Theorem 3.2, with probability at least 1 − δ/2,

‖∇ f (β∗)‖ 6 8

√
d + ln(2/δ)

n
.

Hence with probability at least 1 − δ, ‖∇ f (β∗)‖ < 0.49 · 1
4 · ρ2α

√
m/n. Therefore, by

Theorem 3.1, with probability at least 1 − δ,

1
n



X(β∗ − β̂)


2
6 2.12 ·

4‖∇ f (β∗)‖2
ρ4 · α2 6 2000 · d + ln(2/δ)

ρ4 · α2 · n .

�

Proof of Theorem 1.2. Theorem 1.2 follows from Theorem 3.6 with ρ �
√

1 − 0.81 �
√

0.19
and δ � 2−d . Note that in this case m 6 107 · d/α2. �

3.1 Huber-loss estimator for Gaussian design and deterministic noise
In this section we provide a proof of Theorem 1.1. We will use the same strategy as in the
previous section: show that the gradient at β∗ is bounded by O

(√
d/n

)
, then show that

Huber loss is locally strongly convex at β∗ in a ball of radiusΩ(1), and then use Theorem 3.1
to obtain the desired bound.

Gradient bound.

Theorem 3.7 (Gradient bound, Gaussian design). Let X ∼ N(0, 1)n×d and β∗ ∈ �d . Let
η ∈ �n be a deterministic vector.

Then for every δ ∈ (0, 1), with probability at least 1 − δ/2, the Huber loss function f (β) �
1
n
∑n

i�1Φ[(Xβ − y)i] for y � Xβ∗ + η satisfies

‖∇ f (β∗)‖ 6 3

√
d + 2 ln(2/δ)

n
.

Proof. The distribution of ∇ f (β∗) is N

(
0, 1

n2
∑

i∈[n]

(
Φ′(ηi)

)2 · Idd

)
. Hence by Fact D.10, with

probability at least 1 − δ/2,

‖∇ f (β∗)‖2 6 4
n

(
d + 2 ln(2/δ) + 2

√
d ln(2/δ)

)
6

8d + 12 ln(2/δ)
n

.

�
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Strong convexity.

Theorem 3.8 (Strong convexity, Gaussian design). Let X ∼ N(0, 1)n×d and β∗ ∈ �d . Let
η ∈ �n be a deterministic vector with αn entries of magnitude at most 1. Suppose that for some
δ ∈ (0, 1),

n > 200 · d + 2 ln(4/δ)
α2 .

Then with probability at least 1 − δ/2, the Huber loss function f (β) � 1
n
∑n

i�1Φ[(Xβ − y)i]
for y � Xβ∗ + η is locally 0.5α-strongly convex at β∗ within radius 1/6 (in the sense of Eq. (3.1)).

Proof. By Lemma 3.3, for every u ∈ �d ,

f (β∗ + u) − f (β∗) − 〈∇ f (β∗), u〉 � 1
n

n∑
i�1

Φ(〈xi , u〉 − ηi) −Φ(−ηi) −Φ′(−ηi) · 〈xi , u〉

> 1
2n

n∑
i�1
〈xi , u〉2 · 1|〈xi ,u〉|61 · 1|ηi |61 .

Consider the set C �
{

i ∈ [n]
�� |ηi | 6 1

}
. Since |C| � αn and η is deterministic, XC ∼

N(0, 1)αn×d .
By Fact D.12, for k � αn/200, with probability at least 1 − δ/4, for any setK ⊆ C of size

k and every u ∈ �d ,∑
i∈K
〈xi , u〉2 6 ‖u‖2 ·

(
√

d +

√
k +

√
2k ln

( eαn
k

)
+

√
2 ln(4/δ)

)2

6 ‖u‖2 ·
(√
αn/200 +

√
0.01αn ln(200e) + 0.1 ·

√
αn

)2

6 0.18‖u‖2 · αn .

Now ifK is the set of top k entries of Xu for u ∈ �d such that ‖u‖ 6 1/6, then we get that
the average squared coordinate inK is at most 1. Hence

n∑
i�1
〈xi , u〉2 · 1|〈xi ,u〉|61 · 1|ηi |61 >

∑
i∈C\K

〈xi , u〉2 > ‖XCu‖2 − 0.18 · ‖u‖2αn .

Since XC is a Gaussian matrix, for all u ∈ �d , with probability at least 1 − δ/4,

‖XCu‖2 > ‖u‖2
(√
αn −

√
d −

√
2 log(4/δ)

)2

> ‖u‖2
(√
αn − 0.1

√
αn

)2
> 0.81‖u‖2αn .

Hence with probability at least 1 − δ/2, for all u ∈ �d such that ‖u‖ 6 1/6,

f (β∗ + u) − f (β∗) − 〈∇ f (β∗), u〉 > 0.25α‖u‖2 ,

and f is locally strongly convex with parameter 0.5α at β∗ in the ball of radius 1/6. �
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Putting everything together. The following theorem implies Theorem 1.1.

Theorem 3.9. Let η ∈ �n be a deterministic vector. Let X be a random13 n-by-d matrix with iid
standard Gaussian entries Xi j ∼ N(0, 1).

Suppose that for some δ ∈ (0, 1),

n > 104 · d + 2 ln(2/δ)
α2 ,

where α is the fraction of entries in η of magnitude at most 1.
Then, with probability at least 1−δ, for every β∗ ∈ �d , given X and y � Xβ∗+η, the Huber-loss

estimator β̂ satisfies 

β∗ − β̂

2
6 1000 · d + 2 ln(2/δ)

α2n
.

Proof. Using bounds fromTheorem 3.7 and Theorem 3.8, we can apply Theorem 3.1. Indeed,
with probability at least 1 − δ,

R � 1/6 > 2 · 3
√

d + 2 ln(2/δ)
0.25α2n

> 2 ·
‖∇ f (β∗)‖

0.5α
,

Hence 

β∗ − β̂

2
6 4 ·

‖∇ f (β∗)‖2
0.25α2 6 1000 · d + 2 ln(2/δ)

α2n
.

�

4 Robust regression in linear time
In this section we prove Theorem 1.3 and Theorem 1.4. We consider the linear model
y � Xβ∗ + η where X ∈ �n×d has i.i.d entries Xi j ∼ N(0, 1) and the noise vector η satisfies
the following assumption.

Assumption 4.1. η ∈ �n is a fixed vector such that for some α � α(n , d) ∈ (0, 1),��{i ∈ [n]
�� |ηi | 6 1

}�� > αn. We denote T :�
{

i ∈ [n]
�� |ηi | 6 1

}
.

We start showing how to obtain a linear time algorithm for Gaussian design in one
dimension. Then generalize it to high dimensional settings. We add the following (linear
time) preprocessing step

∀i ∈ [n], y′i � σi · yi + wi ,

X′i � σi · Xi , wi ∼ N(0, 1), σi ∼ U{−1, 1} , (PRE)

where w1, . . . ,wn , σ1, . . . , σn ,X aremutually independent. For simplicity,when the context
is clear we denote σiηi + wi by ηi and y′,X′ with y ,X . Note that this preprocessing step
takes time linear in nd. Assumption 4.1 implies that after this preprocessing step, η satisfies
the following assumption:

13As a convention, we use boldface to denote random variables.
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Assumption 4.2. For all i ∈ T and for any t ∈ [0, 1],

�
(
0 6 η j 6 t

)
� �

(
−t 6 η j 6 0

)
> t/10 .

4.1 Warm up: one-dimensional settings
For the one-dimensional settings, the only property of the design n×1 matrix X ∼ N(0, Idn)
we are going to use is anti-concentration.

Fact 4.3. Let X ∼ N(0, Idn). Then for any c ∈ [0, 1] and i ∈ [n],

�(|Xi | > c) > Ω(1) .

As shown below, our estimator simply computes a median of the samples.

Algorithm 3 Univariate Linear Regression via Median

Input: (y ,X), where y ,X ∈ �n .

0. Preprocess y ,X as in Eq. (PRE) and let (y′,X′) be the resulting pair.

1. LetM �
{

i ∈ [n]
�� |X′i | > 1/2

}
. For i ∈M, compute zi �

y′i
X′i
.

2. Return the median β̂ of {zi}i∈M .

Remark 4.4 (Running time). Preprocessing takes linear time. FindingM requires linear
time, similarly we can compute all zi in O(n). The median can then be found in linear
time using quickselect [Hoa61] with pivot chosen running the median of medians algorithm
[BFP+73]. Thus the overall running time is O(n).

The guarantees of the algorithm are proved in the following theorem.

Theorem 4.5. Let y � Xβ∗ + η for arbitrary β∗ ∈ �, X ∼ N(0, 1)n×d and η ∈ �n satisfying
Assumption 4.1 with parameter α. Let β̂ be the estimator computed by Algorithm 3 given (X , y) as
input. Then for any positive τ 6 α2 · n,

β∗ − β̂

2

6
τ

α2 · n
with probability at least 1 − 2 exp{−Ω(τ)}.

To prove Theorem 4.5 we will use the following bound on the median, which we prove
in Appendix D.

Lemma 4.6. Let S ⊆ [n] be a set of size γn and let z1, . . . , zn ∈ � be mutually independent
random variables satisfying
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1. For all i ∈ [n], �(zi > 0) � �(zi 6 0).

2. For some ε > 0, for all i ∈ S, �(zi ∈ [0, ε]) � �(zi ∈ [−ε, 0]) > q.

Then with probability at least 1 − 2 exp
{
−Ω

(
q2γ2n

)}
the median ẑ satisfies

|ẑ | 6 ε .

Proof of Theorem 4.5. Due to the preprocessing step the resulting noise η satisfies As-
sumption 4.2. Let M ⊆ [n] be the set of entries such that |X′i | >

1
2 . Since T and

M are independent, by Chernoff bound, |T ∩M | > Ω(αn) with probability at least
1 − 2 exp[−Ω(αn)] > 1 − 2 exp[−Ω(τ)]. Now observe that for all ε ∈ (0, 1) and for all
i ∈ T ∩M, by Assumption 4.2,

�
(��zi − β∗

�� 6 ε) � �(���� ηi

X′i

���� 6 ε) > �(��ηi
�� 6 ε/2) > ε

20
.

By Lemma 4.6, we get the desired bound for τ � ε2α2n. �

4.2 High-dimensional settings
The median approach can also be applied in higher dimensions. In these settings we need
to assume that an upper bound ∆ on ‖β∗‖ is known.

Remark 4.7. As shown in [SBRJ19], under the model of Theorem 1.1 the classical least square
estimator obtain an estimate β̂ with error d

n ·


η

. Thus under the additional assumption

that the noise magnitude is polynomial in n it is easy to obtain a good enough estimate of
the parameter vector.

We first prove in Section 4.2.1 how to obtain an estimate of the form


β∗ − β̂

2

6
‖β∗‖2

2 .
Then in Section 4.2.2 we obtain Theorem 1.3, using bootstrapping. In Section 4.2.3 we
generalize the results to sparse parameter vector β∗, proving Theorem 1.4. Finally we extend
the result of Section 4.2.2 to non-spherical Gaussians in Section 4.2.4.

4.2.1 High-dimensional Estimation via median algorithm

To get an estimate of the form


β∗ − β̂

2

6
‖β∗‖2

2 , we use the algorithm below:
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Algorithm 4Multivariate Linear Regression Iteration via Median

Input: (y ,X)where y ∈ �n , X ∈ �n×d .

0. Preprocess y ,X as in Eq. (PRE) and let (y′,X′) be the resulting pair.

1. For all j ∈ [d] run Algorithm 3 on input (y ,X′j), where X′j is a j-th column of X′ (without
additional preprocessing). Let β̂ j be the resulting estimate.

2. Return β̂ :�
(
β̂1, . . . , β̂d

)
T.

Remark 4.8 (Running time). Preprocessing takes linear time. Then the algorithm simply
executes Algorithm 3 d times, so it runs in O(nd) time.

The performance of the algorithm is captured by the following theorem.

Theorem 4.9. Let y � Xβ∗ + η for arbitrary β∗ ∈ �d , X ∼ N(0, 1)n×d and η ∈ �n satisfying
Assumption 4.1 with parameter α. Let β̂ be the estimator computed by Algorithm 4 given (y ,X) as
input. Then for any positive τ 6 α2n,

β∗ − β̂

2

6
d · τ
α2 · n

(
1 +



β∗

2
)

with probability at least 1 − 2 exp[ln d −Ω(τ)].

Proof. We first show that the algorithm obtains a good estimate for each coordinate. Then
it suffices to sum the coordinate-wise errors. For j ∈ [d], letM j ⊆ [n] be the set of entries
such that |Xi j | > 1

2 . Observe that sinceM j doesn’t depend on T , by Chernoff bound,
T ∩M j > Ω(αn)with probability at least 1− 2 exp[−Ω(αn)] > 1− 2 exp[−Ω(τ)]. Now for
all i ∈ [n] let

zi j :� 1
X′i j

©­«σiηi + wi +
∑
l, j

X′ilβ
∗
l
ª®¬ .

Note that �
(
zi j > 0

)
� �

(
zi j 6 0

)
. Now let β̄ ∈ �d be the vector such that for j ∈ [d] \ {i},

β̄ j � β∗j and β̄i � 0. By properties of Gaussian distribution, for all i ∈ [n],

wi +
∑
l, j

X′ilβ
∗
l ∼ N(0, 1 + ‖ β̄‖2) .

Hence for each i ∈ T ∩M j , for all 0 6 t 6
√

1 + ‖ β̄‖2,

�
(
|zi j | 6 t

)
> Ω

©­­«
t√

1 + ‖ β̄‖2

ª®®¬ .
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By Lemma 4.6, median ẑ j of zi j satisfies

ẑ2
j 6

τ

α2 · n

(
1 +



β̄

2
)
6

τ

α2 · n

(
1 +



β∗

2
)

with probability at least 1 − 2 exp[−Ω(τ)]. Since β̂ j � ẑ j + β∗j , applying union bound over
all coordinates j ∈ [d], we get the desired bound. �

4.2.2 Nearly optimal estimation via bootstrapping

Here we show how through multiple executions of Algorithm 4 we can indeed obtain error

β∗ − β̂

2
6 Õ

(
d

α2·n

)
. As already discussed, assume that we know some upper bound on

‖β‖, which we denote by ∆. Consider the following procedure:

Algorithm 5Multivariate Linear Regression via Median

Input: (y ,X,∆)where X ∈ �n×d , y ∈ �n , and ∆ > 3.

1. Randomly partition the samples y1, . . . , yn in t :� dln∆e sets S1, . . . ,St , such that all
S1, . . . ,St−1 have sizes Θ

(
n

log∆

)
and St has size bn/2c.

2. Denote β̂(0) � 0 ∈ �d . For i ∈ [t], run Algorithm 4 on input
(
yS i − XS i β̂

(i−1),XS i

)
, and

let β̂(i) be the resulting estimator.

3. Return β̂ :�
∑

i∈[t]
β̂(i).

Remark 4.10 (Running time). Splitting the samples into t sets requires time O(n). For
each set Si , the algorithm simply executes Algorithm 4, so all in all the algorithm takes
O

(
Θ

(
n

log∆

)
d · log∆

)
� O(nd) time.

The theorem below proves correctness of the algorithm.

Theorem 4.11. Let y � Xβ∗+ η for β∗ ∈ �d , X ∼ N(0, 1)n×d and η ∈ �n satisfying Assumption
4.1 with parameter α. Suppose that ∆ > 3

(
1 + ‖β∗‖

)
, and that for some positive ε 6 1/2,

n > C · d ln∆
α2 · (ln(d/ε) + ln ln∆) for sufficiently large absolute constant C > 0. Let β̂ be the

estimator computed by Algorithm 5 given (y ,X ,∆) as input. Then, with probability at least 1 − ε,
1
n




X
(
β∗ − β̂

)


2
6 O

(
d · log(d/ε)
α2 · n

)
.

Proof. Since n > C · d ln∆
α2 · (ln d + ln ln∆), by Theorem 4.9, for each i ∈ [t − 1],





β∗ − i∑

j�1
β̂( j)








2

6
1 +




β∗ −∑i−1
j�1 β̂

( j)



2

10
,
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with probability at least 1 − 2 exp[ln d − 10 ln(d/ε) − 10 ln ln∆]. By union bound over
i ∈ [t − 1], with probability at least 1 − 2ε10,





β∗ − t−1∑

j�1
β̂( j)








2

6 100 .

Hence by Theorem 4.9, with probability at least 1 − 4ε10,





β∗ − t∑
j�1
β̂( j)








2

6 O
(

d · log(d/ε)
α2 · n

)
.

By Fact D.8, with probability at least 1 − ε10,

1
n




X
(
β∗ − β̂

)


2
�

(
β∗ − β̂

)
T
(

1
n

XTX
) (
β∗ − β̂

)
6 1.1 ·



β∗ − β̂

2
.

�

4.2.3 Nearly optimal sparse estimation

A slight modification of Algorithm 4 can be use in the sparse settings.

Algorithm 6Multivariate Sparse Linear Regression Iteration via Median

Input: (y ,X), where X ∈ �n×d , y ∈ �n .

1. Run Algorithm 4, let β′ be the resulting estimator.

2. Denote by ak the value of the k-th largest (by absolute value) coordinate of β′. For each
j ∈ [d], let β̂ j � β′j if |β

′
j | > ak , and β̂ j � 0 otherwise.

3. Return β̂ :�
(
β̂1, . . . , β̂d

)
T.

Remark 4.12 (Running time). Running time of Algorithm 4 is O(nd). Similar to median, ak

can be computed in time O(d) (for example, using procedure from [BFP+73]).
The next theorem is the sparse analog of Theorem 4.9.

Theorem 4.13. Let y � Xβ∗ + η for k-sparse β∗ ∈ �d , X ∼ N(0, 1)n×d and η ∈ �n satisfying
Assumption 4.1 with parameter α. Let β̂ be the estimator computed by Algorithm 6 given (y ,X) as
input. Then for any positive τ 6 α2n,

β∗ − β̂

2

6 O
(

k · τ
α2 · n

(
1 +



β∗

2
))

with probability at least 1 − 2 exp[ln d −Ω(τ)].
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Proof. The reasoning of Theorem 4.9 shows that for each coordinate [ j], the median ẑ j

satisfies

|ẑ j | 6
√

τ

α2 · n

(
1 +



β∗

2
)

with probability at least 1 − 2 exp[−Ω(τ)]. By union bound over j ∈ [d], with probability at
least 1 − 2 exp[ln d −Ω(τ)], for any j ∈ [d],

|β′j − β
∗
j | 6

√
τ

α2 · n

(
1 +



β∗

2
)
.

If β′j < ak , then there should be some i < supp{β∗} such that |β′i | > |β
′
j |. Hence for such j,

|β∗j | 6 |β
′
j − β

∗
j | + |β

′
j | 6 |β

′
j − β

∗
j | + |β

′
i − β

∗
i | 6 O

(√
τ

α2 · n

(
1 +



β∗

2
))
.

Note that since random variables Xi j are independent and absolutely continuous with
positive density, β′j , β

′
m for m , j with probability 1. Hence

���{ j ∈ [d]
��� |β′j | > ak

}��� � k. It
follows that

β∗ − β̂

2

6
∑

j∈supp{β∗}
1[
|β′j |<ak

] · (β∗j)2
+

d∑
j�1

1[
|β′j |>ak

] · (β∗j − β′j)2

6
∑

j∈supp{β∗}
O

( τ

α2 · n

(
1 +



β∗

2
))

+

d∑
j�1

1[
|β′j |>ak

] · O ( τ

α2 · n

(
1 +



β∗

2
))

6 O
(

k · τ
α2 · n

(
1 +



β∗

2
))
.

�

Again through bootstrapping we can obtain a nearly optimal estimate. However, for the
first few iterations we need a different subroutine. Instead of taking the top-k entries, we
will zeros all entries smaller some specific value.

Algorithm 7Multivariate Sparse Linear Regression Iteration via Median

Input: (y ,X,∆), where X ∈ �n×d , y ∈ �n , ∆ > 0.

1. Run Algorithm 4, let β′ be the resulting estimator.

2. For each j ∈ [d], let β̂ j � β′j if |β
′
j | >

1
100
√

k
∆, and β̂ j � 0 otherwise.

3. Return β̂ :�
(
β̂1, . . . , β̂d

)
T.
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Remark 4.14 (Running time). The running time of this algorithm is the same as the running
time of Algorithm 4, i.e. O(nd).

The following theorem proves correctness of Algorithm 7.

Theorem 4.15. Let y � Xβ∗ + η for k-sparse β∗ ∈ �d , X ∼ N(0, 1)n×d and η ∈ �n satisfying
Assumption 4.1 with parameter α. Suppose that ‖β∗‖ 6 ∆. Let β̂ be the estimator computed by
Algorithm 7 given (y ,X ,∆) as input. Then, with probability at least 1− 2 exp

[
ln d −Ω

(
α2·n·∆2

k(1+∆2)

)]
,

supp{β̂} ⊆ supp{β∗} and 

β∗ − β̂

 6 ∆

10
.

Proof. Fix a coordinate j ∈ [d]. The reasoning of Theorem 4.9 shows that the median ẑ j

satisfies
ẑ2

j 6
τ

α2 · n

(
1 +



β∗

2
)
6

τ

α2 · n
(
1 + ∆2)

with probability at least 1 − exp[−Ω(τ)] − exp[−Ω(αn)]. If β∗i � 0 then with probability at
least 1 − 2 exp

[
−Ω

(
α2·n·∆2

k(1+∆2)

)]
we have

��ẑ j
�� 6 ∆

100
√

k
, so β̂ j � 0. Conversely if β∗i , 0 then with

probability 1 − 2 exp
[
−Ω

(
α2·n·∆2

k(1+∆2)

)]
the error is at most 2 · ∆

100
√

k
. Combining the two and

repeating the argument for all i ∈ [d], we get that by union bound, with probability at least
1 − 2 exp

[
ln d −Ω

(
α2·n·∆2

k(1+∆2)

)]
,


β∗ − β̂

2

6 k · 4 · ∆2

10000·k 6
∆2

100 . �

Now, combining Algorithm 6 and Algorithm 7 we can introduce the full algorithm.

Algorithm 8Multivariate Sparse Linear Regression via Median

Input: (y ,X,∆)where X ∈ �n×d , y ∈ �n , and ∆ > 3.

1. Randomly partition the samples y1, . . . , yn in t :� dln∆e sets S1, . . . ,St , such that all
S1, . . . ,St−1 have sizes Θ

(
n

log∆

)
and St has size bn/2c.

2. Denote β̂(0) � 0 ∈ �d and ∆0 � ∆. For i ∈ [t − 1], run Algorithm 7 on input(
yS i − XS i β̂

(i−1),XS i ,∆i−1

)
.

Let β̂(i) be the resulting estimator and ∆i � ∆i−1/2.

3. Run Algorithm 6 on input
(
ySt − XSt β̂

(t−1),XSt

)
, and let β̂(t) be the resulting estimator.

4. Return β̂ :�
∑

i∈[t]
β̂(i).
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Remark 4.16 (Running time). Splitting the samples into t sets requires time O(n). For each
set Si , the algorithm simply executes either Algorithm 7 or Algorithm 6, so all in all the
algorithm takes O

(
Θ

(
n

log∆

)
d log∆ + O(nd)

)
� O(nd) time.

Finally, Theorem 1.3 follows from the result below.

Theorem 4.17. Let y � Xβ∗ + η for k-sparse β∗ ∈ �d , X ∼ N(0, 1)n×d and η ∈ �n satisfying
Assumption 4.1 with parameter α. Suppose that ∆ > 3

(
1 + ‖β∗‖

)
, and that for some positive

ε < 1/2, n > C · k ln∆
α2 · (ln(d/ε) + ln ln∆) for sufficiently large absolute constant C > 0. Let β̂ be

the estimator computed by Algorithm 8 given (y ,X ,∆) as input. Then, with probability at least
1 − ε,

1
n




X
(
β∗ − β̂

)


2
6 O

(
k · log(d/ε)
α2 · n

)
.

Proof. Since n > C · k ln∆
α2 · (ln d + ln ln∆), by Theorem 4.15 and union bound over i ∈ [t − 1],

with probability at least 1 − 2 exp[ln d + ln t − 10 ln(d/ε) − 10 ln ln∆], for each i ∈ [t − 1],





β∗ − i∑
j�1
β̂( j)







 6 ∆

10i .

Hence 





β∗ − t−1∑
j�1
β̂( j)








2

6 100

with probability 1 − 2ε10. Therefore, by Theorem 4.13,





β∗ − t∑
j�1
β̂( j)








2

6 O
(

k · log(d/ε)
α2 · n

)
with probability 1 − 4ε10.

Since β̂(t) is k-sparse and with probability 1− 2ε10, supp
{∑t−1

j�1 β̂
( j)

}
⊆ supp

{
β∗

}
, vector

β∗ − β̂ is 2k-sparse. By Lemma D.9, with probability at least 1 − ε10,

1
n




X
(
β∗ − β̂

)


2
�

(
β∗ − β̂

)
T
(

1
n

XTX
) (
β∗ − β̂

)
6 1.1 ·



β∗ − β̂

2
.

�

4.2.4 Estimation for non-spherical Gaussians

We further extend the results to non-spherical Gaussian design. In this section we assume
n > d. We use the algorithm below. We will assume to have in input an estimate of the
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covariance matrix of the rows of X : x1, . . . , xn ∼ N(0,Σ). For example, if number of samples
is large enough, sample covariance matrix is a good estimator of Σ. For more details, see
Section 4.2.5.

Algorithm 9Multivariate Linear Regression Iteration via Median for Non-Spherical Design

Input:
(
y ,X, Σ̂

)
, where X ∈ �n×d , y ∈ �n , Σ̂ is a positive definite symmetric matrix.

1. Compute X̃ � XΣ̂−1/2.

2. Run Algorithm 4 on input (y , X̃) and let β′ be the resulting estimator.

3. Return β̂ :� Σ̂−1/2β′.

Remark 4.18 (Running time). Since n > d, computing X̃ requires O(nT(d)/d), where T(d)
is a time required for multiplication of two d × d matrices. Algorithm 4 runs in time O(nd),
so the running time is O(nT(d)/d).

The performance of the algorithm is captured by the following theorem.

Theorem4.19. Let y � Xβ∗+η, such that rows ofX are iid xi ∼ N(0,Σ), η satisfiesAssumption 4.1
with parameter α, and Σ̂ ∈ �d×d is a symmetric matrix independent of X such that ‖Σ1/2Σ̂−1/2 −
Idd ‖ 6 δ for some δ > 0. Suppose that for some N > n + d, δ 6 1

100
√

ln N
and α2n > 100 ln N.

Let β̂ be the estimator computed by Algorithm 9 given (y ,X , Σ̂) as input. Then, with probability at
least 1 − O

(
N−5) ,


Σ̂1/2

(
β∗ − β̂

)


2
6 O

(
d · log N
α2 · n

(
1 +



Σ̂1/2β∗


2)

+ δ2 · ‖Σ̂1/2β∗‖2
)
.

Proof. We first show that the algorithm obtains a good estimate for each coordinate. Then
it suffices to add together the coordinate-wise errors. By assumptions on Σ̂,

X̃ � XΣ̂−1/2
� GΣ1/2Σ̂−1/2

� G + GE ,

where G ∼ N(0, 1)n×d and E is a matrix such that ‖E‖ 6 δ for some δ 6 1
100
√

ln N
. Since E

is independent of X and each column of E has norm at most δ, for all i ∈ [n] and j ∈ [d],
|X̃i j −Gi j | 6 40δ

√
ln N with probability 1−O

(
N−10) . For simplicity, we still write y , X̃ after

the preprocessing step. Fix j ∈ [d], letM j ⊆ [n] be the set of entries such that |X̃i j | > 1/2.
With probability 1 − O

(
N−10) , {i ∈ [n]

�� |Gi j | > 1
}
is a subset ofM j . Hence by Chernoff

bound,
��T ∩M j

�� > Ω(αn)with probability at least 1 − O
(
N−10) . Now for all i ∈M j let

qi j :� 1
X̃i j

©­«ηi +
∑
l, j

X̃il

(
Σ̂1/2β∗

)
l

ª®¬
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�
1

X̃i j

©­«ηi +
∑
l, j

Gil

(
Σ̂1/2β∗

)
l
+

∑
l, j

∑
m, j

GimEml

(
Σ̂1/2β∗

)
l
+

∑
l, j

Gi jE jl

(
Σ̂1/2β∗

)
l

ª®¬ .
Note that for any i ∈M j , with probability 1 − O

(
N−10) , sign

(
X̃i j

)
� sign

(
Gi j

)
. Hence

zi j :� 1
X̃i j

©­«σiηi + wi +
∑
l, j

Gil

(
Σ̂1/2β∗

)
l
+

∑
l, j

∑
m, j

GimEml

(
Σ̂1/2β∗

)
l

ª®¬
is symmetric about zero.

Now let β̄ ∈ �d be the vector such that for l ∈ [d] \
{

j
}
, β̄l �

(
Σ̂1/2β∗

)
l and β̄i � 0. Note

that ‖ β̄‖ 6 ‖Σ̂1/2β∗‖. By properties of Gaussian distribution,

wi +
∑
l, j

Gil

(
Σ̂1/2β∗

)
l
+

∑
l, j

∑
m, j

GimEml

(
Σ̂1/2β∗

)
l
∼ N(0, σ2) ,

where 1+‖ β̄‖2 6 σ2 6 1+
(
1 + δ2) ‖ β̄‖2. Hence for each i ∈ T ∩M j , for all 0 6 t 6

√
1 + ‖ β̄‖2,

�
(
|zi j | 6 t

)
> Ω

©­­«
t√

1 + ‖ β̄‖2

ª®®¬ .
By Lemma 4.6, median ẑ j of

{
zi j

}
i∈M j

satisfies

ẑ2
j 6 O

(
log N
α2 · n

(
1 +



β̄

2
))
6 O

(
log N
α2 · n

(
1 +



Σ̂1/2β∗


2))

with probability at least 1 − O
(
N−10) .

For any i ∈M j , the event������Gi j

X̃i j

∑
l, j

E jl

(
Σ̂1/2β∗

)
l

������ 6 O
(
δ · ‖Σ̂1/2β∗‖

)
occurs with probability 1−O

(
N−10) . Moreover, since ‖E‖ 6 δ, with probability 1−O

(
N−10) ,

for all i1, . . . , id ∈M j ,

d∑
j�1

©­«
Gi j j

X̃i j j

∑
l, j

E jl

(
Σ̂1/2β∗

)
l

ª®¬
2

6 O
(
δ2 · ‖Σ̂1/2β∗‖2

)
.

Therefore, with probability 1 − O
(
N−9) , medians q̂ j of

{
qi j

}
i∈M j

satisfiy

d∑
j�1

q̂2
j 6 O

(
d · log n
α2 · n

(
1 +



Σ̂1/2β∗


2)

+ δ2 · ‖Σ̂1/2β∗‖2
)
.
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Since yi/X̃i j �
(
Σ̂1/2β∗

)
j + qi j ,

d∑
j�1

(
β′j −

(
Σ̂1/2β∗

)
j

)2

6 O
(

d · log n
α2 · n

(
1 +



Σ̂1/2β∗


2)

+ δ2 · ‖Σ̂1/2β∗‖2
)
.

�

Next we show how to do bootstrapping for this general case. In this case we will assume
to know an upper bound ∆ of ‖Xβ∗‖.

Algorithm 10 Multivariate Linear Regression via Median for Non-Spherical Design

Input:
(
y ,X, Σ̂,∆

)
, where X ∈ �n×d , y ∈ �n ,∆ > 3, and Σ̂ ∈ �d×d is a positive definite

symmetric matrix.

1. Randomly partition the samples y1, . . . , yn in t :� t1 + t2, sets S1, . . . ,St , where
t1 � dln∆e and t2 � dln ne, such that allS1, . . . ,St1 have sizesΘ

(
n

log∆

)
andSt1+1, . . .St2

have sizes Θ
(

n
log n

)
.

2. Denote β̂(0) � 0 ∈ �d and ∆0 � ∆. For i ∈ [t], run Algorithm 9 on input(
yS i − XS i β̂

(i−1),XS i , Σ̂
)
,

and let β̂(i) be the resulting estimator.

3. Return β̂ :�
∑

i∈[t]
β̂(t).

Remark 4.20 (Running time). Running time is O(nT(d)/d), where T(d) is a time required
for multiplication of two d × d matrices.

The theorem below extend Theorem 1.3 to non-spherical Gaussians.

Theorem 4.21. Let y � Xβ∗ + η for β∗ ∈ �d , X ∈ �n×d with iid rows xi ∼ N(0,Σ), η satisfying
Assumption 4.1 with parameter α. Let Σ̂ ∈ �d×d be a positive definite symmetric matrix independent
of X .

Denote by σmin, σmax and κ the smallest singular value, the largest singular value, and the condi-
tion number of Σ. Suppose that ∆ > 3

(
1 + ‖Xβ∗‖

)
, n > C ·

(
d ln n
α2 · ln(∆ · n) + (d + ln n)κ2 ln n

)
for some large enough absolute constant C, and ‖Σ̂ − Σ‖ 6 σmin

C
√

ln n
.

Let β̂ be the estimator computed by Algorithm 10 given (y ,X , Σ̂,∆) as input. Then

1
n




X
(
β∗ − β̂

)


2
6 O

(
d · ln2 n
α2 · n

)
with probability 1 − o(1) as n →∞.
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Proof. Let’s show that ‖Σ1/2Σ̂−1/2 − Idd ‖ 6 1
100
√

ln n
. Since ‖Σ̂ − Σ‖ 6 σmin

C
√

ln n
,

Σ−1Σ̂ − Idd



 6 1
C
√

ln n
.

So Σ−1Σ̂ � Idd + E, where ‖E‖ 6 1
C
√

ln n
. Hence for large enough C,

Σ1/2Σ̂−1/2 − Idd



 �




(Idd + E)−1/2 − Idd




 6 1
100
√

ln n
.

Since n > C · d ln n
α2 · (ln d + ln∆) and and δ < 1

C
√

ln n
, applying Theorem 4.19 with N � 2n,

for each i ∈ [t], 





Σ̂1/2β∗ −
i∑

j�1
Σ̂1/2β̂( j)








2

6
1

10
©­­«1 +







Σ̂1/2β∗ −
i−1∑
j�1
Σ̂1/2β̂( j)








2ª®®¬ ,

with probability at least 1 − O
(
n−5) . By union bound over i ∈ [t1], with probability at least

1 − O
(
n−4) , 





Σ̂1/2β∗ −

t1∑
j�1
Σ̂1/2β̂( j)








2

6 100 .

Hence by Theorem 4.19, by union bound over i ∈ [t] \ [t1], with probability at least
1 − O

(
n−4) ,





Σ̂1/2β∗ −

t∑
j�1
Σ̂1/2β̂( j)








2

6 O
(

d · log n

α2 ·
(
n/log n

) + 1
n

)
6 O

(
d · log2 n
α2 · n

)
.

By Fact D.8, with probability at least 1 − O(n−4), for large enough C,



 1
n

XTX − Σ̂




 6 



 1

n
XTX − Σ





 + 

Σ − Σ̂

 6 σmin

100
√

ln n
+

σmin

C
√

ln n
6
σmin
10
6
σmin

(
Σ̂
)

5
,

where σmin
(
Σ̂
)
is the smallest singular value of Σ̂. Hence

1
n




X
(
β∗ − β̂

)


2
�

(
β∗ − β̂

)
T
(

1
n

XTX
) (
β∗ − β̂

)
6 1.2




Σ̂1/2
(
β∗ − β̂

)


2
.

�

4.2.5 Estimating covariance matrix

Algorithm 10 requires Σ̂ ∈ �d×d which is a symmetric matrix independent of X such
that ‖Σ̂ − Σ‖ . σmin√

ln n
. The same argument as in the proof of Theorem 4.21 shows that

if n > C · (d + ln n)κ2 ln n for some large enough absolute constant C > 0, then with
probability at least 1 − O

(
n−4) the sample covariance matrix Σ̂ of x1, . . . , xbn/2c satisfies

the desired property. So we can use Algorithm 5 with design matrix xbn/2c+1, . . . , xn and
covariance estimator Σ̂. Computation of Σ̂ takes time O(nd2).
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5 Bounding the Huber-loss estimator via first-order condi-
tions

In this section we study the guarantees of the Huber loss estimator via first order optimality
condition. Our analysis exploits the connection with high-dimensional median estimation
as described in Section 2.2 and yields guarantees comparable to Theorem 1.2 (up to
logarithmic factors) for slightly more general noise assumptions.

We consider the linear regression model

y � Xβ∗ + η (5.1)

where X ∈ �n×d is a deterministic matrix, β∗ ∈ �d is a deterministic vector and ∈ �n is a
random vector satisfying the assumption below.

Assumption 5.1 (Noise assumption). Let R ⊆ [n] be a set chosen uniformly at random
among all sets of size14 αn. Then η ∈ �n is a random vector such that for all i ∈ [n], ηi

satisfies:

1. η1, . . . , ηn are mutually conditionally independent given R.

2. For all i ∈ [n], �
(
ηi 6 0

�� R)
� �

(
ηi > 0

�� R)
,

3. For all i ∈ R, there exists a conditional density pi of ηi given R such that pi(t) > 0.1
for all t ∈ [−1, 1].

We remark that Assumption 5.1 is more general than the assumptions of Theorem 1.2
(see Appendix A).

Wewill also require the designmatrix X to bewell-spread.We restate here the definition.

Definition 5.2. Let V ⊆ �n be a vector space. V is called (m , ρ)-spread, if for every v ∈ V
and every subset S ⊆ [n]with |S | > n − m,

‖vS‖ > ρ‖v‖ .

Also recall the definition of Huber loss function.

Definition 5.3 (Huber Loss Function). Let y � Xβ∗ + η for β∗ ∈ �d , η ∈ �n ,X ∈ �n×d . For
h > 0 and β ∈ �d , define

fh(β) �
n∑

i�1
Φh

(
〈xi , β〉 − yi

)
�

n∑
i�1

Φh
(
〈xi , β − β∗〉 − ηi

)
,

where

Φh(t) �
{

1
2h t2 if |t | 6 h

|t | − h
2 otherwise.

14For simplicity we assume that αn is integer.
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We are now ready to state the main result of the section. We remark that for simplicity
we do not optimize constants in the statement below.

Theorem 5.4. Let α � α(n , d) ∈ (0, 1) and let y � Xβ∗ + η for β∗ ∈ �n , X ∈ �n×d and η ∈ �n

satisfying Assumption 5.1. Let

δ �
107 · d ln n
α2 · n ,

and suppose the column span of X is (δ · n , 1/2)-spread. Then, for h � 1/n, the Huber loss estimator
β̂ :� argmin

β∈�d

fh(β) satisfies

1
n
‖X

(
β̂ − β∗

)
‖2 6 δ

with probability at least 1 − 10n−d/2.

Remark 5.5. If for all i ∈ [n] the conditional distribution of ηi given R is symmetric about 0
(this assumption is satisfied for the noise from considered in Theorem 1.2), the theorem is
also true for Huber parameter h � 1.

To prove Theorem 5.4 we need the Lemmata below. We start showing a consequence of
the (δ · n , 1/2)-spread property of X.

Lemma 5.6. Let X ∈ �n×d , α and δ be as in Theorem 5.4, and let R be as in Assumption 5.1.
With probability 1 − 2n−d/2, for any u ∈ �d ,∑

i∈R
|〈xi , u〉| >

1
2
α ·
√
δn · ‖Xu‖ .

Proof. Let ζ1, . . . , ζn be i.i.d. Bernoulli random variables such that �(ζi � 1) � 1 −
�(ζi � 0) � α. By Lemma D.7, it is enough to show that with probability 1 − n−d , for any
u ∈ �d ,

n∑
i�1
ζi |〈xi , u〉| >

1
2
α ·
√
δn · ‖Xu‖ .

Note that the inequality is scale invariant, hence it is enough to prove it for all u ∈ �d such
that ‖Xu‖ � 1. Consider arbitrary u ∈ �d such that ‖Xu‖ � 1. Applying Lemma E.5 with
A � ∅, m � bδnc, γ1 � 0, γ2 � 1/2 and v � Xu, we get

n∑
i�1
|〈xi , u〉| >

3
4
√
δn .

Hence

�
ζ

n∑
i�1
ζi |〈xi , u〉| >

3
4
α ·
√
δn .
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Let ~·� is the Iverson bracket (0/1 indicator). Applying Lemma D.6 with 1(x , y) � ~y �

1� · |x |, v � Xu and w � ζ � (ζ1, . . . , ζn)T, we get that with probability 1 − n−d for all u
such that ‖Xu‖ � 1,����� n∑

i�1

(
ζi |〈xi , u〉| −�

ζ
ζi |〈xi , u〉|

)����� 6 20
√

d ln n 6
1
5
α
√
δn ,

which yields the desired bound. �

Next we show that with high probability ‖X
(
β̂ − β∗

)
‖ < n.

Lemma 5.7. Let y ∈ �n ,X ∈ �n×d as in Theorem 5.4, and let h 6 1. With probability 1− 4n−d/2,
for any β such that ‖X(β − β∗)‖ > n,

fh(β) > fh(β∗) + 1 .

Proof. Note that

fh(β∗) �
n∑

i�1
Φh

(
ηi

)
6

n∑
i�1
|ηi | .

Consider some β such that ‖X(β − β∗)‖ � n. Denote u � β − β∗. Since there exists a
conditional density pi(t) > 0.1 (for t ∈ [−1, 1]), there exist a , b ∈ [0, 1] such that for all
i ∈ R,

�
(
−a 6 ηi 6 0

�� R)
� �

(
0 6 ηi 6 b

�� R)
> 0.1 .

Let S �
{

i ∈ [n]
�� −a 6 ηi 6 b

}
. We get

fh(β) �
n∑

i�1
Φh

(
〈xi , u〉 − ηi

)
>

n∑
i�1

��〈xi , u〉 − ηi
�� − hn

>
∑

i∈S∩R
|〈xi , u〉| +

∑
i∈[n]\S

��〈xi , u〉 − ηi
�� − 2n.

Denote ζi � ~−a 6 ηi 6 b�. By Lemma 5.6,

�

[∑
i∈R
ζi · |〈xi , u〉|

����� R
]
>

1
10
α ·
√
δn · ‖Xu‖ .

with probability 1 − 2n−d/2.
By Lemma D.6 with 1(x , y) � ~y � 1� · |x |, v � XRu, R � n and w � ζR , we get that

with probability 1 − n−d for all u such that ‖XRu‖ 6 n,∑
i∈S∩R

|〈xi , u〉| >
1

10
α ·
√
δn · ‖Xu‖ − 20 · ‖XRu‖ ·

√
d ln n − 1 > 1

20
· α ·
√
δn · ‖Xu‖ − 1 .

38



Note that∑
i∈[n]\S

��〈xi , u〉 − ηi
�� � ∑

i∈[n]\S

��|ηi | − sign(ηi)〈xi , u〉
�� > ∑

i∈[n]\S
|ηi | −

∑
i∈[n]\S

sign(ηi)〈xi , u〉 .

Applying Lemma D.6 with 1(x , y) � ~−a 6 y 6 b� sign(y) · |x |, v � Xu, w � η, R � n,
we get that with probability 1 − n−d , for all u ∈ �d such that ‖Xu‖ � n,������ ∑
i∈[n]\S

sign(ηi)〈xi , u〉

������ �
����� n∑

i�1

(
~−a 6 ηi 6 b� sign(ηi)〈xi , u〉 −�

[
~−a 6 ηi 6 b� sign(ηi)〈xi , u〉

�� R] )�����
6 20n

√
d ln n‖Xu‖ + 1 .

Therefore, with probability 1 − 4n−d/2, for any β ∈ �d such that ‖X(β − β∗)‖ � n,

fh(β) >
1

20
α·
√
δn·‖Xu‖+

n∑
i�1
|ηi |−

∑
i∈S
|ηi |−2n−20n

√
d ln n‖Xu‖−2 >

n∑
i�1
|ηi |+1 > fh(β∗)+1 .

Note that since f is convex, with probability 1− 4n−d/2, for any β such that ‖X(β− β∗)‖ > n,
fh(β) > fh(β∗) + 1. �

Now observe that fh(β) is differentiable and

∇ fh(β) �
n∑

i�1
φh

(
〈xi , β〉 − yi

)
· xi �

n∑
i�1

φh
(
〈xi , β − β∗〉 − ηi

)
· xi ,

where φh(t) � Φ′h(t) � sign(t) ·min{|t |/h , 1}, t ∈ �. We will need the following lemma.

Lemma 5.8. Let z be a random variable such that �(z 6 0) � �(z > 0). Then for any τ such that
|τ | > 2h,

τ · �
z
φh(τ − z) > |τ | · �

(
0 6 sign(τ) · z 6 |τ |/2

)
.

Proof. Note that
τ · �

z
φh(τ − z) � |τ | · �

z
φh

(
|τ | − sign(τ) · z

)
.

We get

�
z
φh

(
|τ | − sign(τ)z

)
� �

(
sign(τ)z 6 |τ | − h

)
+�

z
~sign(τ)z > |τ | − h� · φh

(
|τ | − sign(τ)z

)
> �

(
0 6 sign(τ)z 6 |τ | − h

)
+ �

(
sign(τ)z < 0

)
− �

(
sign(τ)z > 0

)
> �

(
0 6 sign(τ)z 6 |τ |/2

)
.

�
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Using point 3 of Assumption 5.1, we get for all i ∈ [n] and for all τ > 2h,

τ · �
[
φh

(
τ − ηi

) �� R]
>

1
20
|τ | ·min{|τ |, 1} .

Note that for h � 1, if z is symmetric, we can also show it for τ 6 2h 6 2. Indeed,

|τ |�
z
φh

(
|τ | − sign(τ)z

)
� |τ |�

z
~ |z | 6 h�φh

(
|τ | − sign(τ)z

)
+ |τ |�

z
~ |z | > h�φh

(
|τ | − sign(τ)z

)
> |τ |�

z
~ |z | 6 h�φh

(
|τ | − sign(τ)z

)
� |τ |�

z
~ |z | 6 h�

(
φh(|τ | − z) − φh(−z)

)
,

since for symmetric z, �z~ |z | > h�φh
(
|τ | − sign(τ)z

)
> 0. Assuming the existence of

density p of z such that p(t) > 0.1 for all t ∈ [−1, 1], we get

�
z
~ |z | 6 h�

(
φh(|τ | − z) − φh(−z)

)
>0.1

∫ 1

−1

(
φh(|τ | − z) − φh(z)

)
dz

>
1
20

min{|τ |, 1} .

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. Consider u � β̂ − β∗. By Lemma 5.7, with probability 1 − 3n−d/2,
‖Xu‖ 6 n. If ‖Xu‖ < 100, we get the desired bound. So further we assume that 100 6
‖Xu‖ 6 n.

Since ∇ fh(β̂) � 0,
n∑

i�1
φh

(
〈xi , u〉 − ηi

)
· 〈xi , u〉 � 0 .

For each i ∈ [n], consider the function Fi defined as follows:

Fi(a) � 〈xi , a〉�
[
φh

(
〈xi , a〉 − ηi

) �� R]
for any a ∈ �d . Applying Lemma 5.8 with z � ηi , τ � 〈xi , a〉 and h � 1/n, and using point
3 of Assumption 5.1, we get for any a ∈ �d ,

n∑
i�1

Fi(a) > −
n∑

i�1
~ |〈xi , a〉| < 2h� |〈xi , a〉| +

n∑
i�1
~ |〈xi , a〉| > 2h�Fi(a) (5.2)

> −2 +
1

20

∑
i∈R
|〈xi , a〉| ·min{|〈xi , a〉|, 1} . (5.3)

Note that this is the only place in the proof where we use h 6 1/n. By the observation
described after Lemma 5.8, if for all i ∈ [n], conditional distribution of ηi given R is
symmetric about 0, the proof also works for h � 1.
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For x , y ∈ �, consider 1(x , y) � x · φh
(
x − y

)
. For any ∆x ∈ �,

|1(x + ∆x , y) − 1(x , y)| �
��(x + ∆x) · φh

(
x + ∆x − y

)
− x · φh

(
x − y

) �� 6 ∆x +
x
h
∆x .

By Lemma D.6 with v � Xa, w � η, R � n, and K �
(
1 + n2) , with probability 1 − 4n−d/2,

for all a ∈ �d such that ‖Xa‖ 6 n,����� n∑
i�1

(
〈xi , a〉 · φh

(
〈xi , a〉 − ηi

)
− Fi(a)

) ����� 6 25
√

d ln n · ‖Xa‖ + 1/n . (5.4)

Let ζ1, . . . , ζn be i.i.d. Bernoulli randomvariables such that�(ζi � 1) � 1−�(ζi � 0) � α.
By Lemma D.7 and Lemma D.6 with 1(x , y) � ~y � 1� |x | ·min{|x |, 1}, v � Xa, wi � ζi ,
R � n and K � 2, with probability 1 − 3n−d/2, for all a ∈ �d such that ‖Xa‖ 6 n,∑

i∈R
|〈xi , a〉|·min{|〈xi , a〉|, 1} > α

n∑
i�1
|〈xi , a〉|·min{|〈xi , a〉|, 1}−20

√
d ln n ‖Xa‖−1/n . (5.5)

Plugging a � u into inequalities 5.3, 5.4 and 5.5, we get∑
|〈xi ,u〉|61

〈xi , u〉2 +
∑

|〈xi ,u〉|>1

|〈xi , u〉| 6
1000
α

√
d ln n · ‖Xu‖

with probability 1 − 7n−d/2.
If ∑

|〈xi ,u〉|61

〈xi , u〉2 <
1
3
‖Xu‖2 ,

we get ∑
|〈xi ,u〉|>1

|〈xi , u〉| 6
1000
α

√
d ln n · ‖Xu‖ .

Applying Lemma E.5 with m � b 107d ln n
α2 c, γ1 � 1/

√
3,A � {i ∈ [n] : |〈xi , u〉| 6 1}, γ2 � 1/2

and v � Xu, we get a contradiction.
Hence ∑

|〈xi ,u〉|61

〈xi , u〉2 >
1
3
‖Xu‖2

and we get

‖X
(
β̂ − β∗

)
‖ 6 3000

α

√
d ln n ,

with probability at least 1 − 10n−d/2, which yields the desired bound. �
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A Error convergence and model assumptions
In this section we discuss the error convergence of our main theorems Theorem 1.1,
Theorem 1.2 as well as motivate our model assumptions.

A.1 Lower bounds for consistent oblivious linear regression
We show here that no estimator can obtain expected squared error o

(
d/(α2 · n)

)
for any

α ∈ (0, 1) and that no estimator can have expected error converging to zero for α .
√

d/n.
The first claim is captured by the following statement.

Fact A.1. Let X ∈ �n×d be a matrix with linearly independent columns. Let η ∼ N(0, σ2 · Idn)
with σ > 0 so that α � mini �{|ηi | 6 1} � Θ(1/σ).

Then there exists a distribution over β∗ independent of η such that for every estimator
β̂ : �n → �d , with probability at least Ω(1),

1
n



X β̂(Xβ∗ + η) − Xβ∗


2
> Ω

(
d

α2 · n

)
.

In particular, for every estimator β̂ : �n → �d there exists a vector β∗ such that for y � Xβ∗+η,
with probability at least Ω(1),

1
n



X β̂(y) − Xβ∗


2
> Ω

(
d

α2 · n

)
.

Fact A.1 is well-known and we omit the proof here (see for example [RH15]). The
catch is that the vector η ∼ N(0, σ2 · Id) satisfies the noise constraints of Theorem 1.2 for
α � Θ(1/σ). Hence, for α .

√
d/n we obtain the second claim as an immediate corollary.

Corollary A.2. Let n , d ∈ � and α .
√

d
n . Let X ∈ �n×d be a matrix with linearly independent

columns and let η ∼ N(0, 1/α2 · Idn). Then, for every estimator β̂ : �n → �d there exists a vector
β∗ such that for y � Xβ∗ + η, with probability at least Ω(1),

1
n



X β̂(y) − Xβ∗


2
> Ω(1) .

In other words, in this regime no estimator obtains error converging to zero.

A.2 On the design assumptions
Recall our linear model with Gaussian design:

y � Xβ∗ + η (A.1)
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for β∗ ∈ �d , X ∈ �n×d with i.i.d entries Xi j ∼ N(0, 1) and η ∈ �n a deterministic vector
with α · n entries bounded by 1 in absolute value. We have mentioned in Section 1.1 how to
extend these Gaussian design settings to deterministic design settings. We formally show
here how to apply Theorem 1.2 to reason about the Gaussian design model Eq. (A.1). For
this it suffices to to turn an instance of model Eq. (A.1) into an instance of the model:

y′ � X′β∗ + η′ (A.2)

where β∗ ∈ �d , X′ is a n-by-d matrix (Ω(n),Ω(1))-spread and the noise vector η has
independent, symmetrically distributed entries with α � mini∈[n] �

{��ηi
�� 6 1

}
. This can be

done resampling through the following procedure.

Algorithm 11 Resampling

Input: (y ,X)where y ∈ �n , X ∈ �n×d .
Sample n indices γ1, . . . , γn independently from the uniform distribution over [n].
Sample n i.i.d Rademacher random variables σ1, . . . , σn .
Return pair (y′,X′) where y′ is an n-dimensional random vector and X′ is an n-by-d
random matrix:

y′i � σi · yγi

X′i ,− � σi · Xγi ,− .

Note that X′ and η are independent. The next result shows that for n & d log d with
high probability over X′ Algorithm 11 outputs an instance of Eq. (A.2) as desired.

Theorem A.3. Let n & d ln d. Let X′ ∈ �n×d be a matrix obtained from a Gaussian matrix
X ∈ �n×d by choosing (independently of X) n rows of X with replacement. Then column span of
X′ is (Ω(n),Ω(1))-spread with probability 1 − o(1) as n →∞.

Proof. Let c(i) be the row chosen at i-th step. Let’s show that with high probability for all
subsetsM ⊆ [n] of size m,

��c−1(M)
�� 6 O(m ln(n/m)). By Chernoff bound (Fact D.2), for

any j ∈ [n] and any ∆ > 1,

�

(
n∑

i�1
~c(i) � j� > 2∆

)
6 ∆−∆ . (A.3)

Denote am � en/m. Let A j
(
2∆ j

)
be the event

{∑n
i�1 1[c(i)� j] > 2∆ j

}
. If

∑m
j�1 ∆ j � 2m ln am ,

then

�


m⋂

j�1
A j

(
2∆ j

) � �[Am(2∆m)] · �


m−1⋂
j�1

A j
(
2∆ j

) ������ Am(2∆m)

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6 �[Am(2∆m)] · �


m−1⋂
j�1

A j
(
2∆ j

)
6 exp©­«−

m∑
j�1
∆ j

ª®¬
� a−2m

m .

By union bound, with probability at least 1 − a−m
m , for all subsets M ⊆ [n] of size m,��c−1(M)

�� 6 4m ln(en/m). Let z be the vector with entries z j �
∑n

i�1~c(i) � j�. With
probability at least 1 − 1/n 6 1 −∑n

m�1 a−m
m , for anyM ⊆ [n],∑

j∈M
|z j | 6 4|M| ln

(
en
|M|

)
.

Note that by Fact D.12, with probability at least 1 − 1/n, for any vector unit v from
column span of X and any setM ⊆ [n],

‖vM ‖2 6 2d + 20|M| ln
(

en
|M|

)
.

Now let v′ be arbitrary unit vector from column span of X′. Let S be the set of its top
m � c6 · n entries for some small enough constant c. Then for some vector v from column
span of X , with probability 1 − o(1),∑

i∈S
(v′i)

2 6
∑

j∈c(S)
|z j | · v2

j � 〈zc(S), v2
c(S)〉 6 c4 · (d ln(en) + 6n) · ‖v‖2 ,

where the last inequality follows from Lemma E.7.
Now let’s bound ‖v‖2. Let u be a fixed unit vector, then Xu ∼ N(0, Idn). By Chernoff

bound, with probability at least 1 − exp(−cn), number of entries of Xu bounded by c is at
most 2cn. Note that with high probability 0.9

√
n‖u‖ 6 ‖Xu‖ 6 1.1

√
n‖u‖

Let u′ ∈ �d be a unit vector such that number of entries of Xu′ bounded by c is at most
2cn and let u ∈ �d be a unit vector such that ‖Xu′ − Xu‖2 6 1.12 · n‖u′ − u‖2 6 c2n/5.
Then Xu cannot have more than 3cn entries bounded by c/2. Hence by union bound over
c/3-net in the unit ball in �d , with probability at least 1 − exp(−cn/2), v has at most 3cn
entries of magnitude smaller than c/2. Hence v′ has at most 12cn ln

( e
3c

)
6 0.9n entries

of magnitude smaller than c
3
√

n
‖v‖, and ‖v′‖2 > c2

100 ‖v‖2. Choosing c � 0.01, we get that
column span of X′ is (10−12 · n , 1/2)-spread with high probability. �

RemarkA.4. It is perhapsmore evident how themodel considered in Theorem 5.4 subsumes
the one of Theorem 1.1. Given (y ,X) as in Eq. (A.1) it suffices to multiply the instance by
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an independent random matrix U corresponding to flip of signs and permutation of the
entries, then add an independent Gaussian vector w ∼ N(0, Idn). The model then becomes

U y � UXβ∗ + Uη + w ,

which can be rewritten as

y′ � X′β∗ + Uη + w .

Here X′ ∈ �n×d has i.i.d entries Xi j ∼ N(0, 1), U � SP where P ∈ �n×n is a permutation
matrix chosen u.a.r. among all permutation matrices, S ∈ �n×n is a diagonal random
matrix with i.i.d. Rademacher variables on the diagonal and Uη ∈ �n is a symmetrically
distributed vector independent of X′ such that �

{��ηi
�� 6 1

}
> α/2. Moreover the entries of

Uη are conditionally independent given P. At this point, we can relax our Gaussian design
assumption and consider

y � Xβ∗ + w + Uη , (A.4)

which corresponds to the model considered in Theorem 5.4.

A.2.1 Relaxing well-spread assumptions

It is natural to ask if under weaker assumptions on X we may design an efficient algorithm
that correctly recovers β∗. While it is likely that the assumptions in Theorem 1.2 are not
tight, some requirements are needed if one hopes to design an estimator with bounded
error. Indeed, suppose there exists a vector β∗ ∈ �d and a set S ⊆ [n] of cardinality o(1/α) such
that



XSβ∗


 �



Xβ∗


 > 0. Consider an instance of linear regression y � Xβ∗ + η with η as

in Theorem 1.2. Then with probability 1 − o(1) any non-zero row containing information
about β∗ will be corrupted by (possibly unbounded) noise. More concretely:

Lemma A.5. Let σ > 0 be arbitrarily chosen. For large enough absolute constant C > 0, let
X ∈ �n be an n

Cα -sparse deterministic vector and let η be an n-dimensional random vector with
i.i.d coordinates sampled as

ηi � 0 with probability α
ηi ∼ N(0, σ2) otherwise.

Then for every estimator β̂ : �n → � there exists β∗ ∈ � such that for y � Xβ∗+η, with probability
at least Ω(1),

1
n



X
(
β̂(y) − β∗

)

2
> Ω

(
σ2

n

)
.

Proof. Let C ⊆ [n] be the set of zero entries of X and C its complement. Notice that with
probability 1 −Ω(1) over η the set S �

{
i ∈ [n]

��� i ∈ C and ηi � 0
}
is empty. Conditioning
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on this event E, for any estimator β̂ : �n → � and ηC define the function 1ηC : �n−|C| → �
such that 1ηC (yC) � β̂(y). Taking distribution over β∗ from Fact A.1 (independent of η), we
get with probability Ω(1)

1
n



X
(
β̂(y) − β∗

)

2
�

1
n




X
(
1ηC (yC) − β

∗
)


2
> Ω

(
σ2

n

)
.

Hence for any β̂ there exists β∗ with desired property. �

Notice that the noise vector η satisfies the premises of Theorem 1.2. Furthermore, since
σ > 0 can be arbitrarily large, no estimator can obtain bounded error.

A.3 On the noise assumptions
On the scaling of noise. Recall our main regression model,

y � Xβ∗ + η (A.5)

where we observe (a realization of) the random vector y, the matrix X ∈ �n×d is a known
design, the vector β∗ ∈ �n is the unknown parameter of interest, and the noise vector η has
independent, symmetrically distributed coordinates with α � mini∈[n] �{|ηi | 6 1}.

A slight generalization of Eq. (A.5) can be obtained if we allow η to have independent,
symmetrically distributed coordinates with α � mini∈[n] �{|ηi | 6 σ}. This parameter σ is
closely related to the subgaussian parameter σ from [SBRJ19]. If we assume as in [SBRJ19]
that some (good enough) estimator of this parameter is given, we could then simply divide
each yi by this estimator and obtain bounds comparable to those of Theorem 1.2. For
unknown σ � 1 better error bounds can be obtained if we decrease Huber loss parameter
h (for example, it was shown in the Huber loss minimization analysis of [TJSO14]). It is
not difficult to see that our analysis (applied to small enough h) also shows similar effect.
However, as was also mentioned in [SBRJ19], it is not known whether in general σ can be
estimated using only y and X. So for simplicity we assume that σ � 1.

A.3.1 Tightness of noise assumptions

We provide here a brief discussion concerning our assumptions on the noise vector ηηη. We
argue that, without further assumptions on X, the assumptions on the noise in Theorem 5.4
are tight (notice that such model is more general than the one considered in Theorem 1.2).
Fact A.6 and Fact A.7 provide simple arguments that we cannot relax median zero and
independence noise assumptions.

Fact A.6 (Tightness of Zero Median Assumption). Let α ∈ (0, 1) be such that αn is integer,
and let 0 < ε < 1/100. There exist β, β′ ∈ �d and X ∈ �n×d satisfying

• the column span of X is (n/2, 1/2)-spread,
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• ‖X
(
β − β′

)
‖ > ε

10 ‖X‖ > ε
10 ·
√

n,

and there exist distributions D and D′ over vectors in �n such that if zzz ∼ D or zzz ∼ D′, then:

1. zzz1, . . . , zzzn are mutually inependent,

2. For all i ∈ [n], �(zzz i > 0) > �(zzz i 6 0) > (1 − ε) · �(zzz i > 0),

3. For all i ∈ [n], there exists a density pi of zizizi such that pi(t) > 0.1 for all t ∈ [−1, 1],

and for ηηη ∼ D and ηηη′ ∼ D′, random variables Xβ + ηηη and Xβ′ + ηηη′ have the same distribution.

Proof. It suffices to consider the one dimensional case. Let X ∈ �n be a vector with all
entries equal to 1, let β � 1 and β′ � 1 − ε

10 . Then ηηη ∼ N(0, Idn) and ηηη′ � N(µ, Idn) with
µ �

(
ε

10 , . . . ,
ε

10
)T ∈ �n satisfy the assumptions, and random variables Xβ + ηηη and Xβ′ + ηηη′

have the same distribution. �

Fact A.7 (Tightness of Independence Assumption). Let α ∈ (0, 1) be such that αn is integer.
There exist β, β′ ∈ �d and X ∈ �n×d satisfying

• the column span of X is (n/2, 1/2)-spread,

• ‖X
(
β − β′

)
‖ > ‖X‖ >

√
n,

and there exists a distribution D over vectors in �n such that ηηη ∼ D satisfies:

1. For all i ∈ [n], �
(
ηηηi 6 0

)
> �

(
ηηηi > 0

)
,

2. For all i ∈ [n], there exists a density pi of zizizi such that pi(t) > 0.1 for all t ∈ [−1, 1],

and for some ηηη′ ∼ D, with probability 1/2, Xβ + ηηη � Xβ′ + ηηη′.

Proof. Again it suffices to consider the one dimensional case. Let X ∈ �n be a vector with
all entries equal to 1, β � 0, β′ � 1. Let σσσ ∼ U{−1, 1} and let vvv ∈ �n be a vector independent
of σσσ such that for all i ∈ [n], the entries of vvv are iid vvv i � U[0, 1]. Then ηηη � σσσ · vvv and
ηηη′ � −σσσ(1 − vvv) satisfy the assumptions, and if σσσ � 1, Xβ + ηηη � Xβ′ + ηηη′. �

Note that the assumptions in both facts do not containRRR as opposed to the assumptions
of Theorem 5.4. One can take RRR to be a random subset of [n] of size αn independent of ηηη
and ηηη′.
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B Computing the Huber-loss estimator in polynomial time
In this section we show that in the settings of Theorem 1.2, we can compute the Huber-loss
estimator efficiently. For a vector v ∈ �N we denote by b[v] its bit complexity. For r > 0 we
denote by B(0, r) the Euclidean ball of radius r centered at 0. We consider the Huber loss
function as in Definition 5.3 and for simplicity we will assume XTX � nIdd .

Theorem B.1. Let X ∈ �n×d be a matrix such that XTX � nIdd and y ∈ �n be a vector. Let

B :� b[y] + b[X]

Let f be a Huber loss function f (β) � ∑n
i�1Φ

( (
Xβ − y

)
i

)
. Then there exists an algorithm that

given X, y and positive ε ∈ �, computes a vector β ∈ �d such that

f (β) 6 inf
β∈�d

f (β) + ε ,

in time

BO(1) · ln(1/ε) .

As an immediate corollary, the theorem implies that for designmatrix X with orthogonal
columns we can compute an ε-close approximation of the Huber loss estimator in time
polynomial in the input size.

To prove Theorem B.1 we will rely on the following standard result concerning the
Ellipsoid algorithm.

Theorem B.2 (See [Vis18]). There is an algorithm that, given

1. a first-order oracle for a convex function 1 : �d → R,

2. a separation oracle for a convex set K ⊆ Rd ,

3. numbers r > 0 and R > 0 such that B(0, r) ⊂ K ⊂ B(0, R),

4. bounds `, u such that ∀v ∈ K, ` 6 1(v) 6 u

5. ε > 0,

outputs a point x ∈ K such that

1(x) 6 1(x̂) + ε ,

where x̂ is any minimizer of 1 over K. The running time of the algorithm is

O
( (

d2
+ TK + T1

)
· d2 · log

(
R
r
· u − `

ε

))
,

where Tk , T1 are the running times for the separation oracle for K and the first-order oracle for 1
respectively.
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We only need to apply Theorem B.2 to the settings of Theorem B.1. Let β̂ be a (global)
minimizer of f . Our first step is to show that ‖ β̂‖ is bounded by exp(O(B)).

Lemma B.3. Consider the settings of Theorem B.1. Then


β̂

 6 25B. Moreover, for any β ∈

B(0, 210B)

0 6 f (β) 6 212B .

Proof. Let M � 2B. By definition f (0) 6 2‖y‖1 + 1
2 ‖y‖2 6 M4. On the other hand for any

v ∈ �d with ‖v‖ > M5 we have

f (v) �
∑
i∈[n]

Φ
(
yi − 〈Xi , v〉

)
>

∑
i∈[n]

Φ(〈Xi , v〉) −


y



2 −


y




1

> M5 −M4

> M4 .

It follows that ‖ β̂‖ 6 M5. For the second inequality note that for any v ∈ �d with ‖v‖ 6 M10

f (v) �
∑
i∈[n]

Φ
(
yi − 〈Xi , v〉

)
6 2

∑
i∈[n]

Φ(〈Xi , v〉) +


y



2
+ 2



y




1

6 M12 .

�

Next we state a simple fact about the Huber loss function and separation oracles,
which proof we omit. Recall the formula for the gradient of the Huber loss function.

∇ f (β∗) � 1
n

n∑
i�1
φ′[ηi] · xi with Φ′[t] � sign(t) ·min{|t |, h}.

Fact B.4. Consider the settings of Theorem B.1. Let R � 210B. Then

1. there exists an algorithm that given v ∈ �d , computes ∇ f (v) and f (v) in time BO(1) ·bO(1)[v].

2. there exists an algorithm that given v ∈ �d outputs

• YES if v ∈ B(0, R)
• otherwise outputs a hyperplane

{
x ∈ �d

�� 〈a , x〉 � b
}
with a , b ∈ �d separating v

from B(0, R),

in time BO(1) · bO(1)[v].
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We are now ready to prove Theorem B.1.

Proof of Theorem B.1. Let M � 2B. By Lemma B.3 it suffices to set K � B(0,M10), R � M10

and r � R/2. Then for any v ∈ K, 0 6 f (v) 6 M12. By Fact B.4 T f + TK 6 BO(1). Thus,
puttings things together and plugging Theorem B.2 it follows that there exists an algorithm
computing β with f (β) 6 f (β̂) + ε in time

BO(1) · ln(1/ε)

for positive ε ∈ �. �

C Consistent estimators in high-dimensional settings
In this section we discuss the generalization of the notion of consistency to the case when
the dimension d (and the fraction of inliers α) can depend on n.

Definition C.1 (Estimator). Let {d(n)}∞n�1 be a sequence of positive integers. We call a
function β̂ :

⋃∞
n�1�

n×�n×d(n)→ ⋃∞
n�1�

d(n) an estimator, if for all n ∈ �, β̂
(
�n ×�n×d(n)) ⊆

�d(n) and the restriction of β̂ to �n ×�n×d(n) is a Borel function.

For example, Huber loss defined at y ∈ �n and X ∈ �n×d(n) as

β̂
(
y ,X

)
� argmin

β∈�d(n)

n∑
i�1

Φ
( (

Xβ − y
)

i

)
is an estimator (see Lemma C.4 for formal statement and the proof).

Definition C.2 (Consistent estimator). Let {d(n)}∞n�1 be a sequence of positive integers
and let β̂ :

⋃∞
n�1�

n ×�n×d(n)→ ⋃n
n�1�

d(n) be an estimator. Let {Xn}∞n�1 be a sequence of
(possibly random) matrices and let {ηn}∞n�1 be a sequence of (possibly random) vectors
such that ∀n ∈ �, Xn has dimensions n × d(n) and ηn has dimension n.

We say that estimator β̂ is consistent for {Xn}∞n�1 and {ηn}∞n�1 if there exists a sequence
of positive numbers {εn}nn�1 such that limn→∞ εn � 0 and for all n ∈ �,

sup
β∗∈�d(n)

�
( 1

n ‖Xn β̂
(
Xnβ

∗
+ ηn ,Xn

)
− Xnβ

∗‖2 > εn
)
6 εn .

Theorem 1.1 implies that if sequences d(n) and α(n) satisfy d(n)/α2(n) 6 o(n) and
d(n) → ∞, then Huber loss estimator is consistent for a sequence {Xn}∞n�1 of standard
Gaussian matrices Xn ∼ N(0, 1)n×d(n) and every sequence of vectors {ηn}∞n�1 such that each
ηn ∈ �n is independent of Xn and has at least α(n) · n entries of magnitude at most 1.

Similarly, Theorem 1.2 implies that if sequences d(n) and α(n) satisfy d(n)/α2(n) 6 o(n)
and d(n) → ∞, then Huber loss estimator is consistent for each sequence {Xn}∞n�1 of
matrices Xn ∈ �n×d(n) whose column span is

(
ω(d(n)/α2(n)),Ω(1)

)
-spread and every
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sequence of n-dimensional random vectors {ηn}∞n�1 such that each ηn is independent of
Xn and has mutually independent, symmetrically distributed entries whose magnitude
does not exceed 1 with probability at least α(n).

Note that the algorithm from Theorem 1.3 requires some bound on ‖β∗‖. So formally
we cannot say that the estimator that is computed by this algorithm is consistent. However,
if in Definition C.2 we replace supremum over �d(n) by supremum over some ball in �d(n)

centered at zero (say, of radius n100), then we can say that this estimator is consistent. More
precisely, it is consistent (according to modified definition with sup over ball of radius
n100) for sequence {Xn}∞n�1 of standard Gaussian matrices Xn ∼ N(0, 1)n×d(n) and every
sequence of vectors {ηn}∞n�1 such that each ηn ∈ �n is independent of Xn and has at least
α(n) · n entries of magnitude at most 1, if n & d(n) log2(d(n))/α2(n) and d(n) → ∞.

To show that Huber loss minimizer is an estimator, we need the following fact:

Fact C.3. [Jen69] For d ,N ∈ �, let Θ ⊂ �d be compact and letM ⊆ �N be a Borel set. Let
f :M ×Θ→ � be a function such that for each θ ∈ Θ, f (x , θ) is a Borel function of x and for
each x ∈ M, f (x , θ) is a continuous function of θ. Then there exists a Borel function θ̂ :M → Θ

such that for all x ∈ M,
f (x , θ̂(x)) � min

θ∈Θ
f (x , θ) .

The following lemma shows that Huber loss minimizer is an estimator.

Lemma C.4. Let {d(n)}∞n�1 be a sequence of positive integers. There exists an estimator β̂ such
that for each n ∈ � and for all y ∈ �n and X ∈ �n×d(n),

n∑
i�1

Φ
( (

X β̂
(
y ,X

)
− y

)
i

)
� min
β∈�d(n)

n∑
i�1

Φ
( (

Xβ − y
)

i

)
.

Proof. For i ∈ � denote

M i
n �

{(
y ,X

)
∈ �n ×�n×d(n) �� ‖y‖ 6 2i , σmin(X) > 2−i} ,

where σmin(X) is the smallest positive singular value of X. Note that for all (y ,X) ∈ M i
n ,

there exists aminimizer ofHuber loss function at (y ,X) in the ball
{
β ∈ �d(n) �� ‖β‖ 6 22i n10}.

By Fact C.3, there exists a Borel measurable Huber loss minimizer β̂i
n(y ,X) onM i

n .
DenoteM0

n �
{(

y ,X
)
∈ �n ×�n×d(n) �� X � 0

}
and let β̂0

n(y ,X) � 0 for all (y ,X) ∈ M0
n .

Note that
⋃∞

i�0M i
n � �n ×�n×d(n). For (y ,X) ∈ �n ×�n×d(n), define β̂n(y ,X) � β̂i

n(y ,X),
where i is a minimal index such that

(
y ,X

)
∈ M i

n . Then for each Borel set B ⊆ �d(n),(
β̂n

)−1(B) �
∞⋃

i�0

(
β̂n

)−1(B) ∩
(
M i

n \M i−1
n

)
�

∞⋃
i�0

(
β̂i

n

)−1
(B) ∩

(
M i

n \M i−1
n

)
.

Hence β̂n is a Borel function. Now for each n ∈ � and for all y ∈ �n and X ∈ �n×d(n) define
an estimator β̂(y ,X) � β̂n(y ,X). �
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D Concentration of measure
This section contains some technical results needed for the proofs of Theorem 1.2 and
Theorem 1.3. We start by proving a concentration bound for the empirical median.

Fact D.1 ([Ver18]). Let 0 < ε < 1. Let B � {v ∈ �n | ‖v‖ 6 1}. Then B has an ε-net of size( 2+ε
ε

)n . That is, there exists a set Nε ⊆ B of size at most
( 2+ε
ε

)n such that for any vector u ∈ B
there exists some v ∈ Nε such that ‖v − u‖ 6 ε.

Fact D.2 (Chernoff’s inequality, [Ver18]). Let ζ1, . . . , ζn be independent Bernoulli random
variables such that �(ζi � 1) � �(ζi � 0) � p. Then for every ∆ > 0,

�

(
n∑

i�1
ζi > pn(1 + ∆)

)
6

(
e−∆

(1 + ∆)1+∆

)pn

.

and for every ∆ ∈ (0, 1),

�

(
n∑

i�1
ζi 6 pn(1 − ∆)

)
6

(
e−∆

(1 − ∆)1−∆

)pn

.

Fact D.3 (Hoeffding’s inequality, [Wai19]). Let z1, . . . , zn be mutually independent random
variables such that for each i ∈ [n], zi is supported on [−ci , ci] for some ci > 0. Then for all t > 0,

�

(����� n∑
i�1
(zi −� zi)

����� > t

)
6 2 exp

(
− t2

2
∑n

i�1 c2
i

)
.

Fact D.4 (Bernstein’s inequality [Wai19]). Let z1, . . . , zn be mutually independent random
variables such that for each i ∈ [n], zi is supported on [−B, B] for some B > 0. Then for all t > 0,

�

(
n∑

i�1
(zi −� zi) > t

)
6 exp

(
− t2

2
∑n

i�1� z2
i +

2Bt
3

)
.

Lemma D.5 (Restate of Lemma 4.6). Let S ⊆ [n] be a set of size γn and let z1, . . . , zn ∈ � be
mutually independent random variables satisfying

1. For all i ∈ [n], �(zi > 0) � �(zi 6 0).

2. For some ε > 0, for all i ∈ S, �(zi ∈ [0, ε]) � �(zi ∈ [−ε, 0]) > q.

Then with probability at least 1 − 2 exp
{
−Ω

(
q2γ2n

)}
the median ẑ satisfies

|ẑ | 6 ε .
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Proof. LetZ � {z1, . . . , zn}. Consider the following set:

A :� {z ∈ Z | |z | 6 ε} .

DenoteZ+
�Z∩�>0,A+

�A∩�>0,Z− �Z∩�60,A− �A∩�60. Applying Chernoff
bound for γ1, γ2, γ3 ∈ (0, 1),

�

(��Z+
�� 6 (

1
2
− γ1

)
n
)
6 exp

{
−
γ2

1 · n
10

}
,

�
(
|A | 6 (1 − γ2) · q · |S|

)
6 exp

{
−
γ2

2 · q · |S|
10

}
,

�

(��A+
�� 6 (

1
2
− γ3

)
· |A |

���� |A |) 6 exp

{
−
γ2

3 · |A |
10

}
.

Similar bounds hold forZ−,A−.
Now, the median is inA if |Z− | +

��A+
�� > n/2 and

��Z+
�� + |A− | > n/2. It is enough to

prove one of the two inequalities, the proof for the other is analogous. A union bound then
concludes the proof.

So for γ2 � γ3 �
1
4 , with probability at least 1 − exp

{
−γ

2
1 ·n
10

}
− 2 exp

{
−Ω

(
q · |S|

)}
,

|Z− | +
��A+

�� > (
1
2
− γ1

)
n +

q · |S|
10

.

it follows that |Z− | +
��A+

�� > n/2 for

γ1 6
q · |S|
10n

.

�

Lemma D.6. Let V be an m-dimensional vector subspace of �n . Let B ⊆ {v ∈ V | ‖v‖ 6 R} for
some R > 1 .

Let 1 : �2 → � be a function such that for all y ∈ � and |x | 6 R, |1(x , y)| 6 C |x | for some
C > 1 and for any |∆x | 6 1, |1(x + ∆x , y) − 1(x , y)| 6 K |∆x | for some K > 1.

Let w ∈ �n be a random vector such that w1, . . . ,wn are mutually independent. For any
N > n, with probability at least 1 − N−m , for all v ∈ B,����� n∑

i�1

(
1(vi ,wi) −�

w
1(vi ,wi)

)����� 6 10C
√

m ln(RKN) · ‖v‖ + 1/N .

Proof. Consider some v ∈ �n . Since |1i(vi ,wi)| 6 C |vi |, by Hoeffding’s inequality,����� n∑
i�1

(
1(vi ,wi) −�

w
1(vi ,wi)

)����� 6 τC‖v‖
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with probability 1 − 2 exp
(
−τ2/2

)
.

Let N > n and ε �
1

2KnN . Denote by Nε some ε-net in B such that |Nε | 6
(
6 R
ε

)m . By
union bound, for any v ∈ Nε,����� n∑

i�1

(
1(vi ,wi) −�

w
1(vi ,wi)

)����� 6 10C
√

m ln(RKN) · ‖v‖

with probability at least 1 − N−m .
Consider arbitrary ∆v ∈ V such that ‖∆v‖ 6 ε. For any v ∈ Nε and w ∈ �n ,����� n∑
i�1

(
1(vi + ∆vi , wi) − 1(vi , wi)

) ����� 6 n∑
i�1

��1(vi + ∆vi , wi) − 1(vi , wi)
�� 6 K

n∑
i�1
|∆vi | 6

1
2N

.

Hence������w n∑
i�1

(
1(vi + ∆vi ,wi) − 1(vi ,wi)

) ����� 6 �w
����� n∑

i�1

(
1(vi + ∆vi ,wi) − 1(vi ,wi)

) ����� 6 1
2N

,

and ����� n∑
i�1

(
1(vi ,wi) −�

w
1(vi ,wi)

)
−

n∑
i�1

(
1(vi + ∆vi , wi) −�

w
1(∆vi ,wi)

)����� 6 1/N .

Therefore, with probability 1 − N−m , for any v ∈ B,����� n∑
i�1

(
1(vi ,wi) −�

w
1(vi ,wi)

)����� 6 10C
√

m ln(RKN) · ‖v‖ + 1/N .

�

Lemma D.7. Let ζ1, . . . , ζn be i.i.d. Bernoulli random variables such that �(ζi � 1) � 1 −
�(ζi � 0) � m/n for some integer m 6 n. Denote S1 � {i ∈ [n] | ζi � 1}. Let S2 ⊆ [n] be a
random set chosen uniformly from all subsets of [n] of size exactly m.

Let P be an arbitrary property of subsets of [n]. If S1 satisfies P with probability at least 1 − ε
(for some 0 6 ε 6 1), then S2 satisfies P with probability at least 1 − 2

√
nε.

Proof. If m � 0 or m � n, then S1 � S2 with probability 1. So it is enough to consider the
case 0 < m < n. By Stirling’s approximation, for any integer k > 1,

√
2πk · kk

ek
6 k! 6

√
2πk · kk

ek−1/(12k) 6 1.1 ·
√

2πk · kk

ek
.

Hence

�(|S1 | � m) �
(

n
m

) (m
n

)m (n − m
n

)n−m
>

√
n

1.12 ·
√

2πm(n − m)
>

1
2
√

n
.
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Therefore,
�(S2 < P) � �(S1 < P | |S1 | � m) 6 �(S1 < P)

�(|S1 | � m) 6 2
√

nε .

�

Fact D.8 (Covariance estimation of Gaussian vectors, [Wai19]). Let x1, . . . , xn ∈ �d be iid
xi ∼ N(0,Σ) for some positive definite Σ ∈ �d . Then, with probability at least 1 − δ,




 1

n

n∑
i�1

xixi
T − Σ






 6 O

(√
d + log(1/δ)

n
+

d + log(1/δ)
n

)
· ‖Σ‖ .

Lemma D.9. Let x1, . . . , xn ∈ �d be iid xi ∼ N(0,Σ) for some positive definite Σ ∈ �d . Let
k ∈ [d]. Then, with probability at least 1 − ε, for any k-sparse unit vector v ∈ �d ,

vT

(
1
n

n∑
i�1

xixi
T − Σ

)
v 6 O

(√
k log d + log(1/ε)

n
+

k log d + log(1/ε)
n

)
· ‖Σ‖ .

Proof. If d � 1, 1 − d−k � 0 and the statement is true, so assume d > 1. Consider some set
S ⊆ [d] of size at most k. By Fact D.8, with probability at least 1 − δ, for any k-sparse unit
vector v with support S,

vT

(
1
n

n∑
i�1

xi xi
T − Σ

)
v 6 O

(√
k + log(1/δ)

n
+

k + log(1/δ)
n

)
· ‖Σ‖ .

Since there are at most exp(2k ln d) subsets of [d] of size at most k, the lemma follows from
union bound with δ � ε exp(−3k ln d). �

Fact D.10 (Chi-squared tail bounds, [LM00]). Let X ∼ χ2
m (that is, a squared norm of standard

m-dimensional Gaussian vector). Then for all x > 0

�

(
X − m > 2x + 2

√
mx

)
6 e−x

�

(
m − X > 2

√
xm

)
6 e−x

Fact D.11 (Singular values of Gaussian matrix, [Wai19]). Let W ∼ N(0, 1)n×d , and assume
n > d. Then for each t > 0

�

(
σmax(W) >

√
n +

√
d +
√

t
)
6 exp(−t/2)

and
�

(
σmin(W) 6

√
n −
√

d −
√

t
)
6 exp(−t/2) ,

where σmax(W) and σmin(W) are the largest and the smallest singular values of W .
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Fact D.12 (k-sparse norm of a Gaussian matrix). Let W ∼ N(0, 1)n×d be a Gaussian matrix.
Let 1 6 k 6 n. Then for every δ > 0 with probability at least 1 − δ,

max
u∈�d

‖u‖�1

max
k-sparse v∈�n

‖v‖�1

vTWu 6
√

d +

√
k +

√
2k ln

( en
k

)
+

√
2 ln(1/δ) .

Proof. Let v be some k-sparse unit vector that maximizes the value, and let S(v) be the set
of nonzero coordinates of v. Consider some fixed (independend of W) unit k-sparse vector
x ∈ �n and the set S(x) of nonzero coordinates of x. If we remove from W all the rows
with indices not from S(x), we get an k × d Gaussian matrix WS(x). By Fact D.11, norm of
this matrix is bounded by

√
d +
√

k +
√

t with probability at least exp(−t/2). Number of all
subsets S ⊆ [n] of size k is

(n
k

)
6

( en
k

) k . By union bound, the probability that the norm of
WS(v) is greater than

√
d +
√

k +
√

t is at most(
n
k

)
· exp(−t/2) 6 exp(k ln(en/k) − t/2) .

Taking t � 2k ln(en/k) + 2 log(1/δ), we get the desired bound. �

E Spreadness notions of subspaces
Lemma E.1. Let v ∈ �n be a vector with 1

n ‖v‖2 � 1. Suppose

1
n

n∑
i�1
~v2

i 6 1/δ� · v2
i > κ .

Then, 1
n ‖vS‖2 > κ/2 for every subset S ⊆ [n] with |S | > (1 − δκ/2)n.

The above lemma is tight in the sense that there are vectors v that satisfy the premise
but have ‖vS‖ � 0 for a subset S ⊆ [n] of size |S | � (1 − δk)n.

Proof. Let T ⊆ [n] consist of the δκ/2 · n entries of v. Let wi � ~v2
i 6 1/δ� · v2

i . Then,
1
n ‖wT ‖2 6 1/δ · δκ/2 6 κ/2. Thus, 1

n ‖vS‖2 > 1
n ‖w‖2 − 1

n ‖wT ‖2 > κ/2. �

Lemma E.2. Let v ∈ �n be a vector with 1
n ‖v‖2 � 1. Suppose 1

n ‖vS‖2 > κ for every subset
S ⊆ [n] with |S | > (1 − δ)n. Then

1
n

n∑
i�1
~v2

i 6 1/δ� · v2
i > κ .

Proof. The number of entries satisfying v2
i 6 1/δ is at least (1 − δ)n. �
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Lemma E.3. Let V ⊆ �n be a vector subspace. Assume that for some ρ, R ∈ (0, 1), for all v ∈ V ,

n∑
i�1

�
v2

i 6
1

R2n ‖v‖
2�
· v2

i > ρ
2 | |v | |2 .

Then V is
(
ρ2

4 R2n , ρ2
)
-spread.

Proof. Let m �
ρ2

4 R2n. For vector v ∈ V with | |v | |2 � m, the set M � {i ∈ [n] | v2
i > 1}

has size at most m, so its complement is a disjoint union of three sets: the set S of n − m
smallest entries of v, the set M′ ⊆ [n] \ S of entries of magnitude 6 ρ/2, and the set of
entries M′′ ⊆ [n] \ (S ∪M′) of magnitude between ρ/2 and 1. Note that since |M′| 6 m,∑

i∈M′ v2
i 6

1
4ρ

2m �
1
4ρ

2 | |v | |2.
Now consider w �

2
ρ v. The set N of entries of w of magnitude at most one is a subset of

S ∪M′. By our assumption,
∑

w2
i 61 w2

i > ρ
2 | |w | |2. Hence∑

i∈S

w2
i >

∑
w2

i 61

w2
i −

∑
i∈M′

v2
i >

3
4
ρ2 | |w | |2

Since this inequality is scale invariant, V is (m ,
√

3/4 · ρ)-spread. �

Fact E.4. [GLR10] Let n ∈ � and let V be a vector subspace of�n . Define ∆(V) � sup
v∈V
‖v‖�1

√
n/‖v‖1.

Then

1. If V is
(
m , ρ

)
-spread, then ∆(V) 6 1

ρ2

√
n/m.

2. V is
(

n
2∆(V)2 ,

1
4∆(V)

)
-spread.

The lemma below relates ‖·‖1 and ‖·‖ of vectors satisfying specific sparsity constraints.

Lemma E.5. Let m ∈ [n],A ⊂ [n] , γ1 > 0 and γ2 > 0. Let v ∈ �n be a vector such that∑
i∈A

v2
i 6 γ

2
1 ‖v‖2 .

and for any setM ⊂ [n] of size m, ∑
i∈M

v2
i 6 γ

2
2 ‖v‖2 .

Then ∑
i∈[n]\A

|vi | >
1 − γ2

1 − γ2
2

γ2

√
m ‖v‖ .
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Proof. LetM be the set of m largest coordinates of v (by absolute value). Since the inequality∑
i∈[n]\S |vi | >

1−γ2
1−γ

2
2

γ2

√
m ‖v‖ is scale invariant, assume without loss of generality that for

all i ∈ M, |vi | > 1 and for all i ∈ [n] \M, |vi | 6 1. Then

‖v‖2 6
∑
i∈M

v2
i +

∑
i∈A

v2
i +

∑
i∈[n]\(A∪M)

v2
i 6

(
γ2

2 + γ2
1
)
‖v‖2 +

∑
i∈[n]\(A∪M)

v2
i .

hence (
1 − γ2

2 − γ2
1
)
‖v‖2 6

∑
i∈[n]\(A∪M)

v2
i 6

∑
i∈[n]\(A∪M)

|vi | 6
∑

i∈[n]\A
|vi | .

Note that (
1 − γ2 − γ2

1
)
‖v‖2 >

(
1 − γ2

2 − γ2
1

γ2
2

) ∑
i∈M

v2
i >

(
1 − γ2

2 − γ2
1

γ2
2

)
m .

Therefore, ©­«
∑

i∈[n]\A
|vi |

ª®¬
2

>

(
1 − γ2

2 − γ2
1
)2

γ2
2

· m‖v‖2 .

�

Lemma E.6. Suppose that vector v ∈ �n satisfies the following property: for any S ⊆ [n],∑
i∈S
|vi | 6 |S| · ln

(
en
|S|

)
. (E.1)

Then
‖v‖ 6

√
6n .

Proof. Note that the set of vectors which satisfy Eq. (E.1) is compact. Hence there exists a
vector v in this set with maximal ‖v‖. Without loss of generality we can assume that the
entries of v are nonnegative and sorted in descending order. Then for any m ∈ [n],

m∑
i�1

vi 6 m ln
( en

m

)
.

Assume that for some m the corresponding inequality is strict. Let’s increase the last term
vm by small enough ε > 0. If there are no nonzero vm′ for m′ > m, all inequalities are still
satisfied and ‖v‖ becomes larger, which contradicts our choice of v. So there exists the
smallest m′ > m such that vm′ > 0, and after decreasing vm′ by ε < vm′ all inequalities are
still satisfied. ‖v‖ increases after this operation:

(vm + ε)2 + (vm′ − ε)2 � v2
m + v2

m′ + 2ε(vm − vm′) + ε2 > v2
m + v2

m′ .
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Therefore, there are no strict inequalities. Hence v1 � ln(en) and for all m > 1,

vm � m ln
( en

m

)
− (m − 1) ln

( en
m − 1

)
� m ln(1 − 1/m) + ln

( en
m − 1

)
6 ln

( en
m − 1

)
.

Since for any decreasing function f : [1, n] → �, ∑n
j�2 f ( j) 6

∫ n
1 f (x)dx,

‖v‖2 6 ln2(en) +
n−1∑
j�1

ln2
(

en
j

)
6 2 ln2(en) +

∫ n

1
ln2

( en
x

)
dx .

Note that ∫
ln2

( en
x

)
dx � 2x + 2x ln

( en
x

)
+ x ln2

( en
x

)
.

Hence ∫ n

1
ln2

( en
x

)
dx � 5n − ln2(en) − 2 ln(en) − 2 6 5n − ln2(en) ,

and we get the desired bound. �

Lemma E.7. Suppose that vectors v ∈ �n and w ∈ �n satisfy the following properties: for some
t1 > 0 and t2 > 0, for any S ⊆ [n],∑

i∈S
|vi | 6 t1 + |S| · ln

(
en
|S|

)
. (E.2)

and ∑
i∈S
|wi | 6 t2 + |S| · ln

(
en
|S|

)
. (E.3)

Then
|〈v , w〉| 6 t1t2 + (t1 + t2) ln(en) + 6n .

Proof. Note that the set of pairs of vectors which satisfy these properties is compact. Hence
there exist vectors v, w that satisfy these properties such that |〈v , w〉| is maximal. Without
loss of generality we can assume that the entries of v and w are nonnegative and sorted
in descending order. Moreover, if some entry vi of v is zero, we can increase |〈v , w〉| by
assigning some small positive value to it without violating conditions on v (if wi � 0, we
can also assign some positive value to it without violating conditions on w). Hence we can
assume that all entries of v and w are strictly positive.

Now assume that for some m the corresponding inequality for v with the set [m] is
strict. Let’s increase vm by small enough ε > 0 and decrease vm+1 by ε. This operation does
not decrease |〈v , w〉|:

(vm + ε)wm + (vm−1 − ε)wm−1 � vm wm + vm−1wm−1 + ε(wm − wm−1) > 0 (E.4)

Moreover, if wm � wm−1, the inequality for w with a set [m] is strict, so by adding ε to
wm and subtracting ε from wm−1 we can make wm and wm−1 different without violating
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constraints on w and without decreasing |〈v , w〉|. Hence without loss of generality we can
assume that all vi are different from each other and all wi are different from each other.
Now, by Eq. (E.4), there are no strict inequalities (otherwise there would be a contradiction).
Hence v1 � t1 + ln(en), w1 � t2 + ln(en) and for all m > 1,

vm � wm � m ln
( en

m

)
− (m − 1) ln

( en
m − 1

)
� m ln(1 − 1/m) + ln

( en
m − 1

)
6 ln

( en
m − 1

)
.

Since v − t1e1 satisfies conditions of Lemma E.6,

|〈v , w〉| 6 v1w1 + ‖v − t1e1‖2 − ln2(en) 6 t1t2 + (t1 + t2) ln(en) + 6n .

�
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