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Abstract

We consider a robust linear regression model
y = XB* + n, where an adversary oblivious to
the design X € R may choose 7 to corrupt all
but an « fraction of the observations y in an arbi-
trary way. Prior to our work, even for Gaussian
X, no estimator for 8* was known to be consis-
tent in this model except for quadratic sample
size n 2 (d/a)? or for logarithmic inlier fraction
a > 1/logn. We show that consistent estima-
tion is possible with nearly linear sample size and
inverse-polynomial inlier fraction. Concretely, we
show that the Huber loss estimator is consistent
for every sample size n = w(d/a?) and achieves
an error rate of O(d/a?n)*/? (both bounds are op-
timal up to constant factors). Our results extend to
designs far beyond the Gaussian case and only re-
quire the column span of X to not contain approx-
imately sparse vectors (similar to the kind of as-
sumption commonly made about the kernel space
for compressed sensing). We provide two techni-
cally similar proofs. One proof is phrased in terms
of strong convexity, extending work of (Tsakonas
et al., 2014), and particularly short. The other
proof highlights a connection between the Huber
loss estimator and high-dimensional median com-
putations. In the special case of Gaussian designs,
this connection leads us to a strikingly simple
algorithm based on computing coordinate-wise
medians that achieves nearly optimal guarantees
in linear time, and that can exploit sparsity of 5*.
The model studied here also captures heavy-tailed
noise distributions that may not even have a first
moment.
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1. Introduction

Linear regression is a fundamental task in statistics: given
observations (x1, y1), . . ., (Xn, ¥») € R?*! following a linear
model y; = (x;, ) + 1;, where 8* € R? is the unknown
parameter of interest and 71, . . ., 17, 1S noise, the goal is to
recover 8% as accurately as possible.

In the most basic setting, the noise values are drawn inde-
pendently from a Gaussian distribution with mean 0 and
variance o-2. Here, the classical least-squares estimator B
achieves an optimal error bound 1 || X(8* -BI2 < a2-d/n
with high probability, where the design X is has rows
X1, - . .» X Unfortuantely, this guarantee is fragile and the
estimator may experience arbitrarily large error in the pres-
ence of a small number of benign outlier noise values.

In many modern applications, including economics
(Rousseeuw & Leroy, 2005), image recognition (Wright
et al., 2008), and sensor networks (Haupt et al., 2008), there
is a desire to cope with such outliers stemming from extreme
events, gross errors, skewed and corrupted measurements. It
is therefore paramount to design estimators robust to noise
distributions that may have substantial probability mass on
outlier values.

In this paper, we aim to identify the weakest possible as-
sumptions on the noise distribution such that for a wide
range of measurement matrices X, we can efficiently re-
cover the parameter vector 8* with vanishing error.

The design of learning algorithms capable of succeeding
on data sets contaminated by adversarial noise has been
a central topic in robust statistics (e.g. see (Diakonikolas
et al., 2019a; Charikar et al., 2017) and their follow-ups for
some recent developments). In the context of regression
with adaptive adversarial outliers (i.e. depending on the
instance) several results are known (Candes & Tao, 2005;
Candes et al., 2005; Klivans et al., 2018; Karmalkar et al.,
2019; Liu et al., 2019; 2018; Karmalkar & Price, 2018;
Dalalyan & Thompson, 2019; Raghavendra & Yau, 2020).
However, it turns out that for adaptive adversaries, vanishing
error bounds are only possible if the fraction of outliers is
vanishing.

In order to make vanishing error possible in the presence
of large fractions of outliers, we consider weaker adversary
models that are oblivious to the design X. Different assump-
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tions can be used to model oblivious adversarial corruptions.
(Sun et al., 2019) assume the noise distribution satisfies
E[n: | x;] = 0 and E [|n;]"*°] < oo for some 0 < ¢ < 1,
and show that if X has constant condition number, then (a
modification of) the Huber loss estimator (Huber, 1964)
is consistent for! n > O((|| X||o, - d)**9)/29) (an estimator
is consistent if the error tends to zero as the number of
observation grows, L[ X(8 - *)||? — 0).

Without constraint on moments, a useful model is that of
assuming the noise vector n € R” to be an arbitrary fixed
vector with @ - n coordinates bounded by 1 in absolute
value. This modelalso captures random vectors = { +
w, where { € R" is an-sparse and w is a random vector
with i.i.d. entries with bounded variance independent of
the measurement matrix X, and conveniently allows us to
think of the « fraction of samples with small noise as the
set of uncorrupted samples. In these settings, the problem
has been mostly studied in the context of Gaussian design
X1,...,X, ~ N(0,%X). (Bhatia et al., 2017b) provided an
estimator achieving error O(d/(a? - n)) for any a larger
than some fixed constant. This result was then extended
in (Suggala et al., 2019), where the authors proposed a
near-linear time algorithm computing a O(d/(a? - n))-close
estimate for any> @ 2 1/loglogn. That is, allowing the
number of uncorrupted samples to be o(n). Considering
even smaller fractions of inliers, (Tsakonas et al., 2014)
showed that with high probability the Huber loss estimator
is consistent for n > O(d?/a?), thus requiring sample size
quadratic in the ambient dimension.

Prior to this work, little was known for more general settings
when the design matrix X is non-Gaussian. From an asymp-
totic viewpoint, i.e., when d and « are fixed and n — oo, a
similar model was studied 30 years ago in a seminal work by
Pollard (Pollard, 1991), albeit under stronger assumptions
on the noise vector. Under mild constraints on X, it was
shown that the least absolute deviation (LAD) estimator is
consistent.

So, the outlined state-of-the-art provides an incomplete pic-
ture of the statistical and computational complexity of the
problem. The question of what conditions we need to en-
force on the measurement matrix X and the noise vector n
in order to efficiently and consistently recover 8* remains
largely unanswered. In high-dimensional settings, no esti-
mator has been shown to be consistent when the fraction
of uncontaminated samples « is smaller than 1/logn and
the number of samples 7 is smaller than d?/a?, even in the
simple settings of spherical Gaussian design. Furthermore,

"'We hide absolute constant multiplicative factors using the
standard notations <, O(-). Similarly, we hide multiplicative factors
at most logarithmic in n using the notation O.

2More precisely, their condition is & >

~ logn
N 1 <4
estimation and @ 2 ;75 to get the error bound O(;%;,) -

for consistent

even less is known on how we can regress consistently when
the design matrix is non-Gaussian.

In this work, we provide a more comprehensive picture
of the problem. Concretely, we analyze the Huber loss
estimator in non-asymptotic, high dimensional setting where
the fraction of inliers may depend (even polynomially) on
the number of samples and ambient dimension. Under mild
assumptions on the design matrix and the noise vector, we
show that such algorithm achieves optimal error guarantees
and sample complexity.

Furthermore, a by-product of our analysis is an strikingly
simple linear-time estimator based on computing coordinate-
wise medians, that achieves nearly optimal guarantees for
standard Gaussian design, even in the regime where the pa-
rameter vector 3% is k-sparse (i.e. * has at most k nonzero
entries).

1.1. Results about Huber-loss estimator

We provide here guarantees on the error convergence of the
Huber-loss estimator, defined as a minimizer of the Huber
loss f: R = Ry,

FB) =13 ®[(Xp-y)l,

i=1
where ®: R — Ry is the Huber penalty,’

1
def §t2

if [t] < 2,
of1] < ] <

2|t| —2 otherwise.

Gaussian design The following theorem states our the
Huber-loss estimator in the case of Gaussian designs. Pre-
vious quantitative guarantees for consistent robust linear
regression focus on this setting (Tsakonas et al., 2014; Bha-
tia et al., 2017b; Suggala et al., 2019).

Theorem 1.1 (Guarantees for Huber-loss estimator with
Gaussian design). Let n € R" be a deterministic vector. Let
X be a random® n-by-d matrix with iid standard Gaussian
entries X;j ~ N(0, 1).

Suppose n > C-d/a?, where a is the fraction of entries inn
of magnitude at most 1, and C > 0 is large enough absolute
constant.

Then, with probability at least 1—2¢ over X, for every B* €
R4, given X and y = XB* + 1, the Huber-loss estimator 8
satisfies

3Here, we choose 2 as transition point between quadratic and
linear penalty. Other transition points can also be used. For ex-
ample, for a bit more general model where an entries of n are
bounded by some o > 0, one can work with transition point 20-.

4As a convention, we use boldface to denote random variables.

B —B”2 < O(L) .

a’n
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The above result improves over previous quantitative analy-
ses of the Huber-loss estimator that require quadratic sam-
ple size n > d?/a? to be consistent (Tsakonas et al., 2014).
Other estimators developed for this model (Bhatia et al.,
2017a; Suggala et al., 2019) achieve a sample-size bound
nearly-linear in d at the cost of an exponential dependence
on 1/a. These results require for consistent estimation a
logarithmic bound on the inlier fraction @ > 1/logd to
achieve sample-size bound nearly-linear in d . In constrast
our sample-size bound is nearly-linear in d even for any
sub-polynomial inlier fraction & = 1/d°V. In fact, our
sample-size bound and estimation-error bound is statisti-
cally optimal up to constant factors.’

The proof of the above theorem also applies to approxi-
mate minimizers of the Huber loss and it shows that such
approximations can be computed in polynomial time.

We remark that related to (one of) our analyses of the Huber-
loss estimator, we develop a fast algorithm based on (one-
dimensional) median computations that achieves estimation
guarantees comparable to the ones above but in linear time
O(nd). A drawback of this fast algorithm is that its guaran-
tees depend (mildly) on the norm of 8*.

Several results (Candes & Tao, 2005; Candes et al., 2005;
Karmalkar & Price, 2018; Diakonikolas et al., 2019b;
Dalalyan & Thompson, 2019) considered settings where
the noise vector is adaptively chosen by an adversary. In
this setting, it is possible to obtain a unique estimate only
if the fraction of outliers is smaller than 1/2. In contrast,
Theorem 1.1 implies consistency even when the fraction of
corruptions tends to 1 but applies to settings where the noise
vector 7 is fixed before sampling X and thus it is oblivious
to the data.

Deterministic design The previous theorem makes the
strong assumption that the design is Gaussian. However, it
turns out that our proof extends to a much broader class of
designs with the property that their columns spans are well-
spread (in the sense that they don’t contain vectors whose £o-
mass is concentrated on a small number of coordinates, see
(Guruswami et al., 2008)). In order to formulate this more
general results it is convenient to move the randomness from
the design to the noise vector and consider deterministic
designs X € R™ with probabilistic n-dimensional noise
vector 17,

y=XB"+1. 1.1)
Here, we assume that 5 has independent, symmetrically
distributed entries satisfying P{|n;| < 1} > a for all i € [n].

5 In the case 7 ~ N(0, 02 - Id), it’s well known that the optimal
Bayesian estimator achieves expected error o2 - d/n. For o > 1,
the vector i7 has a ®(1/0") fraction of entries of magnitude at most
1 with high probability.

This model turns out to generalize the one considered in the
previous theorem. Indeed, given data following the previ-
ous model with Gaussian design and deterministic noise,
we can generate data following the above model randomly
subsampling the given data and multiplying with random
signs.

Theorem 1.2 (Guarantees for Huber-loss estimator with
general design). Let X € R™? be a deterministic matrix
and let 1 be an n-dimensional random vector with inde-
pendent, symmetrically distributed (about zero) entries and
@ = min; e, P{|n;| < 1}.

Suppose that for every vector v in the column span of X and
every subset S C [n] with |S| < C - d/a?,

vsll < 0.9 [vil, (1.2)

where vg denotes the restriction of v to the coordinates in S,
and C > 0 is large enough absolute constant.

Then, with probability at least 1 — 2~ over 1, for every
B e RY, given X and y = XB*+n, the Huber-loss estimator

B satisfies

1
n

~ |2 d
X(B" —ﬂ)H <0 (T) .
a’n
In particular, Theorem 1.2 implies that under condition
Eq. (1.2) and mild noise assumptions, the Huber loss esti-
mator is consistent for n > w (d/a?).

We say a vector subspace of R” is well-spread, if all vectors
from this subspace satisfy Eq. (1.2). As we only assume
the column span of X to be well-spread, the result applies
to a substantially broader class of design matrices X than
Gaussian, naturally including those studied in (Tsakonas
et al., 2014; Bhatia et al., 2017b; Suggala et al., 2019). Well-
spread subspaces are closely related to £;-vs-£ distortion®,
and have some resemblance with restricted isometry proper-
ties (RIP). Indeed both RIP and distortion assumptions have
been successfully used in compressed sensing (Candes &
Tao, 2005; Candes et al., 2005; Kashin & Temlyakov, 2007;
Donoho, 2006) but, to the best of our knowledge, they were
never observed to play a fundamental role in the context of
robust linear regression. This is a key difference between
our analysis and that of previous works. Understanding how
crucial this well-spread property is and how to leverage it
allows us to simultaneously obtain nearly optimal error guar-
antees, while also relaxing the design matrix assumptions.
It is important to remark that a weaker version of property
Eq. (1.2) is necessary as otherwise it may be information
theoretically impossible to solve the problem. For example,
if all but o(1/@) rows of X are zero, then with high proba-
bility all meaningful entries of y are corrupted by arbitrarily
large noise.

5Qur analysis also applies to design matrices whose column
span has bounded distortion.
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We derive both Theorem 1.1 and Theorem 1.2 using the
same proof techniques explained in Section 2.

Remark (Small failure probability). For both Theorem 1.1
and Theorem 1.2 our proof also gives that for any § € (0, 1),

the Huber loss estimator achieves error O (d+lz+(;/6)) with

probability at least 1 — ¢ as long as n > %&1/6), and, in

Theorem 1.2, the well-spread property is satisfied for all
sets S C [n] of size |S| < O (d+10+2(1/6)).

1.2. Results about fast algorithms

The Huber loss estimator has been extensively applied to
robust regression problems (Tan et al., 2018; Tsakonas et al.,
2014; Elsener et al., 2018). However, one possible draw-
back of such algorithm (as well as other standard approaches
such as L;-minimization (Pollard, 1991; Karmalkar & Price,
2018; Nguyen & Tran, 2013)) is the non-linear running
time. In real-world applications with large, high dimen-
sional datasets, an algorithm running in linear time O(nd)
may make the difference between feasible and unfeasible.

In the special case of Gaussian design, previous results (Sug-
gala et al., 2019) already obtained estimators computable in
linear time. However these algorithms require a logarithmic
bound on the fraction of inliers @ > 1/logn. We present
here a strikingly simple algorithm that achieves similar guar-
antees as the ones shown in Theorem 1.1 and runs in linear
time: for each coordinate j € [d] compute the median B ; of
y1/X1j,...,yn/Xn; subtract the resulting estimation X B
and repeat, logarithmically many times, with fresh samples.

Theorem 1.3 (Guarantees for fast estimator with Gaussian
design). Letn € R™ and B* € R? be deterministic vectors.
Let X be a random n-by-d matrix with iid standard Gaussian
entries X;j ~ N(0, 1).

Let « be the fraction of entries in n of magnitude at most 1,
and let A > 10 + ||B*||. Suppose that

d
nzC-—-InA-(Ind +InlnA),
a

where C is a large enough absolute constant.

Then, there exists an algorithm that given A, X and y =
XB* + n as input, in time’ O (nd) finds a vector B € R?
such that

with probability at least 1 — d ™19,

s —B|‘2 < 0(% -logd) ,

The algorithm in Theorem 1.3 requires knowledge of an up-
per bound A on the norm of the parameter vector. The sam-

"By time we mean number of arithmetic operations and com-
parisons of entries of y and X. We do not take bit complexity into
account.

ple complexity of the estimator has logarithmic dependency
on this upper bound. This phenomenon is a consequence
of the iterative nature of the algorithm and also appears in
other results (Suggala et al., 2019).

Theorem 1.3 also works for non-spherical settings Gaussian
design matrix and provides nearly optimal error conver-
gence with nearly optimal sample complexity, albeit with
running time O(nd?). The algorithm doesn’t require prior
knowledge of the covariance matrix X. In these settings,
even though time complexity is not linear in d, it is linear in
n, and if n is considerably larger than d, the algorithm may
be very efficient.

Sparse linear regression For spherical Gaussian design,
the median-based algorithm introduced above can naturally
be extended to the sparse settings, yielding the following
theorem.

Theorem 1.4 (Guarantees of fast estimator for sparse re-
gression with Gaussian design). Let € R" and §* € R?
be deterministic vectors, and assume that B* has at most
k < d nonzero entries. Let X be a random n-by-d matrix
with iid standard Gaussian entries X;; ~ N(0, 1).

Let a be the fraction of entries in 1 of magnitude at most 1,
and let A > 10 + ||B*||. Suppose that
k
nzC-—-InA-(Ind +InlnA),
a

where C is a large enough absolute constant.

Then, there exists an algorithm that given k, A, X and
y = XB* + 1 as input, in time O (nd) finds a vector B € R¢
such that

with probability at least 1 — d

B —BH2 < 0(% -logd) ,

-10

2. Techniques

In this section we discuss the model from Theorem 1.2
(with deterministic X and random 7). The model from
Theorem 1.1 (with Gaussian X and deterministic 1) can be
studied in a very similar way.

Recall our linear regression model,
y=XB +n,

where we observe (a realization of) the random vector y,
the matrix X € R is a known design, the vector §* € R”
is the unknown parameter of interest, and the noise vector
n has independent, symmetrically distributed® coordinates

2.1)

8The distributions of the coordinates are not known to the
algorithm designer and can be non-identical.
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with” @ = min;ep,) P{In:| < 1}.

To simplify notation in our proofs, we assume %XTX =1d.
(For general X, we can ensure this property by orthogonal-
izing and scaling the columns of X.)

We consider the Huber loss estimator ﬁ, defined as a mini-
mizer of the Huber loss f,

FB) =1 0[(XB - y)l,
i=1

where @: R — R is the Huber penalty,'”

ol - {%ﬂ if 7] < 2,

2|t| —2 otherwise.

2.1. Statistical guarantees from strong convexity

In order to prove statistical guarantees for this estimator, we
follow a well-known approach that applies to a wide range
of estimators based on convex optimization (see (Negahban
et al., 2009) for a more general exposition), which also
earlier analyses of the Huber loss estimator (Tsakonas et al.,
2014) employ. This approach has two ingredients: (1) an
upper bound on the norm of the gradient of the loss function
f at the desired parameter 8* and (2) a lower bound on
the strong-convexity curvature parameter of f within a ball
centered at 5*. Taken together, these ingredients allow us
to construct a global lower bound for f that implies that all
(approximate) minimizers of f are close to 8*.

An important feature of this approach is that it only requires
strong convexity to hold locally around 8*. (Due to its linear
parts, the Huber loss function doesn’t satisfy strong convex-
ity globally.) It turns out that the radius of strong convexity
we can prove is the main factor determining the strength of
the statistical guarantee we obtain. Indeed, the reason why
previous analyses'! of the Huber loss estimator (Tsakonas
et al., 2014) require quadratic sample size n > (d/a)? to
ensure consistency is that they can establish strong convex-
ity only within inverse-polynomial radius Q(1/vVd) even for
Gaussian X ~ N(0, 1)"“’. In contrast, our analysis gives
consistency for any super-linear sample size n = w(d/a?)
for Gaussian X because we can establish strong convexity
within constant radius.

9The value of « need not be known to the algorithm designer
and only affects the error guarantees of the algorithms.

loHere, in order to streamline the presentation, we choose
{£2} as the transition points between quadratic and linear penalty.
Changing these points to {+246} is achieved by scaling r —
520(t/9).

IWe remark that the results in (Tsakonas et al., 2014) are
phrased asymptotically, i.e., fixed d and n — oco. Therefore, a
radius bound independent of 7 is enough for them. However, their
proof is quantiative and yields a radius bound of 1/Vd a we will
discuss.

Compared to the strong-convexity bound, which we disucss
next, the gradient bound is straightforward to prove. The
gradient of the Huber loss at 8* for response vector y =
XB* + n takes the following form,

VB =2 Vil x
i=1
with  ®’[¢] = sign(¢) - min{|¢|, 2},

where x1, . . ., x, € R4 form the rows of X. Since N, -1
are independent and symmetrically distributed, the random
variables ®’[5;] are zero-mean, independent and bounded
by 2 in absolute value. Now, for a unit vector u € R4,
using Hoeffding’s inequality, we get with probability at

least 1 — e™?,

(VFE Y < 0 (Vi lIxl) < 0 (Vi)

where we use the assumption < XTX = Id. Finally, using a
union bound over 1/2-net in the unit sphere in R?, we get

LF )Nl < 0 (Vain)
with high probability.

Proving local strong convexity for Huber loss For re-
sponse vector y = XfB* + 5 and arbitrary u € R?, the
Hessian'? of the Huber loss at 8* + u has the following
form,

Hf(B" +u)=2 Zn: O [(Xu)i — i) - xix;"
i1

with  ®”[r] = [|¢] < 2].

Here, [-] is the Iverson bracket (0/1 indicator). To prove
local strong convexity within radius R, we are to lower
bound (u, Hf(B* + u)u) uniformly over all vectors u € R¢
with ||u]| < R.

We do not attempt to exploit any cancellations between Xu
and i and work with the following lower bound M (u) for
the Hessian,

Hf (B +u)

= M) =23 11w < 10 [l < 1] 2™

i=1
2.2)
Here, > denotes the Lowner order.

12The second derivative of the Huber penalty doesn’t exit at
the transition points {+2} between its quadratic and linear parts.
Nevertheless, the second derivative exists as an L1 -function in the
sense that ®’[b] — ®'[a] = fab|[|t| < 2]/ dt for all a, b € R. This
property is enough for our purposes.
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It’s instructive to first consider # = 0. Here, the above lower
bound for the Hessian satisfies,

n
E[M(0)] = %ZP{WI" <1}-xx' > ald.
i=1

Using standard (matrix) concentration inequalities, we can
also argue that this random matrix is close to its expectation
with high-probability if n > O(d/@) under some mild

assumption on X (e.g., that the row norms are balanced so
that [|x1[l,.. ., [l ]| < O(Vd)).

The main remaining challenge is dealing with the quantifica-
tion over u. Earlier analyses (Tsakonas et al., 2014) observe
that the Hessian lower bound M(-) is constant over balls
of small enough radius. Concretely, for all u € R¢ with
[|ul] < 1/max;||x;||, we have

M(u) = M(0),

because |(x;,u)| < ||x;]| - [lull £ 1 by Cauchy-Schwarz.
Thus, strong convexity with curvature parameter & within ra-
dius 1/max;||x;|| follows from the aforementioned concen-
tration argument for M (0). However, since max; || x;|| > Vd,
this argument cannot give a better radius bound than 1/Vd,
which leads to a quadratic sample-size bound n > d?/a? as
mentioned before.

For balls of larger radius, the lower bound M (-) can vary
significantly. For illustration, let us consider the case n = 0
and let us denote the Hessian lower bound by M(-) for this
case. (The deterministic choice of 7 = 0 would satisfy all of
our assumptions about 77.) As we will see, a uniform lower
bound on {u, M(u)u) over a ball of radius R > 0 implies
that the column span of X is well-spread in the sense that
every vector v in this subspace has a constant fraction of its
{5 mass on entries with squared magnitude at most a 1/R?
factor times the average squared entry of v. (Since we aim
for R > 0 to be a small constant, the number 1/ R%isa large
constant.) Concretely,

min, g M(0)
n

= min &2 Y [0nw? <17+ (x 1)
1

i=

n

. 2 .2 27 .2

= min 1”2 E [[R Vi < %”V” ]]'Vi
i=1

vecol.span(X) lIv

=! KR .
2.3)
(The second step uses our assumption X' X = Id.)

It turns out that the above quantity kg in Eq. (2.3) indeed
captures up to constant factors the radius and curvature
parameter of strong convexity of the Huber loss function
around B for 7 = 0. In this sense, the well-spreadness of

the column span of X is required for the current approach
of analyzing the Huber-loss estimator based on strong con-
vexity. The quantity «g in Eq. (2.3) is closely related to
previously studied notions of well-spreadness for subspaces
(Guruswami et al., 2008; 2010) in the context of compressed
sensing and error-correction over the reals.

Finally, we use a covering argument to show that a well-
spread subspace remains well-spread even when restricted to
arandom fraction of the coordinates (namely the coordinates
satisfying |5;| < 1). This fact turns out to imply the desired
lower bound on the local strong convexity parameter. Con-
cretely, if the column space of X is well-spread in the sense
of Eq. (2.3) with parameter kg for some R > O, (:4)1/2,
we show that the Huber loss function is locally Q(a - kg)-
strong convex at 8* within radius Q(R). Recall that we are
interested in the regime n > d/ a? (otherwise, consistent
estimation is impossible). In this case, with high probability
Gaussian X satisfies kg > 0.1 even for constant R.

Final error bound The aforementioned general frame-
work for analyzing estimators via strong convexity allows
us to bound the error || — S| by the norm of the gradi-
ent ||Vf(B)| divided by the strong-convexity parameter,
assuming that this upper bound is smaller than the strong-
convexity radius.

Consequently, for the case that our design X satisfies
kg = 0.1 (corresponding to the setting of Theorem 1.2), the
previously discussed gradient bound and strong-convexity
bound together imply that, with high probability over 5, the
error bound satisfies

L d 1 d \'?
1B-p1< 0 \/—) I
n (07 a“n
—_——— ———

gradient bound  strong-convexity bound
assuming R 2 +/d/a?n.

2.2. Huber-loss estimator and high-dimensional
medians

We discuss here some connections between high-
dimensional median computations and efficient estimators
such as Huber loss or the LAD estimator. This connection
leads to a better understanding of why these estimators are
not susceptible to heavy-tailed noise. Through this analy-
sis we also obtain guarantees similar to the ones shown in
Theorem 1.2.

Recall our linear regression model y = XB* + n as in
Eqg. (2.1). The noise vector i has independent, symmetri-
cally distributed coordinates with & = min; e[, P {|n;| < 1}.
We further assume the noise entries to satisfy

Vee[0,1], P(npi| <t)>Qa-t).



Consistent regression when oblivious outliers overwhelm

This can be assumed without loss of generality as, for exam-
ple, we may simply add a Gaussian vector w ~ N(0,Id,)
(independent of y) to y (after this operation parameter «
changes only by a constant factor).

The one dimensional case: median algorithm To un-
derstand how to design an efficient algorithm robust to
(1 - \/d_/n) - n corruptions, it is instructive to look into
the simple settings of one dimensional Gaussian design
X ~ N(0,1d,). Given samples (y1, X1),...,(yn, X,y) for
any i € [n] such that | X;| > 1/2, consider

yi/Xi=p" +ni/X;.

By obliviousness the random variables 5/ = 5;/X; are sym-
metric about 0 and for any 0 < ¢ < 1, still satisfy P(—¢ <
n; <t) > Qa - t). Surprisingly, this simple observation is
enough to obtain an optimal robust algorithm. Standard tail
bounds show that with probability 1-exp {-Q (a? - €% - n)}
the median B of y1/X1,...,yn/X, falls in the interval
[-e + B*,+e + B*] for any € € [0,1]. Hence, setting
e 2 1/Va? - n we immediately get that with probability

at least 0.999, )B* —ﬁ|’2 <& <0(1/(a? - n)).

The high-dimensional case: from the median to the Hu-
ber loss In the one dimensional case, studying the median
of the samples y1 /X3, ...y,/X, turns out to be enough to
obtain optimal guarantees. The next logical step is to try to
construct a similar argument in high dimensional settings.
However, the main problem here is that high dimensional
analogs of the median are usually computationally ineffi-
cient (e.g. Tukey median (Tukey, 1975)) and so this doesn’t
seem to be a good strategy to design efficient algorithms.
Still in our case one such function provides fundamental
insight.

We start by considering the sign pattern of X%, we
do not fix any property of X yet. Indeed, note that
the median satisfies ;) sign (y,-/X; —,é) ~ 0 and so

2ie[n] Sign (yi - [§X,-) sign(X;) ~ 0. So a natural general-
ization to high dimensions is the following candidate esti-
mator

B= argmingcpa Hé%}f |%(sign y-Xp), sign(Xu))| .
u€eR“
2.4)

Such an estimator may be inefficient to compute, but
nonetheless it is instructive to reason about it. We may
assume X, B* are fixed, so that the randomness of the obser-
vations y1, . . ., y,, only depends on 7. Since for eachi € [n],
the distribution of 1; has median zero and as there are at
most n%? sign patterns in {sign(Xu) | u € R}, standard

e-net arguments show that with high probability

(sign (y - Xﬁ) , sign(Xu»( <0 (\/d_/n) . (25)

e
and hence
max 1 ‘(sign (n +X (,8* —ﬁ)) , sign(Xu))| <0 (W) .

Consider g(z) = 1 (sign (5 + Xz), sign(Xz)) < O (d/n) for
z € R%. Now the central observation is that for any z € R,

Eg(z)= 1 > Esign(n + (Xi,2)) - sign ((X;, 2))
n n

i€[n]

> 1 %" P(0 > sign((X;,2)) - 0 = — (X5, 2)])
i€[n]

> 1% Q(a)- min {1, (X, )]} .
i€[n]

By triangle inequality E g(z) < |g(z)| + |g(z) — Eg(z)| and
using a similar argument as in Eq. (2.5), with high probabil-
ity, for any z € R9,

()~ Eg(2)] < O (Va/n) .

Denote with z := 8* — B € R%. Consider g(z), thinking
of z € R? as a fixed vector. This allows us to easily study
E, g(z). On the other hand, since our bounds are based on &-
net argument, we don’t have to worry about the dependency
of z on 7.

So without any constraint on the measurement X we derived
the following inequality:

LS min (L (X 2)1) < 0 (V/@? n)

i€[n]

Now, our well-spread condition Eq. (1.2) will allow us to
relate 1 3 cp, min {1, [(X;, z)|} with £ 3. ,1(X;, z)? and
thus obtain a bound of the form

x (s -B)| <ot@w@m) . s

So far we glossed over the fact that Eq. (2.4) may be hard
to compute, however it is easy to see that we can replace
such estimator with some well-known efficient estimators
and keep a similar proof structure. For instance, one could
expect the LAD estimator

B = min [ly - Xll, @7

BeRD

to obtain comparable guarantees. For fixed d and « and

n tending to infinity this is indeed the case, as we know
by (Pollard, 1991) that such estimator recovers 8*. The
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Huber loss function also turns out to be a good proxy for
Eq. (2.4). Let g(u) := 1 Z ((I)' (g: + (X;,u)), Xu) where

lE n
®), : R — Ry is the Huber penalty function and z = 8*— B.
Exploiting only first order optimality conditions on 8 one
can show

Eg(2) < g() ~Eg(2)| < O (Vd/n) .

using a similar argument as the one mentioned for Eq. (2.5).
Following a similar proof structure as the one sketched
above, we can obtain a bound similar to Eq. (2.6). Note
that this approach crucially exploits the fact that the noise n
has median zero but does not rely on symmetry and so can
successfully obtain a good estimate of X" under weaker
noise assumptions.

2.3. Fast algorithms for Gaussian design

The one dimensional median approach introduced above
can be directly extended to high dimensional settings. This
essentially amounts to repeating the procedure for each co-
ordinate, thus resulting in an extremely simple and efficient
algorithm. More concretely:

Algorithm 1 Multivariate linear regression iteration via me-
dian
Input: (y, X) where y € R”, X € R"™“.
for all j € [d] do
for alli € [n] do
Compute z;; = 3~
end for
Let ,8] be the median of {zl J}
end for

Return j := (31, o /?d)T.

i€[n]

If X1,....,X, ~ N(0,Idy), the analysis of the one di-
mensional case shows that with high probability, for each
j € [d], the algorithm returns BJ satisfying (,8 ﬁj)2

o (Hliz” -log d). Summing up all the coordinate-wise

errors, Algorithm 1 returns a O (%ﬁﬂ?) -log d)-close es-

timation. This is better than a trivial estimate, but for large
||8*|| it is far from the O(d - log d/(a? - n)) error guarantees
we aim for. However, using bootstrapping we can indeed
improve the accuracy of the estimate. It suffices to iterate
log ||8*|| many times.

Algorithm 2 Multivariate linear regression via median

Input: (y, X,A) where X € R,y € R" and A is an
upper bound to ||8*|.

Randomly partition the samples y,..
O(ogA) sets Sy, ...,S;, such thatall Sy, ...,

sizes ® A) and S; has size |n/2].

foralli e [] do
Run Algorithm 1 on input

Z ﬁO)

J<i—-1

Yn In t =
S;_1 have

, Xs;

()’Si - Xs,

and let ,é(i) be the resulting estimator.
end for

Return 3 := (,él .. .,ﬁd)T.

As mentioned in Section 1.2, Algorithm 2 requires knowl-
edge of an upper bound A on the norm of 8*. The algorithm
only obtains meaningful guarantees for

d
n 2 — logA(logd +loglogA)
a

and as such works with nearly optimal (up to poly-
logarithmic terms) sample complexity whenever ||8*|| is
polynomial in d/a?.

In these settings, since each iteration i requires O (|S;| - d)
steps, Algorithm 2 runs in linear time O(n - d) and outputs a
vector B that with high probability satisfies

Remark (On learning the norm of 8*). As was noticed in
(Suggala et al., 2019), one can obtain a rough estimate of
the norm of n by projecting y onto the orthogonal com-
plement of the columns span of X[,,/2). Since the ordinary
least square estimator obtains an estimate with error A =
O(Vd ||n]| /n) with high probability, if ||77]| is polynomial in
the number of samples, we obtain a vector B s such that

2 d
* SO(Q—-logd).
a?-n

-B SH < A = n°W, The median algorithm can then

be applied on (y = Xn\[n/21(B" = Brs)+n. Xin\[n/2)> A)-
Note that since X, /2] and X[,]\[»/2] are independent, 8* —
BLS is independent of X[, }\[n/2]-
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