A Tale of Two Efficient and Informative Negative Sampling Distributions

A. DWTA Hash: Densified Winner Take All
Hash

DWTA (Chen & Shrivastava, 2018) hash maps the data into
a transformed space such that the hamming distance be-
tween vectors correlates with their rank similarity measure
in the original space. Traditional WTA hashing (Yagnik
et al., 2011) works by taking a vector x and applying a per-
mutation ©. The hash value is then taken as the index of the
largest of the first R values in the permutation ©(x). From
here we can use the standard (K, L) LSH parameterization
by simply computing the hash on K x L permutations of
the vector, or more efficiently, group a single permutation
into K x L bins and computing the hash as the index of
the largest component in each bin. The intuition behind
this hashing scheme is that it tends to group vectors based
on their largest components, which is useful in this type of
learning application in which we are interested in maximiz-
ing the inner product between two vectors. Densified WTA
hashing (DWTA) is an extension to standard WTA hash-
ing to improve its discriminative power on sparse datasets.
Classical WTA may fail on sparse datasets because it be-
comes likely that some bin of the permuted vector contains
no non-zero terms. DWTA uses densification to solve this
problem by looking at the bins that contain no non-zeros
and taking their hash to be the hash of the nearest bin that
does contain a non-zero component. It has been shown
(Chen & Shrivastava, 2018) that the collision probability of
DWTA is precisely the collision probability of WTA hash
for nonempty bins, irrespective of the sparsity.

B. Dataset

Amazon-670K dataset is a product recommendation dataset
with 670K labels. Each input is a vector representation of
a product, and the corresponding labels are other products
(among 670K choices) that a user might be interested in
purchase. This is an anonymized and aggregated behavior
data from Amazon and poses a significant challenge owing
to a large number of classes.

Wiki-325K dataset is extracted from Wikipedia and con-
sists of over 1.7 Million training samples, 1.6 Million sparse
feature dimension and 325K labels correspond to the cate-
gory of the instance.

ODP is extracted from Open Directory Project, a compre-
hensive human-edited directory of the Web. Each sample
in the dataset is a document, and the feature representation
is bag-of-words. The class label is the category associated
with the document.

Amazon-Uniform is a subsampled version of Amazon-
670K and its label distribution is near uniform. More details
are in Section 3.5.

C. Sparsity

The number of negative samples C' is more like a budget
hyperparameter for sparsity e.g. for Amazon-670K, we
set sparsity 0.05, meaning C' = 0.05/N, and we keep sam-
pling the buckets from hash tables till the sparsity budget
is exhausted and then we stop. Generally, C is independent
of N. For example, Wiki-325K has 325k classes and it
requires more sparsity (0.1) compared to Amazon-670K
which has twice the N (670k) where 0.05 sparsity is suf-
ficient to get the best accuracy. C is dependent on the
dataset and the hardness of classification. Also for ODP-
105K dataset C' = 0.04N, and for Amazon-Uniform dataset
C = 0.02N. Table 4 shows that both versions of our algo-
rithm performs surprisingly well even with extremely low
sparsity (0.005), while static-based methods such as Sam-
pled softmax enormously fails, and it requires at least 0.2
sparsity to hit even 35% accuracy.

Table 4. Impact of number of negative samples C' on P@1(%) for
Amazon-670K dataset.

C LSH Embedding | LSH Label | Sampled Softmax
0.006 N 334 32 16
0.06N 36.1 35.5 32.4

C.1. Impact of Number of Hash Tables

Tables 5 and 6 show the effect of the number of hash ta-
bles L on P@1 for Amazon-670K and Wiki-325K datasets.
Increasing number of hash tables helps the algorithm to re-
trieve the informative samples with higher probability, thus
improves the accuracy. However, it increases the average
training time per epoch proportionally.

Table 5. Impact of Number of Hash Tables on Amazon-670K

Num of Hash Tables | P@1(%) | Avg training time per epoch
L =100 34.5 Baseline
L =200 354 0.54x
L =300 35.7 0.36x
L =400 36 0.26x

Table 6. Impact of Number of Hash Tables on Wiki-325K

Num of Hash Tables | P@1(%) | Avg training time per epoch
L =100 534 Baseline
L =200 554 0.60x
L = 300 56.3 0.47x

There is a trade-off between increasing L and running time.
Increasing L improves the accuracy, however at some point
it reaches a saturation mode where the accuracy improve-
ment is slight comparing to the increase in time.

A Tale of Two Efficient and Informative Negative Sampling Distributions

C.2. Impact of Number of Hash Functions

Table 7 shows the impact of the number of hash functions on
accuracy for all datasets with the LSH Embedding scheme.
The number of hash functions K determines sampling qual-
ity. LNS with an optimal value of K retrieves informative
samples, while smaller K retrieves less informative and
low-quality samples, and larger values of K leads the algo-
rithm to miss the important and informative samples. For
instance, the optimal number of hash functions for Wiki-
325K is K = 5 which achieves higher accuracy than K = 4
or K =6.

Table 7. Impact of number of hash functions K on P@1(%)

Dataset K=4| K=5| K=6
Amazon-670 - 334 36.1
Wiki-325K 38.4 56.3 54.6
ODP-105K 16.5 16.8 154
Amaz-Uniform 22.1 23.1 22.8

