Fixed-Parameter and Approximation Algorithms for PCA with Outliers

5. Supplementary Material
5.1. Proof of Theorem 1.5

In this subsection we give the detailed proof of our hardness
result, Theorem 1.5, which we restate here for convenience.
Recall that ROBUST SUBSPACE RECOVERY is the special
case of PCA WITH OUTLIERS where the task is to represent
A exactly as the sum of a low-rank matrix and an outlier
matrix.

Theorem 1.5. There is no algorithm solving ROBUST SUB-
SPACE RECOVERY in time f(d) - n°? for any computable
Sfunction f of d, unless ETH fails.

Proof. We show a reduction from CLIQUE. First, we need
a set of points satisfying a certain generality condition.

Definition 5.1. For d < n, let us say that a set W C R? of
size n is in a forest-general position if for any forest F' such
that V(F) C W and |E(F)| plus the number of isolated
vertices in F' is exactly d, the set

vect F:={u+v |uv € E(F)}
U{w € V(F) | w is isolated in F},

is linearly independent and of size d.

Note that this definition extends the common notion of vec-
tors in a general linear position, which requires every d
vectors to be linearly independent, since F' can also be an
empty forest on d vertices. The next claim extends the
behavior in Definition 5.1 to forests of any size.

Claim 4. If a set W C R? is in a forest-general position,
for any forest F such that V(F) C W,

rank(vect(F)) = min(d, | vect(F)]).

Proof. If | vect(F')| = d, the claim is by definition.

If | vect(F')| > d, obtain a subforest F’ of I such that
| vect(F") = d|. This is always possible since removing
either an isolated vertex from F' or a leaf of a tree in F'
together with the incident edge decreases the size of vect(F')
by one. By Definition 5.1, vect F’ is linearly independent,
and since vect(F’) C vect(F'), they both have rank d.

If |vect(F)| < d, obtain F’ by adding isolated vertices
or edged in F such that vect(F’) = d. This is always
possible since d < n. By Definition 5.1, vect(F") is linearly
independent, and since vect(F') C vect(F"), vect(F') has
full rank. O

Finally, to use Definition 5.1 in our reduction, we need to
construct a corresponding set of points.

Claim 5. For any n and d, there exists a set of n vectors in
N® in a forest-general position such that the total bit-length
of the coordinates is bounded by poly(n + d).

Proof. Let W = {wy,ws, - ,wy,} be a set of n vectors
in R?. Assume that Definition 5.1 does not hold for W
and a particular forest F'. Then there exists a linear combi-
nation of vect(F') which is a zero vector. Without loss of
generality, V(F) = {wy,wa, -+ ,w }, leta = (a;)!_; be
the zero linear combination of vect(F'), treated as a linear
combination of vectors in V' (F'). We claim that M - a is a
zero vector for the ¢ x ¢ matrix M defined as follows. The
first d rows are the coordinates of w1, wo, ..., we, written
as columns. Since a is the zero linear combination of these
vectors, clearly each of these rows times a is zero. Next,
for every connected component C' of F' append a row r
such thatr; = 0ifw; ¢ C,andr; = +1 ifw; € C, and
for every edge of C' its endpoints have different signs, this
encodes a 2-coloring of C'. The orthogonality to a follows
from observing how a on the coordinates of C'is obtained
from the original linear combination of vect(F'). Note that
now we have exactly ¢ rows. Thus, Definition 5.1 does not
hold if and only if M is non-invertible.

Now, the way to construct the required set is to take the rows
of a Vandermonde matrix where the generating elements
are selected to be in a certain general position regarding the
differences between them, in this case it is possible to show
that every matrix of the form discussed above is invertible.
For the sake of brevity we omit this technical argument,
and instead explain the simple randomized procedure of
generating the set, which also shows why sets in a forest-
general position are common.

Let W be a set of n vectors in N¢ where each coordinate of
each vector is sampled independently and uniformly from
the set {1,---, N}, where N is a value we fix later. The
number of matrices which must be invertible by the observa-
tion above is at most d - () - d** - 227, since the matrix up
to permutations is defined by the number of components in
F (at most d), the choice of t vectors in W (at most (27:1)),
the partition of them into components (at most d2¢), and the
2-coloring on each component (at most 22¢). We bound the
probability that a fixed matrix is non-invertible, and then
apply union bound. For a fixed matrix M, we can treat the
process as follows. First we are given the ¢t —d rows obtained
from the components of the forest, and then we sample one
by one the d rows each composed out of ¢ coordinates of
vectors in W. For the first row, probability of falling into
the span of already existing rows is at most 1/N¢, for the
second it is 1/N?~!, and so on. Then the probability of
success for M is at least (1 —1/N)-(1—1/N?)--., which
could be lower-bounded by 1 — 1/(N — 1). By taking N
sufficiently large compared to the number of matrices, the
union bound is satisfied. Note that log N is polynomially

Fixed-Parameter and Approximation Algorithms for PCA with Outliers

bounded in n and d, and thus the total bit-length is also
polynomially bounded. O

Now we are ready to show the reduction. Assume that we
are given an instance (G, r) of CLIQUE with |V (G)| = n,
|E(G)| = m. Setd = r + 1, one larger than the size of the
clique to find. By Claim 3, obtain a set W = {wy,...,w,}
of n vectors in R? in a forest-general position.

Vectors from W are associated with vertices of G. Now
consider the matrix A where rows correspond to the edges
of G,

A = (w; +wj | {vi,v;} € E(G)).

The matrix A is the input matrix to ROBUST SUBSPACE
RECOVERY, the target rank is r, the number of outliers &
is set to m — (3). We claim that (G, r) is a yes-instance of
CLIQUE if and only if the constructed instance of ROBUST

SUBSPACE RECOVERY is a yes-instance.

To reformulate the objective of ROBUST SUBSPACE RE-
COVERY, an instance (A, r, k) is a yes-instance if and only
if there is a subset of n — k = (g) rows of A with rank
at most 7. The following claim shows how to identify the
rank just by the structure of the edges corresponding to the

selected rows.

Claim 6. The rank of any submatrix A’ C A obtained by
deleting rows from A is

max(d, [V (G(A"))|-
number of bipartite graphs among cc(G(A’))),

where G(A) is the subgraph of G such that its edges are
exactly the edges corresponding to the rows of A', and
its vertex set is the set of all endpoints of the edges, and
cc(G(A)) is the set of connected components of G(A).

Proof. We will modify A’ to vect(F') for a certain forest
F, by using elemental row operations which do not change
rank. Then Claim 4 finishes the proof.

The modification is performed on each connected compo-
nent of G(A') independently. Consider a set of rows C
which corresponds to the edges of a connected component
in G(A'). If G(M') contains an odd cycle, then from the
rows of C we can obtain all the underlying elements of W
by elimination: start from the row corresponding to one
edge of a cycle, iteratively subtract/add subsequent edges of
the cycle. In the end we are left with 2w, where w is a vector
in W which corresponds to the vertex of the cycle we started
the elimination from. After multiplication by 1/2 we have
one of the vertex vectors. Now by consequently subtracting
from the edge vectors along a spanning tree of G(C) we
can obtain all the vertex vectors of V/(G(C)). After zeroing
out the remaining edge vectors C is (w;|v; € V(G(C))),
up to permuting the rows and appending zero rows.

In the other case, if G(C) is bipartite, consider the matrix
S C C which corresponds to the edges of a spanning tree
T of G(C). Let uv be an edge of G(C) which is not in
T. Since G(C) is bipartite, u and v are connected by a
path in T" with odd number of edges. Then by consequently
adding/subtracting the edge vectors of this path we can
obtain the edge vector corresponding to wwv, in the same
fashion as in the previous case. Thus we can zero out all
rows of C except for S.

After dealing with each component, consider the forest '
where V(F) = V(G(A’)), and E(F) is the union of the
edges of all spanning trees picked during the modification
in the bipartite components. Thus, vertices of all the non-
bipartite components are isolated in F'. We claim that the
set of non-zero rows of matrix B obtained from A’ by
the modifications above is exactly vect(F'). Indeed, for
each non-bipartite component we obtained all the vertex
vectors while zeroing out everything else, and for each bi-
partite component we kept only the edge vectors of the
corresponding spanning tree. Now, since modifications are
rank-preserving,

rank(A’) = rank(B) = rank(vect(F))
= min(d, | vect(F)|)

by Claim 4. The size of vect(F’) by definition is the number
of isolated vertices in F' plus the number of edges in F/,
and that is equal to the number of vertices in F' minus the
number of non-trivial connected components in F', since F'
is a forest. Finally, we observe that |V (F)| = |V(G(A"))],
and bipartite components of G(A') are in one-to-one corre-
spondence with non-empty components of F', finishing the
proof of Claim 6.

O

With Claim 6 proven, we show that the only way to keep
at least (7) edge vectors in such a way that the rank is at
most 7, is to select the rows corresponding to the edges of
an r-clique. For any A’ C A, let K(A') = ralrﬁ:/k,, the
number of edges per unit of rank. We claim that & is strictly
maximized on an r-clique over all A’ C A which have rank

at most r.

r—1

For a matrix K corresponding to an r-clique, x(K) = 5
by Claim 6. Consider any A’ C A such that G(A’) is
connected. Since rank(A’) is at most r, there are two
possibilities by Claim 6. If G(A’) is a non-bipartite graph
on at most r vertices, it has less edges than an r-clique,
and so k(A’) < 5. Otherwise G(A’) is bipartite, and
|V(G(A"))| must be r + 1. Then there are at most (%)2
edges, so k(A') < I forr > 4.

To prove the statement for any A’ C A such that
rank(A’) < r, we do an induction on the number of con-

Fixed-Parameter and Approximation Algorithms for PCA with Outliers

nected components in G(A’). The base case when there is
only one connected component is already proven. Now,
consider A’ = B U C where G(C) is connected. By
Claim 6, rank(B U C) = rank(B) + rank(C), and also
|A’| = |B| + |C|. By the induction, |B|/rank(B) < 71,

and |C|/rank(C) < %52, so

B C -1
way_ B[O r—1
rank(B) + rank(C) 2
Thus, the rows selected have rank r if and only if they
correspond to an r-clique, which proves the correctness of
the reduction.

By (Chen et al., 2006), see also (Cygan et al., 2015), as-
suming ETH, there is no algorithm solving CLIQUE in time
f(r) - n°(") where r is the size of the clique, for any com-
putable function f of r. Since in our reduction d = r + 1,
the theorem follows.? O

Finally we note that since ROBUST SUBSPACE RECOVERY
is the zero-valued restriction of PCA WITH OUTLIERS, the
hardness of approximation for the latter easily follows from
Theorem 1.5.

Corollary 5.1. Assuming ETH, there is no algorithm ap-
proximating PCA WITH OUTLIERS with any multiplicative
guarantee in time f(d) - n°®.

Proof. An algorithm described in the statement could dis-
tinguish between OPT' < D and OPT > « - D for given
D, where « is the approximation guarantee which may de-
pend on the input instance. Then this algorithm could also
distinguish between OPT = 0 and OPT > 0, violating
Theorem 1.5. O

5.2. Proof of Theorem 1.1

‘We restate the theorem here for convenience.

Theorem 1.1. For every e > 0, an (1 + €)-approximate
solution to PCA WITH OUTLIERS can be found in time
n (rlogr) dO(l)

First, we recall the known results about column sampling.
We will use the ridge leverage score construction due to (Co-
hen et al., 2017). For a matrix A € R"*% and an index
i € [n] the i-th ridge leverage score of A is given as

7i(A) = a;. (ATA + \I)Ta;. T

where A = ||A — A,||%/k, and + denotes the Moore-
Penrose pseudoinverse of a matrix. The following statement
about sampling w.r.t. to ridge leverage scores is proven
in (Cohen et al., 2017).

2The same reduction also shows that ROBUST SUBSPACE RE-
COVERY is W[1]-hard when parameterized by (d,n — k).

Theorem 5.2 (Theorem 6 in (Cohen et al., 2017)). For
i € [n], let 7, > 7;,(A) be an overestimate for the i-th ridge
Lett — clog r/5) Z
any € > 0 and some suﬁ‘ictently large constcmt c. Construct
C by sampling t rows of A, each set to Fa, with proba-
bility p;. With probability 1 — 6, for any rank r orthogonal
projection X,

leverage score. Let p; = Z 7; for

(1-e)|A-AX][% < [|[C-CX[[E < (1+¢)||A-AX]|%.

Our objective will be to guess certain ridge leverage score
overestimates. For that, we will need a lemma bounding the
range of ridge leverage scores, following from (Cohen et al.,
2017).

Lemma 5.3.

< Xn:T,-(A < 2r

i=1

N | =

Proof. The upper bound is precisely given by Lemma 4
in (Cohen et al., 2017). For the lower bound,

n n CTZ'(A)2

i=1 0i(A)?

- UZ(A)2
; (AP + Z] r+103(A)2

> i oi(A)? NI
a i=r+1 (1 + %) Zj:r—i—l JJ(A)Q -1 +

3=
[\3\>—~

where the first equality is given by the proof of Lemma 4
in (Cohen et al., 2017), and then we lower bound the first r
terms of the sum by zero. O

Now we are ready to prove the main result of this section.

Proof of Theorem 1.1. The algorithm proceeds as follows.
Set T' = 6r, a sufficiently small g < € (to be defined later),

and t = MT where c is a sufficiently large constant
from the statement of Theorem 5.2. First, guess ¢ indices
{i1,...4;} in [n], each corresponding to a row in A. For

each index i in {41,...,%;}, guess a value 7; from the set
T = %, 23—11, ...,2r}, where ¢ is the smallest integer
such that 29 > n. Compose the matrix C € R¥*? from
the rows of A: for each j € [t], take the i;-th row of A
multiplied by \/%Tl By using the standard PCA algorithm,
find in polynomial time the optimal low-rank approximation
of C, i.e. the rank r orthogonal projection matrix X € R?*4
minimizing ||C — CX||2%. Construct the matrix N € R"*¢
such that it contains £ rows of A maximizing the distance
to the r-dimensional subspace corresponding to X, at the

Fixed-Parameter and Approximation Algorithms for PCA with Outliers

respective positions of these rows in A, and all the other
rows of N are zero rows. Set L to be (A — N)X. Finally,
return L and N minimizing the value ||A — L — N||% over
all guesses performed by the algorithm.

Correctness of the algorithm. Clearly, the matrices L and
N returned by the algorithm are subject to the constraints,
that rank L < r and N contains at most k£ non-zero rows,
thus it only remains to prove that the cost of the returned
solution is at most (1 + ¢) times the cost of the optimal
solution. Fix an optimal solution (L*, N*). Denote by
A* = A — N* the optimal inlier matrix, that is, the ma-
trix A where the outlier rows are replaced by zero rows.
Recall that for ¢ € [n], 7;(A*) is the i-th ridge leverage
score of A*. For each i € [n], denote by 7 the small-
est element of T that is at least 7;(A*), 7 is well-defined
since 7;(A*) is at most 2r by Lemma 5.3, and the set T
contains 2r. We show now that Z,?:l 7; 1s at most 1", and

thus the number of the sampled rows ¢ = CI%WT is
0

sufficiently large to apply Theorem 5.2. For each i € [n]
consider two cases. First, if 7;(A*) is at least the smallest
element of 77, then 7; < 27;(A*), as elements of the set
T are at factor two from each other. Over all such indices,
Yo7 <230 7i(A*) < 4r by Lemma 5.3. Second, if
7;(A*) is less than %, then 7; is set to this value, and the
sum of all such 7; is at most 2r as there are n < 27 values
in total. Summing the bounds for both cases, we get that

S <6r=T.

Now denote 6 = 1/2 and invoke Theorem 5.2 for A* with
the set values of 4, t, and 7; for each ¢ € [n], and with
the error parameter 9. With probability 1 — ¢, the sam-
pling procedure described in the statement of Theorem 5.2
succeeds. Since this probability is positive, there exists
a particular selection of ¢ rows that produces the desired
matrix. Thus the matrix C* composed of these rows and
reweighted according to Theorem 5.2, satisfies

(1 - eo)l[A" = A™X||% < [|C* — C* X[3)
< (1+<o)||A" = AX][F,

for any rank r orthogonal projection matrix X € R*9,
Denote the indices of these rows by 77, ..., ¢;. In one of the
branches, our algorithm considers the values i; = 77, ...,
iy =14y,and 7; = 7/ forall i € {i1,--- ,4:}. Thus the ma-
trix C constructed by our algorithm at this step is exactly the
matrix C* where every entry is multiplied by 1/4/> | 7.
Consider the orthogonal projection matrix X € R%*¢ that
provides the optimal rank & approximation of C, and also
of C* since these two matrices are identical up to multiply-
ing by a constant. Let X* be the projection matrix of the
optimal solution, that is, L* = A*X*. Then by (3), and
because X gives the best low-rank approximation for C*,

we have that

* * 1 * *
A" = AX|[7 < T—IC" - C"X][%

— &0
1

< C* — C*X* 2 4

<l I @

1+ ¢ 2 14 €9
< A" — A*XY||7 < OPT.

Finally, denote A’ = A — N. Let us note that both A’
and A* contain certain (n — k) rows of A, but A’ contains
precisely the (n — k) rows that incur the smallest loss w.r.t.
X. Therefore,

|A" = A’X|[} < [[A" — A*X][%. (5)
Since L is exactly A’X, by (4) and (5), we have

14¢9
1—50

|[A -L-NJ|% < OPT.

Setting £g = O(¢) so that f_rgg is at most 1 + ¢, concludes
the proof of correctness.

Running time. The algorithm consider n choices for each
of the ¢ values 41, ..., i, and O(log n) choices for each of
the ¢ values 7;,., ..., 7;,, where t = O(rlogr/e?). For each
choice, the optimal low-rank approximation and the outliers
are found in polynomial time. Thus, the total running time
of the algorithm is upper-bounded by

(nlogn)®® poly(nd) = n®os r/e?) poly(d).

5.3. Proof of Theorem 1.4

In this section we prove Theorem 1.4 that RoO-
BUST SUBSPACE RECOVERY is solvable in time
2(9(min{k,7’ log r}-(log r+logk)) . (nd)O(l) The algorithm we
give is almost identical to the algorithm of (Fomin et al.,
2018b) for the MATRIX RIGIDITY problem. We provide
here full details for completeness.

Let us remind that in ROBUST SUBSPACE RECOVERY, we
are given a matrix A € R"*¢, whose rows correspond to
the data points, and integers 7, k. The question is whether
there are matrices L and NN such that A = L + N, the
rank of L is at most », and N has at most £ non-zero rows.
Equivalently, the question is whether it is possible to delete
at most k rows of A such that the resulting matrix is of rank
at most r.

We need the following observation: For every set X of r + 1
independent rows of matrix A, at least one row from X is
an outlier. In other words,

Fixed-Parameter and Approximation Algorithms for PCA with Outliers

Proposition 5.4. Let X be a set of indices of r + 1 indepen-
dent rows of A. Then for every optimal solution (L, N), at
least one index from X is the index of a non-zero row of N.

Proof. The rank of L is at most r, thus L cannot contain
more than r independent rows. O

The crux of the algorithm is in the procedure that for an input
(A, r, k) of ROBUST SUBSPACE RECOVERY in polynomial
time constructs an equivalent instance (A, r, k), with matrix
A containing at most (r + 1)(k + 1) rows. We assume that
the rank of A is more than r, otherwise L = A is trivially a
solution. We also assume that n > (r + 1)(k + 1) because
otherwise we can put A = A. The procedure runs in two
steps.

First, we find pairwise disjoint sets Ry, . .., R; of rows in A.
Each set I?; consists of r+1 independent rows. We construct
such sets greedily by picking a set of + 1 independent rows
and deleting them from A until the rank of the remaining
rows will be at most r. By Proposition 5.4, each of these
sets R; contains at least one outlier. Thus if ¢ > k, the
rank of A cannot be reduced to r by deleting k rows, hence
(A, r, k) is a no-instance.

Second, from the remaining rows of A, that is, the rows
that are not in R; U --- U Ry, we select pairwise disjoint
sets Ryy1,..., Ri4+1 as follows. For¢ > ¢ + 1 let M; be
the rows of A that are notin Ry U --- U R;_1. Then R;
is a subset of M; forming its basis. Note that | R;| < r for
t>t+ 1.

Finally, the matrix A is the matrix whose rows are Ry U
-+ U Rp41. At every step of the construction of A we find
an independent set of rows and thus the total running time
is polynomial. Since every set R; contains at most r + 1
row, matrix A contains at most (4 1) - (k + 1) rows. Thus
what remains is to show the equivalence of both instances.

Lemma 5.5. (A, r, k) is a yes-instance of ROBUST SUB-
SPACE RECOVERY if and only if (A, r, k) is a yes-instance.

Proof. In one direction the proof is trivial. If the rank of A
can be reduced to r by deleting at most k rows, the same is
true for A.

For the opposite direction. Let O be the set of outliers, that
is, the set of rows of A of size at most k whose removal
decreases the rank of the matrix down to . The rows of ma-
trix A are partitioned into the rows of A and the remaining
rows, which we denote by M. (By slightly abusing notation,
we do not distinguish a matrix and a set of rows forming
this matrix.) We claim that removing rows of O from A
also reduces its rank to r. Targeting a contradiction, let us
assume that this is not true. Then A \ O contains a set X of
r + 1 linearly independent rows.

The rows of A are RiU---URU---URy4+1. Because
|O| < k, by the pigeonhole principle, there is R; that does
not contain a row from O. For ¢ < ¢, each R; consists of
r+ 1 independent rows, and by Proposition 5.4 must contain
at least one row from O. This means that at least one R;,
1 > t, contains no row from O. But by the construction
of sets R; for ¢ > t, the set of rows M is in the span of
R;. Hence the set X’ = (X N A)UR; C A\ O contains
r + 1 linearly independent rows of A \ O , which is a
contradiction. O

Finally, to prove Theorem 1.4, for input (A, r, k), we con-
struct an equivalent instance (A, r, k), where A contains
at most (r 4+ 1)(k + 1) rows. For each subset of rows of
A of size k, we check whether removal of this set results
in a matrix of rank at most r. If we found such a set O,
by Lemma 5.5, the same rows are outliers for A as well.
If we did not find a set of outliers for A, we can safely
conclude that (A, r, k) is a no-instance. Construction of
the reduced instance can be done in polynomial time, and
the number of all subsets of rows of A of size k, does not
exceed (("TH(FD) = 90(k(logr+log k) Hence the total
running time is 20 (*(log7+log k) . () O (1)

Alternatively, instead of trying all subsets of k rows of A,
we can run the algorithm of Theorem 1.1 on the instance
(A, r, k) with the error parameter ¢ set to an arbitrary con-
stant. Recall that by Theorem 1.1 an (1 + ¢)-approximate
solution to PCA WITH OUTLIERS can be found in time
n®E) . 4O Since an instance of ROBUST SUBSPACE
RECOVERY is a yes-instance if and only if it has the objec-
tive value of zero as an instance of PCA WITH OUTLIERS,
a constant-factor approximation for PCA WITH OUTLIERS
suffices for solving ROBUST SUBSPACE RECOVERY ex-
actly. Thus the whole algorithm for ROBUST SUBSPACE
RECOVERY finishes in time 20(71og r(log r+log k) (1) O(1)
as there are at most (r + 1)(k + 1) rows in the matrix A.
The running time of 2(’)(min{k,r log r}-(log r+logk)) . (nd)(’)(l)
follows by combining the above two algorithms.

5.4. Proof of Theorem 2.2

Let (a) X; = argmin, ||a™$ —xTVSH§ and (b) X; =
arg min, HaT - XTVH; Since S is a e-embedding for
col([VT|a]), we have

(1—e)dist?(@T, V) =
(By (b))
< ||aTs — VS|
= dist’(aTs, VS).
Similarly, we have

dist?(a”S, VS) = ||aTS — xF VS|

Fixed-Parameter and Approximation Algorithms for PCA with Outliers

< ||aTs - VS| (By (a))
< (1+¢e)|aT - %V
= (14 ¢)dist*(aT, V).
which gives us
(1 —e)dist*(aT, V) < dist?(aTs, VS)
< (1+¢)dist*(a™, V).

5.5. Proof of Theorem 2.3

First we state the following theorem from (Clarkson &
Woodruff, 2013), see Theorem 39, which gives sufficient
conditions for S to be a e-affine embedding

Theorem 5.6. Let U € R"™*" and B € R"*? then S €
R$*" s a 3e-affine embedding for (U, B) if the following
event occurs

1. Subspace Embedding: S is a subspace embedding for
column space of U.

2. Approximate Matrix Multiplication: For arbitrary fixed
matrices A and B of n rows we have

2
|ATSTSB - ATB|}. < = AL B}

3. Preserve Matrix Norm: For arbitrary fixed matrix A
2 2
of n rows [SA% = (1) | A]l2

The next two lemmas show that random Gaussian matrices
satisfy condition (2) and (3) of above theorem.

Lemma 5.7. Let 0 < €,6 < land S = ﬁG € Rsxn
where the entries of matrix G are independent standard
normal random variables. Then for s = O(Z log(1/6))

Prs(||ATSTSB — ATB|% < 2 |A[% B|%) > 16

Proof. Proof follows from Theorem 6.2 and Remark 6.3
from (Kane & Nelson, 2014).]

For the next lemma, we use following inequality form (Han-
son & Wright, 1971)

Theorem 5.8. (Hanson-Wright Inequality) Let g € R" be a
vector of standard normal random variables and A € R™*"™
then there exist a constant C' > 0 such that for all € > 0

Prq(|g"Ag—E[gTAg]| >) < e O /IAlE 1 c=Cc/ 1Al

Lemma 5.9. Let 0 < €,06 < land S = ﬁG € Rsxn
where the entries of matrix G are independent standard
normal random variables. Then for s = O(Z5 log(1/9)),
for any fixed arbitrary matrix A of n rows

2 2 2
Prs(|ISAl[p = [Allp| < cl[Allp) =1 =6

Proof. First we show that E[HSAH%] = ||A||;
Es[|SA|%] = Es[tr(ATSTSA)]
=tr(ATEs[STS]A)

= tr(ATI,A) = [|A[I%

Now let g; € R"™ denote the i-th row of G. Let X; =
gFAATg and X = 1 377 | X;. Then observe that

9 1 S - T 1 S
[SA[F = gzgi AA“gi = ;ZXi =X
i=1 i=1
Using Hanson-Wright Inequality we have that for ¢ < 1

gTAATg; — E[gTAATg)| > ¢ |Al})

< 67062 + e*CE < 2€7C62

Prgi(

Which tell us that X is a sub-Gaussian random variable
and that X = HSA||§ is an average of s independent sub-
Gaussian random variables. Using Chernoff tail-inequality
for sub-Gaussian random variables

Prs(|[ISA% — |A]%| > < |Al3)
= Prs(X — E[X]| > ¢ |A|}) <€) <6

Combining the above two lemmas with Theorem 2.1 com-
pletes the proof of 2.3 O

