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S1. Proofs

Proposition S1. Let P,(2) be the set of Borel probability
measures with finite p’th moment on metric space (Q,d).

The maximum K-sliced p-Wasserstein distance is a metric
over P,(Q).

Proof. We firstly prove the triangle inequality. Let uq,
p2 and p3 be probability measures in P,(£2) with prob-
ability density function p;, p2 and ps, respectively. Let

{9* e 0;(} = arg maX{Ql,--- ,0K } orthonormal
(% AL WR(Rp1) (00, (Rps) (1)) then
max -K-SWp,(p1,p3)
- max
{61, ,0k} orthonormal

3 =

( ZW (Rp1)(

g

,0k), (Rp3) (-, 9k))>

P

==
(]~ f

=
I
—

WE((Rp1)(-, 65), (Rps) (- 972)))

(Wp((Rp1)(-, 65), (Rp2) (-, 0x))

IA
N
= -
M=

k=1

1
P

+W(Rp2) (-, 05), (Rps) (-, 92))]p>

[

B =

(ShH

i MHN

W;)((Rpl)('v 0r), (Rp2)(-, 975)))

o=

K
<KZWP Rp2 ;:)a(RPS)(aQZ))>

max
{017 -+ ,0k } orthonormal

K P
(Il( Y WE(Rp1)(, 08)s (Rpa) (-, 9@))

max
{61, 0Kk} orthonormal

3 =

K
([1( Z W2 (Rp2) (-, 0k), (Rps) (-, 9k))>

k=1
=max -K-SW,(p1,p2) + max-K-SW,(p2, p3),

On the other hand, let {é 52, .
mal vectors in S?~! where the ﬁrst element is 0 we have

where the first inequality comes from the triangle inequality
of Wasserstein distance, and the second inequality follows
Minkowski inequality. Therefore max -K-SW,, satisfies
the triangle inequality.

Now we prove the identity of indiscernibles. For any proba-
bility measures 11 and o in P,(§2) with probability density
fAunction p1 and po, let
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11 = W2, where we use the non-negativity and identity of
indiscernibles of max -SW)p,.

Finally, the symmetry of max - K-SW,, can be proven using
the fact that p-Wasserstein distance is symmetric:
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Proof of Equation 10. Let {01,--- ,0k,--- ,04} be a set

of orthonormal basis in R¢ where the first K vectors
are 61, --,0k, respectively. Let B; = [0, --,04]
be an orthogonal matrix whose i-th column vector is 6;,
U = [0k+1, - ,04]. Since A; = [0, ,0k], we have
R; = [A;,U)] (the concatenation of columns of A and
U). Let 197K = [idy,--- ,idg_x]” be a marginal trans-
formation that consists of d — K 1D identity transformation,

U, = {I;Iil[(},we have
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Since R; is an orthogonal matrix with determingnt +1, and
the Jacobian of the marginal transformation ¥, is diago-

nal, the Jacobian determinant of the above equation can be
written as
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S2. Monotonic Rational Quadratic Spline

Monotonic Rational Quadratic Splines (Gregory & Del-
bourgo, 1982; Durkan et al., 2019) approximate the function
in each bin with the quotient of two quadratic polynomials.
They are monotonic, contineously differentiable, and can be
inverted analytically. The splines are parametrized by the co-
ordinates and derivatives of M knots: {(Z, Ym, ¥ ) }M_1,
with Zn1 > T, Ymt1 > Ym and y),, > 0. Given these
parameters, the function in bin m can be written as (Durkan
etal., 2019)
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where s, = (Ym+1 — Ym)/(Tm+1 — Tm), Om = Ypy1 +
Yy, —28m and £ = (x — ) /(Tyt1 — Tm)- The derivative
is given by

dy Sy lYpns1 &+ 25mE(1 = &) +yr,(1 =€)

= . (S8
da [5m + TmE(1— )2 %)
Finally, the inverse can be calculated with
2c
T =Ty, + (T, —T) —— F——, S9
I -y vl
where = (5,1 — ) + CTme b = Yl — COms € = €

and ¢ = (¥ — Ym)/(Ym+1 — Ym)- The derivation of these
formula can be found in Appendix A of Durkan et al. (2019).

In our algorithm the coordinates of the knots are determined
by the quantiles of the marginalized PDF (see Algorithm
2). The derivative 4}, (1 < m < M) is determined by
fitting a local quadratic polynomial to the neighboring knots

(mmfla ymfl)y (-Tm7 ym), and (l‘erl, merl):
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The function outside [x1, x /] is linearly extrapolated with

slopes v and y,. In SIG, y} and v}, are fixed to 1, while in
GIS they are fitted to the samples that fall outside [z, 2 p/].

We use M = 400 knots in SIG to interpolate each ¥, i,
while in GIS we allow M to vary between [50, 200], depend-
ing on the dataset size M = \/Ni;ain- The performance is
insensitive to these choices, as long as M is large enough to
fully characterize the 1D transformation U ;..

S3. Optimization on the Stiefel Manifold

The calculation of max K-SWD (Equation 7) requires opti-

mization under the constraints that {6;,--- ,0x} are or-
thonormal vectors, or equivalently, ATA = Iy where
A = [0y, - ,0k] is the matrix whose i-th column vec-

tor is 6;. As suggested by Tagare (2011), the optimization
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of matrix A can be performed by doing gradient ascent on
the Stiefel Manifold:

A1) = (Id + gBm)_l (Id - gBm) Agy, (S1D

where A ;) is the weight matrix at gradient descent iteration
7 (which is different from the iteration [ of the algorithm),
7 is the learning rate, which is determined by backtrack-
ing line search, B = GAT — AGT, and G is the negative
gradient matrix G = [— aZf q] € R¥K_ Equation S11

has the properties that A(jH)y € Vi (R%), and that the tan-

dA, . . . .
gent vector “=S2 | is the projection of gradient [557—]
P,q

onto T4, (Vi (R?)) (the tangent space of Vi (R%) at Ay
under the canonical inner product (Tagare, 2011).

However, Equation S11 requires the inverse of a d x d matrix,
which is computationally expensive in high dimensions.
The matrix inverse can be simplified using the Sherman-
Morrison-Woodbury formula, which results in the following
equation (Tagare, 2011):
r
Ay = A = UG (Bx + 5VETG) VG AG),

(S12)
where U = [G, A] (the concatenation of columns of G
and A) and V = [A, —G]. Equation S12 only involves
the inverse of a 2K x 2K matrix. For high dimensional
data (e.g. images), we use a relatively small K to avoid the
inverse of large matrices. A large K leads to faster training,
but one would converge to similar results with a small K
using more iterations. In Appendix S4 we show that the
convergence is insensitive to the choice of K.

S4. Hyperparameter Study and Ablation
Analysis

Here we study the sensitivity of SINF to hyperparameters
and perform ablation analyses.

S4.1. Hyperparameter K, Objective Function, and
Patch-Based Approach

We firstly test the convergence of SIG on MNIST dataset
with different K choices. We measure the SWD (Equation
5) and max SWD (Equation 6) between the test data and
model samples for different iterations (without patch based
hierarchical modeling). The results are presented in Figure
S1. The SWD is measured with 10000 Monte Carlo samples
and averaged over 10 times. The max SWD is measured
with Algorithm 1 (X = 1) using different starting points
in order to find the global maximum. We also measure
the SWD and max SWD between the training data and
test data, which gives an estimate of the noise level arising
from the finite number of test data. For the range of K we
consider (1 < K < 128), all tests we perform converges
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Figure S1. Sliced Wasserstein Distance (SWD, top panel) and Max-
Sliced Wasserstein Distance (max SWD, bottom panel) between
the MNIST test data and model samples as a function of total
number of marginal transformations. The legend in the top panel
also applies to the bottom panel. The SWD and max SWD between
the training data and test data is shown in the horizontal solid black
lines. The lines with "random" indicate that the axes are randomly
chosen (like RBIG) instead of using the axes of max K-SWD. We
also test K = 2, 4, 8, 32, and 64. Their curves overlap with
K =1, 16 and 128 and are not shown in the plot.

to the noise level, and the convergence is insensitive to the
choice of K, but mostly depends on the total number of 1D
transformations (Niger - /). As a comparison, we also try
running SIG with random orthogonal axes per iteration, and
for MNIST, our greedy algorithm converges with two orders
of magnitude fewer marginal transformations than random
orthogonal axes (Figure S1).

For K = 1, the objective function (Equation 11) is the same
as max SWD, so one would expect that the max SWD be-
tween the data and the model distribution keep decreasing
as the iteration number increases. For K > 1, the max
K-SWD is bounded by max SWD (Equation S2 and S3)
so one would also expect similar behavior. However, from
Figure S1 we find that max SWD stays constant in the first
400 iterations. This is because SIG fails to find the global
maximum of the objective function in those iterations, i.e.,
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Figure S2. Top panel: SIG samples with random axes (K = 64).
Middle panel: SIG samples with optimized axes () = 64). Bot-
tom panel: SIG samples with optimized axes and patch based
hierarchical approach. The numbers above each panel indicate the
number of marginal transformations.

—— Ndim = 10

100 4
[a]
=
%]
X
©
€ 10—1 4

1072 4+ T r
103 10* 10°

Nsample

Figure S3. The measured maximum sliced Wasserstein distance
between two Gaussian datasets as a function of number of samples.
10 different starting points are used to find the global maximum.

the algorithm converges at some local maximum that is
almost perpendicular to the global maximum in the high
dimensional space, and therefore the max SWD is almost
unchanged. This suggests that our algorithm does not re-
quire global optimization of A at each iteration: even if we
find only a local maximum, it can be compensated with sub-
sequent iterations. Therefore our model is insensitive to the
initialization and random seeds. This is very different from
the standard non-convex loss function optimization in deep
learning with a fixed number of layers, where the random
seeds often make a big difference (Lucic et al., 2018).

In Figure S2 we show the samples of SIG of random axes,
optimized axes and hierarchical approach. On the one hand,
the sample quality of SIG with optimized axes is better than
that of random axes, suggesting that our proposed objective

max K-SWD improves both the efficiency and the accuracy
of the modeling. On the other hand, SIG with optimized
axes has reached the noise level on both SWD and max
SWD at around 2000 marginal transformations (Figure S1),
but the samples are not good at that point, and further in-
creasing the number of 1D transformations from 2000 to
200000 does not significantly improve the sample quality.
At this stage the objective function of Equation 11 is domi-
nated by the noise from finite sample size, and the optimized
axes are nearly random, which significantly limits the ef-
ficiency of our algorithm. To better understand this noise,
we do a simple experiment by sampling two sets of samples
from the standard normal distribution A/(0, I') and measur-
ing the max SWD using the samples. The true distance
should be zero, and any nonzero value is caused by the finite
number of samples. In Figure S3 we show the measured
max SWD as a function of sample size and dimensional-
ity. For small number of samples and high dimensionality,
the measured max SWD is quite large, suggesting that we
can easily find an axis where the marginalized PDF of the
two sets of samples are significantly different, while their
underlying distribution are actually the same. Because of
this sample noise, once the generated and the target distribu-
tion are close to each other (the max K-SWD reached the
noise level), the optimized axes becomes random and the
algorithm becomes inefficient. To reduce the noise level,
one needs to either increase the size of training data or de-
crease the dimensionality of the problem. The former can
be achieved with data augmentation. In this study we adopt
the second approach, i.e., we effectively reduce the dimen-
sionality of the modeling with a patch based hierarchical
approach. The corresponding samples are shown in the
bottom panel of Figure S2. We see that the sample quality
keeps improving after 2000 marginal transformations, be-
cause the patch based approach reduces the effective noise
level.

S4.2. Effects of Regularization Parameter « in Density
Estimation
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Figure S4. Test log-likelihood (left panel) and number of itera-

tions (right panel) as a function of regularization parameter « on
POWER dataset.

To explore the effect of regularization parameter o, we train



Sliced Iterative Normalizing Flows

GIS on POWER dataset with different . We keep adding
iterations until the log-likelihood of validation set stops im-
proving. The final test log p and the number of iterations
are shown in Figure S4. We see that with a larger «, the
algorithm gets better density estimation performance, at the
cost of taking more iterations to converge. Setting the regu-
larization parameter « is a trade-off between performance
and computational cost.

SS. Experimental Details

The hyperparameters of GIS include the number of axes per
iteration K, the regularization «, and the KDE kernel width
factor b. We have two different « values: @ = (a1, as),
where o regularizes the rational quadratic splines, and a
regularizes the linear extrapolations. The KDE kernel width
o is determined by the Scott’s rule (Scott, 2015):

o =bN""?04ata, (513)

where N is the number of training data, and gg,t, is the
standard deviation of the data marginalized distribution.

The hyperparameters for density-estimation results in Ta-
ble 2 are shown in Table S1. K is determined by K =
min(8,d). For BSDS300 we first whiten the data before
applying GIS. For high dimensional image datasets MNIST
and Fashion-MNIST, we add patch-based iterations with
patch size ¢ = 4 and ¢ = 2 alternately. Logit transforma-
tion is used as data preprocessing. For all of the datasets,
we keep adding iterations until the validation log p stops
improving.

For density estimation of small datasets, we use the follow-
ing hyperparameter choices for large regularization setting:
b=1, K =min(8,d),

a = (1 — 0.02logy9(Ntrain), 1 — 0.00110g;o(Nirain))-
While for low regularization setting we use b = 2 and
a = (0,1 —0.011og;¢(Ntrain))- The size of the validation
set is 30% of the training set size. All results are averaged
over 5 different realizations.

The hyperparameters of SIG include the number of axes
per iteration K, and the patch size for each iteration, if the
patch-based approach is adopted. We show the SIG hyper-
parameters for modeling image datasets in Table S2. As
discussed in Section 3.5, the basic idea of setting the archi-
tecture is to start from the entire image, and then gradually
decrease the patch size until ¢ = 2. An illustration of the
patch-based hierarchical approach is shown in Figure S5.
We set K = q or K = 2q, depending on the datasets and
the depth of the patch. For each patch size we add 100 or
200 iterations.

For OOD results in Section 5.4, we train SIG and GIS
on Fashion-MNIST with K = 56. GIS is trained with
b =1 and a = 0.9 (the results are insensitive to all these

qg=38p=1

Figure S5. llustration of the hierarchical modeling of an S = 8
image. The patch size starts from ¢ = 8 and gradually decreases
toq = 2.

hyperparameter choices). We do not use logit transformation
preprocessing, as it overamplifies the importance of pixels
with low variance. The number of iterations are determined
by optimizing the validation log p. For SIG, which cannot
produce good log p, the results shown in Table 5 use 100
iterations, but we verify they do not depend on this choice
and are stable up to thousands of iterations.
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Table S1. GIS hyperparameters for density-estimation results in Table 2.

Hyperparameter | POWER ~ GAS ~ HEPMASS MINIBOONE  BSDS300 | MNIST Fashion
8(¢g=4) 8(@=49

K 6 8 8 8 8
4g=2) 4(@q=2)
a = (a1, a) 0.9,0.9) (0.9,0.9) (0.95,0.99) (0.95,0.999) (0.95,0.95) | (0.9,0.99) (0.9, 0.99)
b 2 1 1 2 5 1 1

Table S2. The architectures of SIG for modeling different image datasets in Section 5.2. The architecture is reported in the format of
(¢* - ¢, K) x L, where q is the side length of the patch, c is the depth of the patch, K is the number of marginal transformations per patch,
and L is the number of iterations for that patch size. MNIST and Fashion-MNIST share the same architecture.

| MNIST / Fashion-MNIST CIFAR-10 CelebA

(282 - 1,56) x 100 (322 -3,64) x 200 (642 - 3,128) x 200

(142 -1,28) x 100 (162 -3,32) x 200  (322-3,64) x 200
(7% -1,14) x 100 (82-3,16) x 200 (162 - 3,32) x 200
(62-1,12) x 100 (8%2-1,8) x 100 (8%-3,16) x 200
(52 -1,10) x 100 (72 -3,14) x 200 (82-1,8) x 100
(4% -1,8) x 100 (7%-1,7) x 100 (7% -3,14) x 200
(32-1,6) x 100 (62 -3,12) x 200 (72-1,7) x 100
(22-1,4) x 100 (62 -1,6) x 100 (62 -3,12) x 200

architecture (52-3,10) x 200 (62-1,6) x 100

(5% -1,5) x 100 (5% - 3,10) x 200
(42 - 3,8) x 200 (52 -1,5) x 100
(4% -1,4) x 100 (4% - 3,8) x 200
(32-3,6) x 200 (42 -1,4) x 100
(3%2-1,3) x 100 (32-3,6) x 200
(22 -3,4) x 200 (32-1,3) x 100
(22-1,2) x 100 (22-3,6) x 100

Total number of iterations Lj;e, 800 2500 2500




