Demonstration-Conditioned Reinforcement Learning for Few-Shot Imitation:
Supplementary Material

1. Introduction

This document has a similar order to the main paper. We begin with the DCRL method (Section 2), discussing the
equivalence between few-shot imitation agents and demonstration-conditioned policies, and the complexity of encoder
layers with axial attention. Then we present our experimental settings (Section 3), including all hyperparameters for the
proposed transformer-based policy network, and all training procedures. Finally, we give details of the Markov decision
processes, task-by-task breakdowns of the returns and success rates, and ¢t-SNE plots of the representations learned, for all
experiments with the Meta-World manipulation benchmark (Section 4) and the navigation benchmark (Section 5).

2. Method

2.1. Equivalence of o and 7

In Section 3.1 of the main paper, we stated that few-shot imitation agents are equivalent to demonstration-conditioned
policies, under certain assumptions. Here, we explain this statement in more detail, using notation defined in Section 3 of
the main paper.

Consider an agent o : D — II and a demonstration-conditioned policy that assigns probability mass or density 7(a|h, d) to
action a € A, given history i € H and collection of demonstrations d € D. As a(d) is a policy, it follows that a(d)(h) is
a distribution over actions, for any history h. So, informally one might think of a(d)(h) and 7 (-|h, d) as being related by
currying the argument h'.

Formally, a probability distribution is a measure that assigns a number in [0, 1], to any measurable set M, which represents
the probability that the outcome is in set M. In our case, a(d)(h)(M) is the probability that the agent takes an action that lies
in a measurable set M C A. If the set of actions .A is a finite set, then the distribution defines a probability mass function, so
the equivalence is a(d)(h)(a) = 7(a|h, d). However, in many real-world problems, it is natural to think of .4 as an infinite
set. For instance, .A might be the set of generalized forces that may be applied by a robot’s actuators. Now, a distribution
over an infinite set might have neither a probability density nor a probability mass function, one well-known example of
such a distribution being the Cantor distribution. For those agents o whose distributions are given by a probability density
function, the equivalence is that a(d)(h)(M) = [, w(a|h,d) da for any measurable set M C A.

2.2. Complexity of the Encoder Layers with Axial Attention

Standard Encoder Layer. The complexity of the computations in a single head of an encoder layer, with no axial
attention, may be decomposed as follows. We consider an input X € R™*H weights W@, WK WV ¢ RHxH,
intermediate variables 77,75, and output Y.

Variable Operations Memory
Q=XW@ O(mH?) mxH
K=XWX O(mH?) mxH
V=XxXWw" O(mH?*) mxH
T'=QK"/VH O(m*H) mxm
Ty, = softmax(Ty) O(m?) mxm
Y =TV O(m?H) mxH

!Currying means converting a function that takes multiple arguments, into a sequence of functions that each take a single argument,
for example, f(a, b, c) becomes g(a)(b)(c)

Demonstration-Conditioned Reinforcement Learning

Thus, the total number of operations is O(Hm(H + m)). For backpropagation we must store X, W@ WX WV and the
other intermediate results, so the memory required for backpropagation is O((H + m)?), if we treat the batch size as fixed.

Axial Attention. Now let us find the complexity of applying a single head of an encoder layer with axial attention to a
multi-dimensional input X, resulting in a multi-dimensional output Y, where X, Y € Rf*-fa-1xH For each dimension k
where 0 < k < d, we proceed as follows.

for each value of the indices iq, ..., %—1,%+1,-- -, %d—1
let X € R%*H be the submatrix of X with components X;, ; = Xz‘o...id,lj
let Y be the result of applying the above standard encoder layer calculation to X

set the submatrix [Yi, i, ilo<i,<t,.0<j<w equalto Y

Applying the result for the standard encoder layer given above, with m = £, multiplying by the number of values

for the indices other than iy, then summing over k£ gives the total complexity for an encoder layer with axial atten-
tion. The total number of operations is O (H (|) (Hd + Z 04;)), and the memory for backpropagation is
O Z;é (Hi:O§i<d,i;£k 0;)(H + €1,)?).If H is fixed, both complexmes simplify to O((H?;O1 ;) 2221 05), which com-

7=0
pares favourably to the O(]_[jl:_o1 £2) complexity without axial attention.

2.3. Detailed Network Architecture

Figure 2 of the main paper showed a simplified view of our proposed demonstration-conditioned transformer-based policy
network. Figure 1 shows that architecture in more detail.

e=0(d)e&

Average pooling
[Cross-demonstration a; € A VieR
encoder layer [I

[Add and norm
T

head head

Feedforward J
Temparaf\ /
(Addandnorm] "ec‘ifi’aye’

Cross-demonstration]

[MLP policy] [MLP value J

Add and norm
T

multi-head attention

[
J/ [Feedforward

L o< \ .
Temporal encoder layer
'y (" Addand norm ™ (Add and norm)
Temporal mult| head Lx
Feedforward
cross-attentlon
(Add and norm | (Add and norm]
[Temporal multi-head] [Masked temporal J
| attention multi-head attention
\\- - 4
2D positional 1D positional
encoding encoding
d = (d ljn

Figure 1. Architecture of proposed transformer-based policy with axial attention.

Demonstration-Conditioned Reinforcement Learning

3. Experimental Settings

3.1. Hyperparameters

Table 1. Hyperparameters of the proposed transformer-based policy network.

Hyperparameter Value
Hidden dimension, H 64
Number of heads 8
Feedforward dimension 512
Activation function ReLU
Number of cross-demonstration encoder layers, L 2
Number of temporal encoder layers, L 2
Number of decoder layers, L 2
Number of policy layers 3
Number of hidden units in policy layers 64, 64, dim(.A)
Number of critic layers 3
Number of hidden units in critic layers 64, 64, 1

Table 1 presents the hyperparameters of the proposed transformer-based architecture, used in our experiments with DCRL
and the DCBC baselines. Compared with transformer-based language models (Vaswani et al., 2017; Brown et al., 2020), the
proposed model is small, especially in its hidden dimension H and the number of layers L. There is room for improvement,
as we did not tune these hyperparameters.

Table 2. Parameters of the PPO algorithm used to train DCRL. The clipping parameter e is that which appears in equation (7) of Schulman
et al. (2017). GAE is an abbreviation for generalized advantage estimation.

Hyperparameter Value
Clipping, € 0.2
Discount factor, 0.99
GAE parameter, A 0.95
Epochs 6
Learning rate schedule linear annealing
Value clipping no
Entropy coefficient le-3
Value coefficient 0.5
Optimizer AdamW
L2 regularization coefficient le-4
Learning rate 3e-4
Update time-step 1024
Batch size 256
Gradient-norm clipping 0.5

Tables 2, 3, 4 and 5 present the hyperparameters used when training DCRL, when training the behaviour-cloning baseline
DCBC+MT, when meta-training and finetuning with REPTILE, and when training the task-specific expert policies from
which we collected demonstrations, respectively. In all cases, weights were initialized by the default PyTorch method, with
Kaiming initialization for linear layers (He et al., 2015) and Xavier initialization for transformer layers (Glorot & Bengio,
2010). DCRL requires about 250 million frames in total to train for each benchmark, using 45-50 training environments.
This represents 5 million frames per environment which is about 4 x 10* episodes per training task. We did not perform
hyperparameter tuning.

Demonstration-Conditioned Reinforcement Learning

Table 3. Hyperparameters used to train the behaviour-cloning baseline DCBC+MT.

Hyperparameter Value
Learning rate le-4
Batch size 256
Optimizer AdamW
L2 regularization coefficient le-2
Early stopping yes
Gradient-norm clipping no

Table 4. Hyperparameters used when meta-training and finetuning with REPTILE.

Hyperparameter Value
Learning rate le-4
Batch size 256
Meta-learning rate le-3
Inner updates 250
Outer updates 1000
Optimizer AdamW
L2 regularization coefficient le-2
Early stopping yes
Gradient-norm clipping no

Table 5. Hyperparameters used when training task-specific policies with PPO. These policies are used to provide demonstrations.

Hyperparameter Value
Clipping 0.2
Discount factor, vy 0.99
GAE parameter, A 0.95
Update time-step 4096
Batch size 1024
Epochs 6
Learning rate 3e-4
Learning-rate schedule | linear annealing
Gradient norm clipping 0.5
Value clipping no
Entropy coefficient le-3
Value coefficient 0.5
Number of linear layers 3
Hidden dimension 64
Activation function tanh
Optimizer Adam

3.2. Experimental Statistics

We provide the standard deviations of all results that we report. Here, we explain how those standard deviations are
computed, and which source of randomness they characterize.

To evaluate the performance of a model on a single task, we perform 300 episodes with that model in the task’s environment.
In each of these episodes, the collection of demonstrations and the initial state are sampled from their respective distributions.
When reporting results for a single task, we give the mean and standard deviation of the return or success over these

Demonstration-Conditioned Reinforcement Learning

300 episodes. When reporting results for multiple tasks, we give the mean of the single-task means, and the mean of the
single-task standard deviations.

Thus, the reported standard deviations account for variability due to the initial state and the collection of demonstrations.
However, we only use one policy when evaluating a model on a task, so the reported standard deviations do not capture
variability due to the random nature of model initialisation and training. It is well known that this is a major source of
variability in the performance of deep reinforcement learning models, and we consider investigating this source of variability
in future work.

3.3. Finetuning Procedure

Sections 4.1.2 and 4.2.2 of the main paper report results of DCRL, DCBC+REPTILE and DCBC+MT, after finetuning. We
now explain this finetuning procedure in detail.

Training Batch Generation. A single training sample is composed of a collection of demonstrations d € D, and a
history h € H, which includes demonstrator actions. When finetuning with & € Z~y demonstrations, we sample k distinct
demonstrations d; := (09, 01,...,0r—1) fori =0, ..., k—1, at random from the available N = 5000 demonstrations of the
task at hand. Each observation consists of both a state and an action, so that o; € S x A, and the length of each demonstration
T € Zg is random. From those demonstrations, we build collections of demonstrations, as follows. We compose a
collection d = (dy, . . ., d,,—1) by sampling uniformly (without replacement) a random number n ~ Uniform({1,...,k})
of demonstrations. With this protocol, one can build Ele (kkf'z), different collections of demonstrations. We create a
training sample from a collection of demonstrations d by uniformly sampling one of the k demonstrations to be used as the
history h. Thus, in total, one can build k X Zle ﬁ distinct training samples, which is 1625 for £ = 5.

Optimization. Finetuning is performed by optimising a standard behaviour-cloning loss with AdamW (cross-entropy loss
if A is a finite set, and squared error otherwise). We use the same batch size for finetuning as we use for training, if the
number of demonstrations per collection n is big enough to allow this.

Stopping Criterion. We stop the finetuning process when the training loss on the finetuning sample first goes below a
threshold (0.05 for squared error and 0.2 for cross-entropy). Another solution would be to use early stopping based on a
validation loss. However, we do not use much data when finetuning for a single task; thus, any validation set would be so
small that the validation loss would not typically be a good estimate of the true out-of-sample loss.

4. Manipulation Benchmark
4.1. Settings
4.1.1. TASK SPLITS

We randomly split the 50 Meta-World tasks into 10 folds. The folds used were as follows.

Fold 1. reach-v1, push-wall-v1, pick-out-of-hole-v1, coffee-pull-v1, plate-slide-side-v1.

Fold 2. reach-wall-v1, disassemble-v1, sweep-into-v1, handle-pull-side-v1.

Fold 3. pick-place-v1, door-close-v1, faucet-open-v1, sweep-v1, plate-slide-v1.

Fold 4. pick-place-wall-v1, faucet-close-v1, soccer-v1, handle-pull-v1, window-open-v1.

Fold 5. push-v1, assembly-v1, handle-press-v1, peg-unplug-side-v1, basketball-v1.

Fold 6. coffee-push-v1, box-close-v1, button-press-topdown-v1, drawer-open-v1, door-lock-v1.

Fold 7. coffee-button-v1, plate-slide-back-side-v1, window-close-v1, door-open-v1, *button-press-v1.
Fold 8. hand-insert-v1, lever-pull-v1, drawer-close-v1, handle-press-side-v1, button-press-wall-v1.
Fold 9. hammer-v1, dial-turn-v1, plate-slide-back-v1.

Fold 10. shelf-place-v1, push-back-v1, peg-insert-side-v1, button-press-topdown-wall-v1.

4.1.2. STATES AND ACTIONS

The state is of the form s = (Sp, So, o/, Sg» Seripper) € R, where sy, 50, So7, 54 € R are the Cartesian coordinates of the
end-effector, the first object, the second object (if there is one, else zero) and the goal respectively, and sgripper € R is the

Demonstration-Conditioned Reinforcement Learning

state of the gripper. The actions are of the form a = (ay,, Agripper) € [—1, 1]* where aj;, € [—1, 1] is the desired Cartesian
coordinates of the end-effector at the next time, and agripper € [—1, 1] is the desired gripper state.

4.1.3. REWARD FUNCTIONS

Original Reward Function. For every task p in the Meta-World benchmark, the reward function specified in the Yu et al.
(2019Db) has one of the following three forms:

Rpush(sv ')7
RMW,M(&) = Rpush(sa) + Rreach(57 ')7
Rreach(57) + Rgrasp(57) + Rplace(57 ');

where we write (s, -) as the reward function is independent of the action. The four terms are defined as

Rreacn(s,*) = —[|sn — o5 »

Ryrasp(5,°) = €115, —s, [l <e MIn{S0,2, Ztarget},
Rpusn(5,°) = €2 Lja, —s, |, <c exD(— |50 — 5915 /c3),
Rptace(5,7) 1= €2 1jjs, . —sall< €XD(— |50 — 5¢[5 /c3),

where ¢; = 100, co = 1000, c3 = 0.01, ¢ = 0.05, and 1. is the indicator function, noting that the minuses in the exponents
of Rpush and Rpace are missing in the Meta-World paper but not in the corresponding source code, and that the source code
does not always follow this specification exactly. A task is considered as successfully completed if ||s, — s, H2 < €Esuccess, s
where €gccess,u € {0.02,0.04,0.05,0.07,0.08} is a task-dependent threshold, although again the available and official
source code does not follow this precisely.

Unfortunately, the reward function Ryw,,, can make it preferable for agents to stay in regions of high reward, than to
successfully complete a task. For instance, say the reward is of the form Rpusn + Rreach, and the success threshold is
€success,u = 0.02, then for [[s, — s4||, = 0.03 there is a reward of up to ¢, exp(—0.032/0.01) > 900, and the episode does
not terminate. The return is therefore maximized if the agent’s keeps its state such that ||s, — s,||, is as low as possible
but never less than 0.02. A concrete example of this problem in the actual source code? is for the reach-v1 task, where the
reward is

RMW,,U,(Stv) = max{O, C1 (dreach(s()) - dreach(st) + exp(_dreach(st)Q/CZ) + exp(_dreach(st)Q/CS))}a ()

where dreacn(5) 1= [|sn — 54|, and the success criterion is dreacn(s¢) < 0.05.

Modified Reward Function. To overcome this undesirable behaviour, we use a modified reward function in this paper,
which acts like the time derivative of the original reward, and which is given by

0 if s is the last state of the episode
RM(S, a) =

Ryw u (fmwgoco (8, @),) — Rmw (s,) otherwise,

where fyuloco(S, @) is the next state as determined by MuJoCo.

To demonstrate that the modified reward function overcomes the undesirable behaviour, we compare two episodes, with
identical histories up to time 7' — 2. At time T — 2, the agent has the choice of succeeding by moving into a terminal state
Sterminal, OF MOVing to a nearby non-terminal state Spon-terminal fOr £ > 0 steps before going to Sierminal- Let Jr and JT+k be
the returns of these episodes, so that

T-2
Jr = Z Y Ry(st,a0) = 7" Ruw o (Sterminat, -) — Raaw,u(50,7) + (1= 7) > 7' Ruaw (st).
=1

Let us assume that v € (0,1), as in our experiments, and that Rmw. . (Snon-terminals *) =: R > 0and Rmw i (Sterminat, *) =:
(14 6)R with § > 0, which holds for the reward (1) for states that satisfy or nearly satisfy the success criteria. Immediate

2Referring to the file https://github.com/rlworkgroup/metaworld/blob/master/metaworld/envs/
mujoco/sawyer_xyz/vl/sawyer_reach_push_pick_place.py, last retrieved on 8" February 2021.

https://github.com/rlworkgroup/metaworld/blob/master/metaworld/envs/mujoco/sawyer_xyz/v1/sawyer_reach_push_pick_place.py
https://github.com/rlworkgroup/metaworld/blob/master/metaworld/envs/mujoco/sawyer_xyz/v1/sawyer_reach_push_pick_place.py

Demonstration-Conditioned Reinforcement Learning

termination is strictly preferable if Jp > Jr., which holds if

T+k—2 k—1
YR 46) > ATHIR(L40) + (1-9) > 'R & L+0>4*1+6)+ (1 -7 7,
t=T-1 t=0

which is true as > 0 and v < 1. Thus, the modified reward function makes it preferable for an agent to successfully
complete tasks, than to delay their completion.

4.2. Few-Shot Imitation
4.2.1. DISCOUNTED RETURNS AND SUCCESS RATES FOR EACH TASK

Figures 2 and 3 give the discounted return and success rate on each Meta-World task for the few-shot imitation experiment
(Section 4.1.1 of the main paper).

4.2.2. REPRESENTATION LEARNING

We now study how the number of training tasks relates to the final few-shot imitation performance. Figures 4 and 5 compare
the discounted return and success rate of DCRL when trained with 10, 20 and 40 training tasks. To pick the training tasks for
a model that is applied to the test tasks of a given fold, we randomly sampled tasks from the other folds without replacement
(the folds were specified in Section 4.1.1).

As expected, both performance metrics improve as the number of training tasks increases, on average over tasks, for each
number of demonstrations. It will be interesting to train DCRL on larger collections of tasks in future.

4.2.3. t-SNE OF DEMONSTRATIONS AND THEIR EMBEDDINGS

In Section 3.2 of the main paper, we suggested that generalization to new tasks might be interpreted as interpolation in an
embedding space, where demonstrations are close if and only if the tasks have similar optimal policies. To begin exploring
this notion, Figure 6 presents visualizations of demonstrations and embedded demonstrations using ¢-SNE (van der Maaten
& Hinton, 2008), a popular nonlinear dimensionality-reduction tool. For each task, we extracted 500 demonstrations
using task-specific PPO policies, and made 500 corresponding collections of demonstrations, each consisting of a single
demonstration. Each demonstration is of size T x 13, where the length 7" varies from one demonstration to another, and 13 is
the dimension of the Meta-World state observations. As ¢-SNE expects fixed-size vectors as input, we used the time-average
of each demonstration as the input for the plot t-SNE(d), which is thus a projection from R'? to R?. As we are interested
in representation learning, we compare two embedding functions: ®r,,d4om Uses weights set to their random initial values
before training; and Pjeameq is an embedding trained on 9 out of the 10 folds. For our transformer-based policy architecture,
these embeddings are of size T' x 64, so we also took their time averages; thus, the plots of t-SNE(® andom or leamed (d)) are
projections from R%4 to R2.

In each plot, the points are colour-coded by task identity, and different tasks form different clusters even though the
task identity was not provided to t-SNE. In the plot ¢-SNE(d), the clusters for the tasks sweep-into-v1, push-wall-v1,
push-v1, coffee-push-v1 and soccer-v1 overlap. However, after embedding with ®;4,40m, there is no overlap between any
tasks. Looking at t-SNE(®jeumeq(d)), we see that learning has brought together clusters for semantically similar tasks,
including: button-press-topdown-v1 with button-press-topdown-wall-v1; reach-v1 with reach-wall-v1; and pick-place-v1
with pick-place-wall-v1. The pairs of tasks that have been brought together should indeed have similar optimal policies,
supporting our notion of how generalization to new tasks might arise. We observe that the clusters for the learned embedding
tend to be more elongated and are sometimes more fragmented than for the randomly-initialized embedding, but we do not
have an explanation for this observation.

As these results show that a single demonstration should be enough to reliably distinguish between Meta-World tasks, we
should not expect cross-demonstration attention to improve performance much for the Meta-World benchmark. As we
wished to explore cross-demonstration attention, this motivated us to introduce the navigation benchmark.

s DCRL
I DCBC+MT

Demonstration-Conditioned Reinforcement Learning

lre
TA-3pis-apys-ayerd
TA-lind-aay05
H>.w_ocw_o&:o.v_u_a
TA-llem-ysnd
TA-Yoesy
TASpis-iind-aipuey
TA-OJuI-doams
IA-3qusssesyp
TA-llem-ysea,
TA-3pljs-a3eid
TA-daams
[A-Usdo-395ngy
TA-3s0p3-100p
TA-3de)d-y3)d
TA-usdo-mopuym
~>.=3Q.m_vcmc
TA-I3220s
TA-85012-395n8y
TA-llem-23e|d-y5,¢
H>.=mﬂmv_mmn
TA-3pis-Bnjdun-pag
H>.mmm_uyw€:mc

s DCRL
m DCBC+MT |

shot experiment for one demonstration (top

Ile
TA-3pis-apyis-aze g

TA-lInd-33405

|- TA-310U40-3n0-3y5,9

TA-llem-ysnd
TA-Yoeay
?.wun,__:a.m_n:mc
TA-0ul-dsams
TA-9qusssesip
TA-llem-yoes,
TA-3piis-ageid
TA-dosams
H>.:wn_o.~wu:£
~>.wmo_uu_oou
TA-9ejd-ya1d

TA-Uado-mopum

|+ IAInd-sppuey

TA-19250s
TA-8503-393ney
Illem-2e)d-y51g
N leqiayseq
TA-3pIs-Bnjdun-pag
~>ymmm._n_,w§cmc

Tr-Alquissse TA-Alqussse

TA-ysnd TA-ysnd

TA-%20400p TA-420}-100p
TA-U3do-same.p rusdo-amenp
H>,Esoun8.mmw‘a.:oﬁ:a H>.:§onn84mmw5.:ot:n

TA-850]3-x0q
~>ycm:n.wwtou
H>.mmw_u,c8u:a
H>y:wao._oon
TA-35012-mopuym
a>.wv._m.v_umn.mc.:m43m_a
[A-Uuonng-aay0y
~>.=m>>.mmw_a.coﬁ:n
~>.mn_m.mmw_a.m_vcmc
[A-9sopame p
H>.=:Q._w>w_

H>,thE.Ucmc

|- TA-8502-x0q

~>.cm_._a4wwtou
H>.mmm_aycoﬁ:n
H>.cmao.L0oU
1A-3502-mopum
H>.wumw.v_uma.wn=m.mum_n
TA-Uuonng-aay05
H>,=m>>.wmm_u.:ot:a
H>ym.u._m.mmw§.m_vcmc
TA-3s0p-same p
TA-Ind-1angy

H>.twm:_yvcm:

shot experiment for one demonstration (top row) to

. Discounted return of DCRL and DCBC+MT on each Meta-World task in the few-

B
o
Yt
]
=
=]
]
=S s
IAPeg-apyis-a3e1 % TA42eq-3pis 2ep
TAUWinypep m TA-un3-jep
TAswuwey m TAuswwey
TA-jlem- = TA-llem-umopdoy-.
- - (i EsovaB.mmwa.:ot:n 2 Pdoy. Ssaud-uogyng
TA-3pIs-yiasuy-pag g TA-3pIs-pasuy-6ag
TAeq-ysnd m TA-¥deq-ysnd
Th-92e(dyays o TA-92e1dyjays
[}
=
N
o 8
C 000 0000000000000 00000000000000000Q00Q 00 =
888585858°83888888°83888888°83888883°8888883 5 ~ SEESTeesSEs
$R888%R 3338B8%R 3IR38BIR $3888%R $3888%R 538233313
8 3
uinjal pajunoasia i e 93el S5220NG

3. Success rate of DCRL and DCBC+MT on each Meta-World task in the few-

five demonstrations (bottom row).

Figure

mmm DCRL (40 tasks)
mmm DCRL (20 tasks)
B DCRL (10 tasks) |

lre
In-3pis-apiis-sye;d
TA-lInd-a3y505
TA-3104~40-3n0-yoq
TA-llem-ysnd
TA-Yoesy
H>.m_u._m.=:a.w_ucmc
TA-OJuI-doams
IA-3qusssesyp
TA-llem-ysea,
TA-3pljs-a3eid
TA-daams
H>ycwao.uwu:£
TA-850)3-100p
~>.mum_a.v_u_a
TA-usdo-mopuym
TAlInd-spuey
TA-I3220s
IA-85012-395n8y
TA-llem-23e|d-y5,¢
H>.=m£mv_mmn
TA-3pis-Bnjdun-pag
H>.mmm_nyw€:mc

M1 I‘ -..II_JrIﬂi hi

e

TA-3pis-apyis-aze g

|| TAlind-93y505

{- TA-310U40-3n0-y5,9

TA-llem-ysnd

TA-Yoeay

| ?.wnn,_sa.m_n:mc

TA-0ul-dsams

| TA-dlqwsssesip

TA-llem-yoes,

| TA-3plis-a3e)d

TA-dosams
H>.:wn_o.~wu:£
~>.wmo_uu_oou
TA-9ejd-ya1d

TA-Uado-mopum

i+ IInd-sppuey

TA-19250s

| 19501239310

Illem-2e)d-y51g
N leqiayseq
TA-3pIs-6njdun-pag
?.ﬂm..a,wi:m:

Tr-Alquissse i IAAIquissse
TA-ysnd TA-Ysnd
TA-Y20/100p TA-420}-100p

H>y:wao.._w>>m_v
TA-umopdoy-ssaq.

H>.cwac._w>>mhu

H>.:§onnoﬁm§a.:ot:n

-uoyng
TA-850]3-x0q |- TA-3502-x0q
- TA-ysnd-saj05 - TAYsnd-say05
S TA-s531d-toyng [essaud-uoyng
TA-Usdo-i00p 4 | ?.cmaotoon
TA-95002-mopuym |- TA-350]>-mopuym
?.wv.ﬁ.x%n.wc..ﬁé%ﬁ H>.wu_w.v_uma.wn=m.mum_a

IA-uoung-ssyo0s

TA-Uuonng-aay05

20 (orange) and 10 (green) training tasks, on each Meta-World task in the few-shot

s

Demonstration-Conditioned Reinforcement Learning

H>,__m§.mmmLu.:ot:a

Il

= H>.m.u._m.mmw§.m_vcm:

40 (blue)

~>.=m>>.mmw_a.coﬁ:n
~>.wn_m.mmw_a.w_vcmc

H?wmo_u._mgﬂn
TAInd-1ang)

H>,thE.Ucmc

| H>.mmo_u.Lw§mLU

TA-Ind-1angy

H>.twm:_yv:m:

|Hii|
il

bk wdl b g el

d
= TA¥2eq-3p|is-33,9 TA1eq-3pyjs-a3e)q
TA-Uiny-pep -—— TA-uiny-jep
TA-IBwwey J TABwwey
A-ljem- TA-llem-u,
TA-llem. EsovaB.mmea.:ot:n gonaou,mmw‘_n,cot:n
TA-9PIs-piasur-6ag 900 s TA-3pIsasu)-6ag
5538 |
TAPeg-ysng o5 o TA43eq-ysnd
i A- -,
Tr-2e(dyjays gzz 1 [A-32eid4jays
[l=]=]
y
0000000000000 Q00 0000000000000 200 00000200 RRRRRIRRRRRR
88888588°8888888°8888888°8888888°88888¢88 EELSERsass g
SS8889R S88889R SR88889R S88888R $8888eR 858282398
] I8¢ =g =8 =8 g

Figure 4. Discounted return of DCRL using 40 (blue), 20 (orange) and 10 (green) training tasks, on each Meta-World task in the few-shot

experiment for one demonstration (top row) to five demonstrations (bottom row).

uin3al pajunodsig

5. Success rate of DCRL using
experiment for one demonstration (top row) to five demonstrations (bottom row)

Figure

Demonstration-Conditioned Reinforcement Learning

+-SNE(d)
Train tasks

W % Test tasks
7
'ss-topdown-
IHHW]I
* a"
Wa

ess-side-v1
Il-vl
Ul - i
g ‘ y ckvl ~lock-v1
‘dev ARSI Dush.iall

coffee-pull-vl

pick-out-of-hole .
vl dr: close- w
ose-vi handle-pull-sid
-2 %gsemme V. 1
& % _
essvl

1) inme./
50 > vl ‘en, uttol

s-wallvl
o phte-slide-siw

-100

g
3

75 50 -25 o 25

t‘SNE(@random(d»

Train tasks

‘ %" V1 a I Test tasks

Al ess waII vl %Ce-wall-vl
aII v1
ess -t ﬁ

Iat -t
25 reach-vl
& back-v1
Rigkggut-of-hol v1
ack SRIEKA! coffee| puu v1 &

ess-side-vl

z2

ull-vl Sweep-i |nto vl h vl*
disassemble
Q‘*‘
ess-vl
wi
close-vl
-50 sert. \“\ ess-vl
’ push-wall-v1 &
ress-wall-vl "
7 plate-slide-sid
s o s 3 s 0 [
Z1
t SNE((bleamed (d))
100
P Train tasks
Wﬂ—vl Test tasks
75 -
Wi
g5 v g
50 h-yd A
plate:slide-v V1
sweepv1
iMe’\'ﬂ le-press-side-y1
25
N
N o

pick-out-of-hol -into-v. ‘
-back-vl
ble-vl 4 1 x
3 " close-vEoffee-pull v1
oIy fauc open Vi

se vl

e-pul

A ttun
> hand. |ns“vl push- wan v
.

-75 ms wall Elate -slide-side-

75 50 -2 75

Zl

Figure 6. t-SNE plots of time-averaged demonstrations (top), and of a random embedding ®random (d) (middle) and a learned embedding
Dieamed(d) (bottom) of those demonstrations. Each point corresponds to a single demonstration, and points are colour-coded by task
identity. Triangles represent test tasks, while circles represents training tasks. (Z1 and Z2 are simply names for the two dimensions of
t-SNE’s output.)

Demonstration-Conditioned Reinforcement Learning

s DCBC+REPTILE
s DCBC+MT

= DCRL

|

LlllL‘LALHL'“JHngliLllJE‘Ll_LlLIL_lhlLLli

uhhhhhthILlJhnullxhuh[JIuLlatI.hLL'uluth_‘;hh

SEUR TR Y1 TN R 18T 1 TRT TR TV (7 1RTY T

|
|

e
-

Tr-3pis-apyis-agerd
I TA-[Ind-23y505
TA-310Y~03n0-3y31g
TA-llem-ysnd
-

TA-Yoeay
-
3| TAPIs-iind-3ypyey
-

[A-03ui-deams
-

= H>.w_nEwwwmm_n

TA-llem-yoes,
TA-3pyis-ageid
TA-dsams
T7-Usdo-39ngy
TA-3s0p-100p
TA-22e)d-ya1d

I IAUsdo-mopuym
= IAInd-sppuey

IF TA-I8220s

Z T-95015393ne;
= IA-llem-2e)d-y5g
- N lleqiayseq

“I TA-3pIs-6njdun-pag
= ~>ymww._a.w‘ucm:

L
TA-Alquissse

TA-420}-100p
H>.cwao._m>>m.6
~>yc>>oun8ywmw._n.ccr:n
TA-350)3-x0q
H?cmza.mmtou
H>.mmw\ay:ot:n_
H>.cwao._oou
1A-350)2-mopum
~>ywu_m.v_uma.wn=m.m«m_n_
TA-Uuonng-aay 05
“ H>.=m>>.mmw_ay:oﬂ:n
H>.wu._m.mmwga.m_ uel
- H>.wmo_u,._wa_@_o_o !
H>y=:a._m>m_
IA-u3sur-puey
H>&umnymv=m.wym3
M TAuny-jeip
TABwwey
- H>.=m\s.:>>cnn24mmw5.
=) TA-3pIs-pasur-pag o
! TA-Ydeq-ysng
L ~>.mum_a.=wcm

ccoooooo
RSB ON S A
NANSR AN
Aana

1750

1500
1250
1000
750
500
250

ot

uin3ial pajunodsig

500

aas

°

1750
1500
1250
1000
500
250

Figure 7. Discounted return of DCRL, DCBC+MT and DCBC+REPTILE on each Meta-World task, in the finetuning experiment for one

demonstration (top row) to five demonstrations (bottom row)

s DCBC+REPTILE
| W DCBC+MT

(b EBURRGLARMhebUAGL USLLK Dublobn Lo Lk

lre
~>.wv_mymn=m.mum_n
g.::a.mmtou
H>.m_ofoyu:o&u_n_
TA-llem-ysnd
TA-Yoeay
H>.w_u_m.=:a.m_U:m£
TA-OJuI-doams
IA-31qusssesip
TA-llem-ysea,
TA-3pls-opeid
TA-doams
IA-Usdo-39ong)
TA-950]2-100p
H>,wum_n,v_u_u
~>y:mao¢sotc.§
TAind-3jpuey
TA-13200s
IA-850)2-300ng)
~>.=m>>.mum_a.v.u_a
TAlleqyaxseq
~>.w_o._m.m3_ac:.mma
H>.mmw_nyw€:mc
TA-Alquiasse
TA-ysnd

TA-420}-100p
H>.:muo¢w>>m€
H>.Esova8.mmw‘a.:ot:n
TA-35012-x0q
~>.:m:n.wmtou
~>.mmw_u,cot:n
H>y:wao._oo_u
TA-85012-mopuym
g.mv._myv_umn.mc.:m.mum_n
IA-uonng-asyos
~>y=m>>ymmw.i.cot:n
~>.wn_m.wmwa.m_ucm:
IA-3s0p-1ame p
TA-lind-1ang)
TA-uasul-puey
~>¢_umn.wn.__m.wum_n
TA-Wny-jeyp
TA-1pwwey
~>.=mi.c\souag.mmw‘_aycobsa
H>.mt._m.twm:._.mwa
TA-deq-ysng
H>.mum_n&wcw

Figure 8. Success rate of DCRL (blue), DCBC+MT (green) and DCBC+REPTILE (orange) on each Meta-World task, in the finetuning

experiment for one demonstration (top row) to five demonstrations (bottom row).

Demonstration-Conditioned Reinforcement Learning

4.3. Few-Shot Imitation With Finetuning
4.3.1. DISCOUNTED RETURNS AND SUCCESS RATES FOR EACH TASK

Figures 7 and 8 compare the discounted return and success rate on each Meta-World task, for the finetuning experiment
(Section 4.1.2 of the main paper). With five demonstrations, DCRL attains a 90% success rate averaged over tasks.
Interestingly, in this context DCRL successfully completes most of the tasks but only achieves a 7% success rate on
faucet-close-v1 and a 9% success rate on pick-out-of-hole-v1.

4.4. Domain Shift
4.4.1. META-WORLD WITH SAWYER AND LIMS2-AMBIDEX

In Section 4.1.3 of the main paper, we compared the performance of DCRL when given demonstrations from a Rethink
Robotics Sawyer robot, with its performance given demonstrations from a LIMS2-AMBIDEX robot. Both robots are 7-DOF
serial manipulators equipped with a gripper as end-effector. While different robots provide demonstrations, in both cases,
the robot performing the task was a Sawyer. Figure 9 shows four Meta-World tasks performed by a task-specific PPO policy
on both the Sawyer and on LIMS2-AMBIDEX.

assembly-v1 basketball-v1 shelf-place-v1 window-open-v1

Figure 9. Four Meta-World tasks performed by a Sawyer robot (top row) and a LIMS2-AMBIDEX robot (bottom row).

4.4.2. DISCOUNTED RETURNS AND SUCCESS RATES FOR EACH TASK

Figures 10 and 11 show the discounted return and success rates for the demonstrator domain-shift experiment discussed
in the Section 4.1.3 of the main paper. The performance of DCRL (Sawyer demonstrations) is similar to that of DCRL
(AMBIDEX demonstrations) for most tasks, with neither method having a systematic advantage over the other, and the
average returns and success rates for the two methods are very similar. These results support our claim that DCRL is able to
learn useful few-shot imitation agents when there is a domain shift between the agent and the demonstrator.

= DCRL (AMBIDEX demo)

s DCRL

-

| |

I
.I._ij_-ll .

. nrm
B I]JI

- III

Demonstration-Conditioned Reinforcement Learning

lll h L

N I N T
J‘I._ k L m I- lJJII__lLL_Jil, -I I_L-.-
JII._L L B I‘ IJJIIL;I_._J.|4 -I I_Il;.-

.
ol

0
0
0
0
0

1000
500
1000
500
1000
500
1000

uin3al pajunodsig

e
H>.wv_m.wn=m.wum_n
TA-IInd-23y05
TA-llem-ysnd
TA-Yoeay
Z,mn_m,__:a,w_u:mc
TA-0ui-dsams
IA-31qwassesp
TA-llem-yoes,
TA-3plis-age)q
TA-dsams
H>.:wao.uwu3£
TA-350)3-100p
TA-9ejd-ya1q
H>.:wao.\sotc_\s
IAInd-sjpuey
TA9220s
TA-35012-39ng;
H>.=m§.mum_ayxu.a
N lleqiaseq
H>,wv_m.m:_uc:.ama
~>ymmw._a,w_ucmc
TA-ysnd
TA130-100p
~>.cmao.‘_w\sm\ﬁ
~>y:§ona8.mmw5.cot:n

|| TA-3502-x0q

H>.£mzaywwtou
~>.mmm‘aycot:n
H>.choLccu
TA-350P2-mopuim
H>.mn_m.v_umn,mu__m.ﬂma
TA-Uuonng-aay05
H>.wn_m.mmw_u.m_ccmc
TA-350p-1ame.p
H>.=:a¢w>w_

TA-uasur-puey
H>.xuma.mu=m.mgm_a
TA-UIny-jeyp
H>.:m§.mwwga.:ot:a
H>.=m\s.cgoumouymwm_u,cot:n
TA-2eq-ysnd

;.mum_a.:wcm

-World task, in the few-shot

LR

NN

J"h

s DCRL (AMBIDEX demo)

= DCRL

100%
90%
80% 1
70%

Figure 10. Discounted return of DCRL using demonstrations from Sawyer and AMBIDEX on each Meta

experiment, for one demonstration (top row) to five demonstrations (bottom row).

lre
~>.mv_mymv:m.mym_a
H>y=:Q.mmtou
TA-llem-ysnd
TA-Yoeay
Z,mu._m,__:a.w_ucm:
TA-0Jul-dosms
IA-3jquiasses)p
TA-llem-yoea,
TA-3pljs-a3eid
TA-doams
H>.cwao.~wu:£
TA-850)3-100p
~>.mum_a.v_u_a
H>ycwao.\sonc.§
TAind-3jpuey
TA9220s
IA-35013-390ney
~>.=m>>.mum_a.v_uﬁ
TAllegiayseq
H>.wn_m.m:_ac:.mwa
H>.mmwa.w_vcm:
TA-ysnd
TA420}-100p
H>y:wao._w>>mgn
H>,c\souu£.mm€u.:ot:a
TA-350)2-x0q
~>.:mnaywwtou
~>ywmw.i.cot:n
g.cwaoioou
TA-350p-mopuim
~>.wv._myv_uma.wc.__m,2m_n
IA-uonng-asyy0y
~>.wn_m.wmm\a.m_n:m:
IA-350p-1ame p
~>.=:n¢w>w.
TA-U9sul-puey
?&umn.mc__myﬁm_n
TA-Wny-jeyp
~>.=m>>.mmw5.cot:n
~>.:mg.c\sonaﬁ.mwwa.:ob:a
TA-deq-ysng

H>.mum_n&wcw

Figure 11. Success rate of DCRL using demonstrations from Sawyer and AMBIDEX on each Meta-World task in the few-shot experiment

for one demonstration (top row) to five demonstrations (bottom row).

Demonstration-Conditioned Reinforcement Learning

4.5. Improving on Suboptimal Demonstrations
4.5.1. RETURNS OF EXPERT AGAINST DCRL

Figure 4 in Section 4.1.4 of the main paper compares the success rates of perturbed demonstrators and DCRL. Figure 12
gives the analogous result for the discounted return. For o = 1, experts achieve an averaged discounted return of about 490
while Figure 7 shows that a finetuned DCRL using non-perturbed demonstrations achieves a higher average return.

350

x|

300 =5 X X

2501527

Discounted return of DCRL

200 100 200 300 400 500

Discounted return of perturbed experts

Figure 12. Discounted return of perturbed experts against the return of DCRL, using three demonstrations from perturbed demonstrators
as input. Return is averaged over all Meta-World tasks.

4.6. Robustness to Random Downsampling

In this section, we assess the robustness of DCRL to perturbations of its input demonstrations. We consider a demonstration
dropout perturbation, which consists in randomly dropping (that is, removing) selected time steps from individual demon-
strations. This experiment uses the policies resulting from training without dropout — better results would be expected if
the training demonstrations were perturbed. As expected, Figures 13 and 14 show that the performance of DCRL decreases
as the dropout increases. However, most tasks are hardly affected even when 66% of steps are dropped, and the average
success rate, which was 48% when no steps are dropped, remains above 40% as the number of input demonstrations ranges
from one to five.

4.7. No-Demonstration Experiment

As the performance of DCRL on Meta-World hardly improves when given more than one input demonstration (Figure 2
and 3), it seems natural to ask how DCRL performs given zero input demonstrations. In view of previously reported success
rates on Meta-World?, it would also be natural to expect that such a no-demonstration policy would have a success rate of
under 40%. It is therefore remarkable to see that such a no-demonstration policy achieves an average success rate of 45%, as
shown in Figures 15 and 17. Ten versions of the no-demonstration policy were trained and tested on the same ten folds as
the DCRL algorithm used in the other experiments. Therefore this success rate is directly comparable with the 48% success
rate achieved by DCRL with one input demonstration.

To understand how the no-demonstration policy achieves such results, we looked at videos of it performing tasks. We see
that it tends to execute a common sequence of steps for all tasks: move the end-effector to the first object; grasp the object;
and finally, go to the goal. In tasks where there is no need to go to the object, following this sequence results in slower task
completion, and this can be seen in the consistently lower returns for the no-demonstration policy on the tasks hand-insert-v1,
reach-v1 and reach-wall-v1. The success of the no-demonstration policy shows that the tasks of the Meta-World benchmark
are less diverse than they appear at first glance, and this motivates us to consider a more diverse benchmark in the next
section.

4.8. No-History Experiment

We chose to use the agent’s full history as input to DCRL and the DCBC-based methods. The Meta-World tasks are indeed
POMDPs — for instance, the robot arm has momentum, but we only observe position information. However, it is interesting

3Table 1 of Yu et al. (2019b) gives success rates of 23.9%, 20% and 30% for MAML, RL? and PEARL respectively, for the ML45
setting at meta-test time.

Demonstration-Conditioned Reinforcement Learning

0l

s DCRL (demo downsampling 33%)
s DCRL (demo downsampling 66%)

B N T T Y e
R T Y

tILlﬂtl:Lﬁlﬁlﬁh;

=

1
1200

10001 mmm DCRL

1200
800
600
400
200

0
1400
1200
1000

coogo
28323
388F
2

uin3ial pajunodsig

800
400

0
1400

0

1200
1000
800
400

e
TA-3pis-apijs-sye)d
TA-[Ind-23y505
~>.w_oe_¢o¢:o.v.u_u
TA-llem-ysnd
TA-Yoeay
Z.mn_m.__:a.w_u:mc
TA-O3ul-dsams
TA-3lquiasses)p
TA-llem-yoes,
TA-3pys-a3eid
TA-dsams
H>.cmao.ymusﬁ
TA-350)3-100p
H>.wum_a.xu_a
TA-Usdo-mopuym
IAInd-3puey
TA-18220s
TA-8502-330n8)
H>.__m§.mum_a.v_u_a
N lleqiayseq
H>,wn_m.m3_ac:.mwa
~>ymmw._a.w‘ucm:
TA-Alqussse
TA-ysnd
TA-420}-100p
H>.cwao.gm>>mgu
~>yc§oun8ywmw._n.ccr:n
TA-350]3-x0q

H?cmza.mmtou
H>.mmw\ay:ot:n_
H>.cwao._oou
1A-350)2-mopum
~>ywu_m.v_uma.wn=m.m«m_n_
TA-Uuonng-aay 05
H>.=m>>.mmw_ay:oﬂ:n
H>.wu._m.mmw‘a.w_tcm:
TA-9s0pamenp

H>y=:a._m>m_

IA-u3sur-puey
H>&umnymv=m.wym3
TA-Uny-jeyp

TABwwey
H>.=m\s.cgonnoﬁmmwga.cot:n
~>ywu_mytwm:_.mmo_
TA-¥2eq-ysng

~>.mum_a.=wcm

the few-shot

m

on each Meta-World task

(bottom row).

bl

, 33% and 66%

(top row) to five demonstrat

Figure 13. Discounted return of DCRL using a demonstration dropout of 0%

1018

0on

t, for inputs consisting of one demonstrat

experimen

e DCRL (demo downsampling 33%)
mms DCRL (demo downsampling 66%)

= DCRL

100%
90%
80%1
70%
60%

lre
~>.wv_mymn=m.mum_a
g.::a.mmtou
H>.m_ofoyu:o&u_n_
TA-llem-ysnd
TA-Yoeay
H>.w_u_m.=:a.w_U:m£
TA-OJuI-doams
IA-31qusssesip
TA-llem-ysea,
TA-3pls-opeid
TA-doams
IA-Usdo-39ong)
TA-950]2-100p
TA-92e(d-3y01d
~>y:mao¢sotc.=s
TAind-3jpuey
TA-13200s
IA-850)2-300ng)
~>.=m>>.mum_a.v.u_a
TAlleqyaxseq
~>,w_o._m.m3_ac:.mma
H>.mmw_nyw€:mc
TA-Alquiasse
TA-ysnd

TA-420}-100p
H>.:muo¢w>>m‘ﬁ
H>.Esova8.mmw‘a.:ot:n
TA-35012-x0q
~>.:m:n.wmtou
~>.mmw_u,cot:n
H>y:wao._oo_u
TA-85012-mopuym
g.mv._myv_umn.mc.__mymum_n
IA-uonng-asyos
~>y=m>>ymmw.i.cot:n
~>.wn_m.wmwa.m_ucm:
IA-3s0p-1ame p
TA-lind-1ang)
TA-uasul-puey
~>¢_umn.wn.__m.wum_n
TA-Wny-jeyp
TA-1pwwey
~>.=mi.c\souag.mmw‘_aycobsa
H>.mt._m.twm:._.mwa
TA-deq-ysng
H>.mum_n&wcw

in the few-shot

on each Meta-World task

il

, 33% and 66%

dropout of 0%

demonstration
for inputs consisting of one demonstration (top row) to five demonstrations (bottom row).

14. Success rate of DCRL using a

Figure

3

experiment.

=
S
=1
g
B
@
2
S
£
I}
°
o
£
o
4
o
a

)
@
9
a

Demonstration-Conditioned Reinforcement Learning

1200
1400
1200
1400
1200

uin3al pajunodsig

e

:,mn._m,mu.__m.ﬂma
H>y=:Q.mmtou
H>.w_oc¢o.uso,v_uﬁ
TA-llem-ysnd
TA-Yoeay
~>,m_u._m.=:a,m_uc2
TA-O3ul-dsams
IA-31quissses)p
TA-llem-ysea,
H>.w_u.__m.wum_a
TA-deams
?.:wuo.uwu:&
TA-350)3-100p
H>.mum_a.v_u_a
TA-Usdo-mopuym
TA-lind-31puey
TA-19220s
TA-850]2-390ng)
H>.=m§.mum_a.v_u_a
TAlleqayseq
H>.w_o._m.m:_ac:.mwa
?.mmm.&.w_ncmc
TA-Alqussse

TA-ysnd

TA-20}-100p
H>.:muoLw\sm‘_U
H>.c§ounou.mmw._n.cor:n
TA-350)3-x0q
géw:a.mmtou
H>.mmw_ay:ot:n_
H>.cmuo¢oo_u
TA-85012-mopuim
E.mn._m.v_umn,mu.__m.ﬁma
IA-uonng-aayos
H>.=m>>.mmm_ayccﬂ:n
H>.wn_m.mmen.w_U:m:
IA-3s0p-19mep
H>y=3Q._m>m_
TA-U3sul-puey
H>,v_uma.wu,:m.wum_n
TA-UIny-jeip

TA-lawwey
H>.=mg.c\souuog.mmwa.cot:n
~>.w_u,_m,tmm:._.uwu
TA-deq-ysnd
H>y®um_u¢_mcm

shot experiment for

-World task in the few-

(no demonstration)

mmm DCRL

70%| mwm DCRL

100%
90%
80% 1

Figure 15. Discounted return of DCRL and DCRL trained without demonstration on each Meta:

one demonstration (top row) to five demonstrations (bottom row).

lre
~>.w2m.wn=m.wum_u
g.::n.wwtou
~>.w_oc¢o¢:o.v_u_a
TA-llem-ysnd
TA-Yoeay
H>.mn_m,=:a.w_tcmc
TA-0JuI-doams
TA-3jquissses)p
TA-llem-yses,
?.wn:w.wum_q
TA-doams
TT:mao&wu:E
TA-350)2-100p
TA-92ejd-ya1d
~>.cmno¢souc.§
TA-Ind-3puey
TA-13220s
IA-8502-300n¢)
~>.=@s.mum_a.xu_a
IAlleqyayseq
H>,0Em.m:_a::.mwn
~>.mmm_uyw€:mc
TA-Alquiasse
TA-ysnd
TA420}-100p
H>.cwnos_w>>m;u
~>.:>>o_uaou.mmw‘a.:ot:n
TA-850)2-x0q
~>.:m:n.mmtcu
~>.mmm_u,cot:n
H>.cwao.‘_oov
IA-350p3-mopuim
~>.wu_w.v_uma.wu=m.mum_n
TA-Uuonng-aay0n
H>,=m>>,mmw.i.cot:n
~>.wn_m.mmeQ,w_ncmc
TA-350p2-19me p
~>.=3Q._w>w_
TA-ussul-puey
~>yv_umaywu=m.wum_a
TA-Uiny-ep
TA-lswuwey
~>.=m\s.:go_uaoyymmm‘_aycob:a
H>.mu_mytwm:_.mmn_
TA-2eq-ysng
~>.mum_a.:wcm

Figure 16. Success rate of DCRL and DCRL trained without demonstration on each Meta-World task in the few-shot experiment for one

demonstration (top row) to five demonstrations (bottom row).

Demonstration-Conditioned Reinforcement Learning

to know how important the full history is. So, Figure 17 plots the success rate when using only the last four observations, as
is usually done for the Atari benchmark.

100%
90%
80%
70%
60%
50% = ——————>——
40%
30%
20%
10%

—— DCRL
—— DCRL (no full history)

Success rate
|
|
|
\

Number of demonstrations

Figure 17. Success rate of DCRL and DCRL trained with only the four last observations averaged on all Meta-World tasks in the few-shot
experiment.

The two approaches yield comparable results, suggesting that the last four observations are sufficient to address partial
observation in the Meta-World benchmark.

4.9. Meta-IRL Baseline: Discussion

We had wished to provide results for PEMIRL (Yu et al., 2019a), as a meta-IRL baseline. This algorithm was designed
under the simplifying assumption that the transition model does not vary from one task to another, and when trying to extend
the algorithm to lift this assumption, we encounter a difficulty that we now discuss.

First, note that both the Meta-World and navigation benchmarks considered in our paper, have transitions that depend on the
task, violating the assumptions of PEMIRL. This is because the robot will collide with different obstacles in different tasks.
Moreover in Meta-World, some objects are constrained to three DOF (e.g. a plate sliding on a table), some to one rotational
DOF (e.g. a door), and others to one linear DOF (e.g. a sliding window).

Now, PEMIRL is formulated in terms of a context variable m € M that captures the difference between different tasks,
which has a prior distribution p(m) that determines a probability mass or density function over the set of tasks. One part of
the PEMIRL model is an inference model g, (m/|7) with parameters 1, which takes an expert demonstration 7 and outputs
an approximate posterior over the context variable m. The idea (Yu et al., 2019a, equation 9) is to train) to maximize

Ernnp(m) rrpo (rm) 108 @y (m|T)],

where py(7|m) is the distribution over state-action sequences (s1,a1), ..., (ST, ar), when actions are sampled according
to the optimal entropy-regularized policy for rewards rg(s;, a;) with parameters 6. To implement this, the PEMIRL
meta-training procedure (Yu et al., 2019a, Lines 2—3 of Algorithm 1) involves the following steps:

Infer a batch of latent context variables from the sampled demonstrations: m ~ gy (-|7g).

Sample trajectories D from 7 ~ py(7|m), with the latent context variable fixed during each rollout.

Now, if we consider gy (-|7) as a distribution over a Euclidean space M = R, these steps require us to define a distribution
pe(7|m) for all values of m € R™, not just for those m corresponding to a set of training tasks. This in turn requires a
transition distribution P(s;41]s¢, a;, m) that is appropriate for all m € R™. There are certainly some families of tasks for
which such a definition would be natural, for instance a family where the task with parameter m involves lifting an object
whose mass is m, and we have M = R>,. However, it is not obvious how to define an appropriate transition distribution
parameterized by m € R", which includes the transition distributions of all the Meta-World tasks or the mazes in our
navigation benchmark as special cases.

In future, it would be interesting to devise new meta-IRL algorithms that lift the assumption that the transition model does
not vary from one task to another.

Demonstration-Conditioned Reinforcement Learning

5. Navigation Benchmark
5.1. Settings
5.1.1. MAZE GENERATION AND TASK SPLITS

We generated 60 square mazes, each of size 800 x 800, using an open-source VizDoom maze generator*. The maze generator
splits the 800 x 800 square into 16 smaller 200 x 200 squares. Then, it deletes a random number of edges from these 16
squares, and checks if all points are reachable from any other point in the current maze. The algorithm continues to delete
edges until this condition is satisfied. There is an additional check to ensure that the mazes generated are distinct.

The resulting mazes are shown in Figure 18. In this benchmark, we split these mazes into two groups: the training tasks use
mazes MAPO1 to MAP50; and the test tasks use mazes MAP51 to MAP60.

5.1.2. STATES, ACTIONS AND TRANSITIONS

The state is of the form s = (s, Sy, Sq, So) € R” where s, 5,,, 54 € [0,800]? are the agent’s position, the agent’s velocity
and the goal position, expressed in Cartesian coordinates, and s, € [0°,360°) is the agent’s orientation. There are four
discrete actions (forward, backward, turn left and turn right). The initial state is sampled uniformly from the state space.
Note that s;, and s; may be sampled close to each other, so bad policies can still achieve a non-zero success rate.

Transitions are generated by VizDoom. Given the current state s and action a, we denote the next state by fvizpoom (s, @).

5.1.3. REWARD FUNCTION

Each task p of the navigation benchmark has a different maze layout, but all tasks share the reward function

Rnav(sa a) = (Hsp - 59”2 - ||fVizDoom(57a) - SgHQ) —20 x]-Hsp—closestfwall(sp)H2<20 + 100 x]-Hsp—sg\|2<64-

The term in parentheses is the variation in the Euclidean distance from the agent to the goal. The second term is a penalty
for being too close to the closest wall. The last term is a bonus for successfully reaching the goal.

5.2. Few-Shot Imitation
5.2.1. DISCOUNTED RETURNS AND SUCCESS RATES FOR EACH TASK

Figures 19 and 20 compare the discounted return and success rate for each navigation task in the few-shot imitation
experiment (Section 4.2.1 of the main paper). In contrast with the corresponding figures for the Meta-World benchmark
(Figures 2 and 3), the performance of DCRL on the navigation benchmark increases with the number of input demonstrations.

5.2.2. t-SNE OF DEMONSTRATION EMBBEDDING

As we did for the Meta-World benchmark, we now explore the representations learned by DCRL using ¢-SNE plots.
Figure 22 shows plots ¢-SNE(d) of collections of demonstrations d. As these collections consist of variable numbers of
demonstrations n and time steps 7', we average over these dimensions, so these plots show the result of a mapping from
R7 to R2. Figure 21 shows ¢t-SNE plots of the time-averages of a randomly-initialized embedding ®,,,4om and a learned
embedding ®jeameq(d). Thus, each of these plots shows the result of a mapping from R%* to R2. The embedding function
®earn Was learned on the training mazes, but the plots show its application to the test mazes. In both plots, different colours
correspond to different test mazes.

Unlike the corresponding plots for Meta-World, the plots for averaged demonstrations t-SNE(d) show no clustering by task,
for any n. The time-averages of the learned embedding Peameq(d) for a single demonstration, n = 1, shows no clustering
either. However, the test tasks form increasingly distinct clusters for ®je,meq as the number of demonstrations increases
to n = 4, and they form distinct clusters for ®,,4om €ven for n = 1. This result provides some motivation for the use of
encoders with cross-demonstration attention. On the other hand, given that the test tasks are so muddled by ®jeymeq for
n = 1, the success rate of the few-shot policy with n = 1, appearing in Figure 20, might seem surprisingly high, but this
no-longer remains a surprise in view of the results for a no-demonstration policy presented in Section 5.5.

Figure 23 relates the plot of ¢--SNE(®(d)) with n = 4 to the corresponding maze layouts. At the bottom of this plot, the

“The maze generator can be found at https://github.com/agiantwhale/NavDoom.

https://github.com/agiantwhale/NavDoom

Demonstration-Conditioned Reinforcement Learning

=

[[

o 5 s D

|2)i

[

i

[EEEEEEE
5
KJ]
3

HEAEOEEEDE

{3 4 i e | e K

[5 o O 3

in=iEE

[

Figure 18. Layout of the 60 mazes used in the navigation benchmark, in reading order from MAPO1 (top-left), to MAPO6 (top-right), and
on to MAP60 (bottom-right).

Demonstration-Conditioned Reinforcement Learning

= DCRL

100
mm DCBCH+MT |
60
40
20
; —

Discounted return
038388

ehrallan.me

-40

100
80

40
20

MAP5] -
MAP52
MAP53
MAP54
MAP55
MAP56
MAP57
MAP5g
MAP59
MAP60 -
all-

Figure 19. Discounted returns of DCRL and DCBC+MT on each navigation task in the few-shot experiment, for one demonstration (top
row) to five demonstrations (bottom row).

0% ™= DCRL

Success rate

Figure 20. Success rates of DCRL and DCBC+MT on each navigation task in the few-shot experiment, for one demonstration (top row) to
five demonstrations (bottom row).

Demonstration-Conditioned Reinforcement Learning

t'SNE((I)random(d)) t'SNE((I)leamed(d))
w0
.
o
»
NI
w0
n =1
w
75
N
2
o
s
"
oo
m =2
7;
B
2
[N
s
I’
s
mn =3
75
o
2
m °
s
50
n — 4 ES = ES 3 =) = 3 = B % pd

Figure 21. t-SNE plots of the random embedding Prangom(d) of collections of demonstrations (left), and of the learned embedding
Dieamed (d) (right) for one (top row) to four (bottom row) demonstrations per collection.

Demonstration-Conditioned Reinforcement Learning

z

Figure 22. t-SNE plot of collections of demonstrations d, averaged over their time and demonstration dimensions, for one (left) to four
(right) demonstrations per collection.

Figure 23. t-SNE plot of embedded collections of n = 4 demonstrations, for the 10 test mazes, using the learned embedding Picared.

Demonstration-Conditioned Reinforcement Learning

clusters for MAP54 and MAPS57 overlap with that for MAPS1. One might interpret this observation as a consequence of the
fact that all three mazes have a wall on their left side, that connects to the outer square. Also, in the centre of the plot, the
clusters for MAP55, MAP52 and MAP60 overlap. One might interpret this as a consequence of the fact that these are the
only maze layouts where it is possible to walk in a loop around the outer perimeter without encountering a wall.

Although we presented results only for test tasks here, we have repeated the above ¢-SNE analysis, while plotting both test
and training tasks at the same time. The results compellingly show that test demonstrations are mapped close to training
demonstrations, when the maze layouts of those demonstrations are similar, for n > 2.

5.3. Few-Shot Imitation With Finetuning

Figures 24 and 25 show the discounted returns and success rates for the finetuning experiment (Section 4.2.2 of the main
paper). We observed that DCBC+REPTILE and DCBC+MT often end up getting stuck against a wall, resulting in negative
returns for some tasks.

5.4. Temporal and Cross-Demonstration Attention

Figure 26 depicts the attention of the first temporal encoder layer and the first cross-demonstration encoder layer. In this
plot, points represent demonstrations steps, and the more the layer attends to a step, the darker its point is. We measure how
much a layer attends to a step as the sum of the self-attention outputs over the heads of that layer.

The temporal encoder layer, which contextualises a single demonstration with itself, pays particular attention to the start
and end points. While neither encoder layer pays much attention when the demonstrator moves in a straight line, the
temporal layer pays close attention when the demonstrator turns, possibly because the demonstrator’s turns are particularly
informative about the current maze layout.

The cross-demonstration encoder layer contextualises multiple demonstrations with themselves, for each time step inde-
pendently. As the input to the first such layer already combines information from multiple times, and the information is
distributed across multiple heads, we think it is difficult to offer an insightful interpretation for the behaviour of this layer,
seen in the bottom row of Figure 26.

One might hypothesize that the cross-demonstration layer tries to summarize demonstrations to avoid redundancy. That is, if
two demonstrations take roughly the same path, then the cross-demonstration encoder will pay attention to only one of these
demonstrations. For instance, we see that the rightmost demonstration of the middle maze of Figure 26 is assigned little
attention.

5.5. No-Demonstration Experiment

As for Meta-World, we conducted an experiment in which DCRL was trained with n = 0 demonstrations as input. The
architecture of this policy was identical to that used for DCRL with n > 0, but the demonstration input was an array of
zeros. The same training-test split was used as when training DCRL with n > 0 demonstrations. Figures 27 and 28 show
the resulting returns and success rates. The no-demonstration policy achieves a 71% success rate overall, but DCRL with
n > 4 has a higher success rate for each task individually. The no-demonstration policy also attains a positive reward for all
tasks, outperforming the behaviour-cloning baselines of Figure 19. However, the return of DCRL is higher than that of the
no-demonstration policy, for each task individually, given n > 3 demonstrations as input.

Demonstration-Conditioned Reinforcement Learning

zhLMﬁﬁhﬁHHLH

W DCRL
_100| W= DCBC+REPTILE
WS DCBC+MT

P g g L
R L T B, S
L i e

©

Discounted return

MAP51
MAP52
MAP53
MAP54
MAP55
MAP56
MAP57
MAP5g
MAP59
MAP60O

Figure 24. Discounted return of DCRL, DCBC+REPTILE and DCBC+MT on each navigation task in the few-shot experiment with
finetuning for one demonstration (top row) to five demonstrations (bottom row)

90%{ mmm DCRL
80%/ wwm DCBC+REPTILE
| mem DCBC+MT

Success rate

Figure 25. Success rate of DCRL, DCBC+REPTILE and DCBC+MT on each navigation task in the few-shot experiment with finetuning
for one demonstration (top row) to five demonstrations (bottom row).

Demonstration-Conditioned Reinforcement Learning

v v
b Had Y 4 4 4 ‘“5’ M o J"””‘Fv Rl R AR -«4“ x
3, X v _ Dy X £ A - %
» 4 P4 AV
r'y Iy s
A it
N F'y A X ! -'\.‘V‘ A&
4 b [4
\ N . 44
" \i 4
Ty x 'y L) b
v A
X
% » 4. A A
< 4 Y
o X L4 X v : B
?4ﬁ»41 4 4 4 aaay WeKq g < < 4 - * 4 41V Y 4 .
2 X A hRAL W {144 T v
2 <
s A
¥y
A 'y
A A % ; (/,pv" a
4 % .
A " W‘ 3-/ 4
A’y v % 4
R X 4 L. 4/‘“ X
‘-; v() A oy | <
ib N s::-qifm! [P*j gﬁ X
By £ 13 F% gued X sa “ >

Figure 26. Attention of the first temporal encoder layer (top row) and the first cross-demonstration encoder layer (bottom row), to a
collection of n = 4 demonstrations for three maps. The demonstrator’s orientation is indicated by the orientation of the triangle. Darker
triangles indicate that more attention is placed on the corresponding step. Crosses denote the goals of the demonstrations.

Demonstration-Conditioned Reinforcement Learning

= DCRL
I DCRL (no demonstration)

Discounted return

e TR 1T "
e T 1" ™

T

IS
8

N
S

MAP51
MAP53
MAP54
MAP55
MAPS56
MAPS57
MAP5g
MAPS5g
MAPG0

Figure 27. Discounted returns of DCRL trained with no input demonstration, for each test task of the navigation benchmark, compared
with those of DCRL given one (top row) to five (bottom row) demonstrations as input.

=== DCRL
| === DCRL (no demonstration)

Success rate

MAP51
MAP52
MAP53
MAP54
MAP55
MAP56
MAP57
MAP58
MAP59
MAP60
all

Figure 28. Success rates of DCRL trained with no input demonstration, for each test task of the navigation benchmark, compared with
those of DCRL given one (top row) to five (bottom row) demonstrations as input.

Demonstration-Conditioned Reinforcement Learning

5.6. No-History Experiment

Figure 29 compares policies using the full history with policies using only the last four observations. In contrast with the
corresponding results for the Meta-World benchmark (Section 4.8), using the whole history performs significantly better
here. This might be because the agent can use the history to avoid retracing its steps, if it gets blocked on the way to its goal.

100%
90%
80%
70%
60% ———
50% B
40%
30%
20%

Success rate

|

|

|

|

|

|
|
|
|
|
|

—— DCRL
DCRL (no full history)
1 2 3 4 5
Number of demonstrations

Figure 29. Success rates of DCRL with the full history and DCRL with only the four last observations, averaged over the 10 test mazes,
with no finetuning.

References

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,
C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, 1., and Amodei, D. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In International
Conference on Artificial Intelligence and Statistics, AISTATS, 2010.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1026-1034, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347,2017.

van der Maaten, L. and Hinton, G. Visualizing data using t-SNE. Journal of Machine Learning Research, 9:2579-2605,
2008.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all
you need. In Advances in Neural Information Processing Systems, NIPS, pp. 5998-6008, 2017.

Yu, L., Yu, T., Finn, C., and Ermon, S. Meta-inverse reinforcement learning with probabilistic context variables. In Advances
in Neural Information Processing Systems, NeurlPS, pp. 11749-11760, 2019a.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. Meta-World: A benchmark and evaluation for
multi-task and meta reinforcement learning. In Conference on Robot Learning, CoRL, 2019b.

