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Abstract

In few-shot imitation, an agent is given a few
demonstrations of a previously unseen task, and
must then successfully perform that task. We
propose a novel approach to learning few-shot-
imitation agents that we call demonstration-
conditioned reinforcement learning (DCRL).
Given a training set consisting of demonstrations,
reward functions and transition distributions for
multiple tasks, the idea is to define a policy that
takes demonstrations and current state as inputs,
and to train this policy to maximize the average
of the cumulative reward over the set of train-
ing tasks. Compared to concurrent approaches,
DCRL has several advantages, such as the ability
to improve upon suboptimal demonstrations, to
operate given state-only demonstrations, and to
cope with a domain shift between the demonstra-
tor and the agent. Moreover, we show that DCRL
outperforms methods based on behaviour cloning
by a large margin, on navigation tasks and on
robotic manipulation tasks from the Meta-World
benchmark.

1. Introduction
We humans owe our success to our uniquely developed abil-
ity to learn from others (Boyd et al., 2011), a core compo-
nent of which is our capacity to imitate (Hoehl et al., 2019;
Charpentier et al., 2020). While humans often only need a
few demonstrations to learn to perform a task, state-of-the-
art imitation learning methods often require prohibitively
many demonstrations even to learn simple tasks (Arora et al.,
2020). This has motivated the study of few-shot imitation,
in which the aim is to maximize the expected performance
of an agent that must complete a previously unseen task,
having only seen a few demonstrations of that task. For
instance, a person might demonstrate how to close a specific
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Figure 1. The proposed DCRL algorithm, which uses both expert
demonstrations and environment interactions to train. The notation
is defined in Section 3.

window and then expect a robot to close that window, even
though the robot has never been trained on this task before,
and even though the window’s initial state may not be the
same as it was in the demonstration.

Few-shot imitation has been studied since Duan et al. (2017),
motivated by the desire to enable artificial agents to perform
a diverse range of tasks, and the hope that a single few-shot
imitation agent, trained on a representative set of tasks, can
build a representation that enables it to generalize to large
numbers of new tasks with acceptable numbers of demon-
strations. Existing few-shot imitation algorithms either use
behaviour cloning (BC), in which the agent is trained to
minimize an action-prediction loss (Finn et al., 2017b), or
they use inverse reinforcement learning (IRL) to infer a
reward function from the demonstrations (Goo & Niekum,
2019; Yu et al., 2019a) and then train a policy for that re-
ward function. Unfortunately, as discussed in Section 2,
these existing algorithms suffer from one or more of the
following limitations. They assume actions are part of the
demonstration or that different tasks share a common transi-
tion distribution, they ignore domain shift between the agent
and the demonstrator, they cannot improve upon suboptimal
demonstrators, or they must train a policy each time they
are presented with demonstrations of a new task. All these
limitations are practically important to address, for instance
for robots inferring policies from human demonstrations.

Proposed Approach. A key insight of our work is that
imitation learning is not a necessary component of few-shot
imitation. While the two existing approaches to few-shot im-
itation (BC and IRL) are also the main approaches to single-
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task imitation learning (Ho & Ermon, 2016), here we pro-
pose a third approach. We call this approach demonstration-
conditioned reinforcement learning (DCRL), by analogy
with goal-conditioned reinforcement learning (Nair et al.,
2018).

In DCRL, we are given a training set consisting of demon-
strations, reward functions and transition distributions, for
multiple tasks, as shown in Figure 1. The idea is to work
with policies that take demonstrations as input (in addition
to the agent’s state or observation-action history), and to
train such a policy to maximize the average cumulative re-
ward over the set of training tasks. At test time, DCRL
requires neither access to a reward function, nor additional
exploration or interaction with the test environment. Rather,
one simply feeds demonstrations of a new task to the trained
policy, along with observations of the state, and acts ac-
cordingly. In this paper, as we focus on few-shot imitation,
demonstrations serve to inform the agent about the task’s
objective, they serve as examples of how to perform the
task, and they may also be informative about the transition
distribution if this differs from one task to another. How-
ever, DCRL could also be directly applied in situations with
a different relationship between demonstrations and tasks,
such as avoidance learning (Venuto et al., 2019).

DCRL has several advantages over existing approaches.
With no special modifications to the basic algorithm, it ac-
cepts demonstrations that consist of state-only observations,
it can address situations with a domain shift between the
demonstrator and the agent, it can improve upon suboptimal
demonstrations, and it requires no additional training when
presented with demonstrations of a new task.

As a single demonstration may not be enough to impart
the objective of a new task, we propose the use of cross-
demonstration attention over multiple input demonstrations.
While previous work on few-shot imitation has explored
policies that use transformers (Dasari & Gupta, 2020; Ca-
chet et al., 2020), the computational cost of such architec-
tures is prohibitive for inputs consisting of multiple demon-
strations, each of which is a multivariate time series. There-
fore we explore the use of transformers with axial atten-
tion (Ho et al., 2019), which provide a more efficient al-
ternative architecture for such inputs, as they attend to the
temporal and demonstration dimensions of the input inde-
pendently. The benefit of this approach is particularly clear
in our navigation experiments.

Contributions. We make the following contributions.

• We propose DCRL, a new approach to learning agents
for few-shot imitation.

• We explore the use of cross-demonstration attention,
enabled by transformers with axial attention, which

have not previously been considered as components of
policy architectures.

• We present results on robotic manipulation and nav-
igation benchmarks, demonstrating DCRL’s superior
performance compared with state-of-the-art alterna-
tives, as well as its ability to improve on suboptimal
demonstrations and to cope with domain shifts.

Organization. We relate DCRL to previous work (Sec-
tion 2) and present the proposed method (Section 3). Then
we discuss our experiments (Section 4 and Supplementary
Material), and conclude (Section 5).

2. Related Work
Imitation learning has been studied for decades (Pomerleau,
1991; Abbeel & Ng, 2004; Ross & Bagnell, 2010), and
remains an area of active fundamental research (Rajaraman
et al., 2020). The following discussion focuses primarily on
few-shot imitation, which has been studied since Duan et al.
(2017). We also discuss the relationship of our approach to
previous works coupling demonstrations with reinforcement
learning (RL), and to goal-conditioned RL.

Few-Shot Imitation by Behavior Cloning (BC). Most
previous works on few-shot imitation train policies with
BC, using an action-prediction loss such as mean squared
error or cross-entropy. Most of these works use policies that
take demonstrations as input, as in DCRL. Some apply such
policies to a new task without additional training (Duan
et al., 2017; Yu et al., 2018; James et al., 2018; Huang et al.,
2019; Dasari & Gupta, 2020; Bonardi et al., 2020). Others
use meta-learning, which requires additional fine-tuning
when presented with a new task at meta-test time (Finn
et al., 2017b; Cachet et al., 2020), or exploit information
about success or failure of trials of the policy on a new
task (Zhou et al., 2020; Singh et al., 2020).

In contrast to DCRL, most methods exploiting BC require
actions in the demonstrations, although some recent meth-
ods can cope without, for instance by inferring actions from
state-only demonstrations (Guo et al., 2019). Also, while
DCRL directly handles a domain shift between the demon-
stration and the agent, which is important when a robot
should imitate a human, BC methods must be combined
with special-purpose techniques to cope with domain shift,
such as training using pairs of human and robot demonstra-
tions (Bonardi et al., 2020). Finally, while DCRL can poten-
tially improve upon suboptimal demonstrations, as it trains
with reward functions, the performance of BC approaches
is usually upper-bounded by the performance of the demon-
strator. Nevertheless, Brown et al. (2019) recently proposed
a method involving adding noise to demonstrations, which
can improve on demonstrations in certain cases.



Demonstration-Conditioned Reinforcement Learning

Few-Shot Imitation by IRL. Another approach to few-
shot imitation is to infer a reward function from some
demonstrations, a task known as inverse reinforcement learn-
ing or IRL (Ng et al., 1999), and then to learn a policy suit-
able for that reward. Yu et al. (2019a) adapt adversarial imi-
tation learning (Ho & Ermon, 2016) to the one-shot setting
and use a reward inferred from a discriminator, while Goo &
Niekum (2019) use a reward based on classifying which of
two observations comes later in the successful performance
of a task. Such IRL-based methods can cope without actions
in the demonstrations. Indeed, adversarial imitation learning
can be seen as minimizing a divergence between the state-
occupancy densities of the agent and the demonstrator — an
objective that does not involve the demonstrator’s actions.

While both DCRL and IRL-based methods train policies to
maximize cumulative rewards, IRL-based methods rely on
inferred reward functions, so they only have limited scope
for improving upon suboptimal demonstrators, for instance
by placing a strong prior on the reward function. Further-
more, existing IRL approaches assume that the structure
and dynamics of the environment do not change from one
task to another. To address such changes, Yu et al. (2019a)
resort to additional exploration at test time, requiring up to
40 hours per test task. In future, it would be interesting to
devise IRL algorithms that overcome this major limitation,
as discussed in the Supplementary Material. DCRL over-
comes this limitation: our results show that it copes with
task-dependent transitions, without any training at test time.

Multi-Task Imitation. Arora et al. (2020) consider repre-
sentation learning for multi-task imitation. As in multi-task
learning (Sener & Koltun, 2018), they use architectures with
both task-specific and task-independent components, rather
than policies that take demonstrations as input. The authors
provide theoretical guarantees, justifying the statistical ben-
efit of representation learning, for settings with and without
actions in demonstrations. It would be interesting to see
if such guarantees can be extended to settings like those
considered in this paper, where some reward functions are
available for representation learning or where there may be
a domain shift between the demonstrator and agent.

Multi-Task Reinforcement Learning (MTRL). MTRL
is the application of reinforcement learning to multiple tasks
jointly (Taylor & Stone, 2009; Lazaric, 2012; D’Eramo et al.,
2020). Many MTRL methods aim to find a single policy
that takes an encoding of the task as input (Yu et al., 2020),
which maximizes the average return over a set of training
tasks. DCRL could be seen as a MTRL method whose task
encoding is an embedding of a collection of demonstrations.

Most previous work on MTRL only considers performance
on the training tasks, and although the task identity must
sometimes be inferred from interaction with the environ-

ment (Guo et al., 2020), it is usually given (Yu et al., 2019b;
Xu et al., 2020). In contrast, DCRL aims to generalize to
new test tasks. Works on MTRL that that do address gen-
eralization assume test-task rewards are available and that
exploratory interaction with the test environment is possi-
ble (Rakelly et al., 2019; Li et al., 2020; Zhang et al., 2021).
In contrast, DCRL requires neither test-task rewards, nor
exploratory interaction with test environments.

MTRL often faces optimization difficulties, due to conflict-
ing gradients and the need to balance optimisation between
tasks, which are closely related to those encountered when
trying to share actor and critic features in actor-critic meth-
ods (Cobbe et al., 2020). To overcome such difficulties, Teh
et al. (2017) use task-specific policies that are constrained
to remain close to a shared policy, Yu et al. (2020) perform
‘gradient surgery’ whenever gradients from two tasks con-
flict in the sense that they point away from one another,
and Yang et al. (2020) explore a novel ‘soft modularization’
architecture. Such ideas offer a promising avenue for future
improvement of our current implementation of DCRL.

Demonstrations in RL. Some works are similar to ours
in the sense that they exploit demonstrations and maximize
cumulative rewards, but they differ as they only address a
single task at a time rather than doing few-shot imitation.
Judah et al. (2014) maximize the return corresponding to
a “shaping” reward function, subject to a constraint on a
BC loss for a given set of demonstrations. Borsa et al.
(2017) consider settings where an agent and an expert are
simultaneously present in a common environment and the
agent has access to the expert’s current state. Such settings
might lead to blocking situations, for instance the agent and
expert might simultaneously try to pick up the same object.

Meanwhile, the deep Q-learning from demonstrations
(DQfD) algorithm of Hester et al. (2018) and the normal-
ized actor-critic (NAC) algorithm of Gao et al. (2018) use
demonstrations not as inputs to a policy, but rather as expe-
rience in a replay buffer, with the aim of accelerating RL.
This can be particularly helpful in problems with sparse re-
ward functions. Similarly, soft Q imitation learning (SQIL)
also populates the replay buffer with demonstrations (Reddy
et al., 2020), but whereas DQfD and NAC require a reward
to be specified, SQIL uses a reward of r = 1 when the
agent matches the demonstrated action in a demonstrated
state, and a reward of r = 0 otherwise. SQIL attempts
to overcome the error compounding problems of BC, and
performs competitively with GAIL, without requiring ad-
versarial training or the learning of a reward function.

Finally, several works have extended GAIL by adding an
extra term to GAIL’s reward. Bhattacharyya et al. (2019)
add a term discouraging undesirable actions like braking too
hard, while Huang et al. (2021) regress a reward term from
human feedback and show that their algorithm can improve
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upon suboptimal demonstrations, unlike GAIL.

Goal-Conditioned Learning. In goal-conditioned rein-
forcement learning (GCRL), the aim is to learn a policy
that maps state observations and a “goal” to a distribution
over actions, so as to maximize a cumulative reward (Nair
et al., 2018; Ghosh et al., 2019; Nasiriany et al., 2019).
Meanwhile, Ding et al. (2019) consider goal-conditioned
imitation learning, proposing both a goal-conditioned BC
algorithm and a goal-conditioned generative adversarial im-
itation algorithm based on Ho & Ermon (2016).

One way to compare GCRL with DCRL is to look at the
information content carried by goals and demonstrations. A
goal is possibly more informative as it is a clearly-defined set
and reaching this set implies success, whereas the meaning
of success may not always be clear from a demonstration,
which is one reason for using few-shot rather than one-
shot imitation. A goal is less informative as it relates to
the state at a single time, whereas a demonstration is a
time series. Thus, while goals can tell us what to achieve,
demonstrations can also tell us how one could achieve it.
Demonstrations can even express tasks with no goal state,
such as the task of spinning a hula hoop.

3. Method
In this section, we formally present the few-shot imitation
learning problem and the DCRL method. Then, we describe
a specific family of demonstration-conditioned policy net-
work architectures, that exploits axial attention to efficiently
process multiple input demonstrations.

3.1. Preliminaries

We consider a setting in which tasks are sampled from a
distribution of tasks η. Each task µ ∼ η is associated
with a Markov decision processMµ and a distribution over
collections of demonstrations Dµ, as we now describe.

Process Mµ . Let ∆(X ) denote the set of probability
distributions over a set X . The Markov decision process
Mµ := (S,A, ρµ, Pµ, Rµ, γ) has set of states S, set of
actions A, initial-state distribution ρµ ∈ ∆(S), transition
distribution Pµ : S×A → ∆(S), random rewardRµ which
is a mapping from S×A to the space of real-valued random
variables, and discount factor γ ∈ [0, 1]. We could define
S := ∪µSµ or A := ∪µAµ if these sets depended on µ.
We consider both infinite-horizon settings with γ < 1, and
episodic settings with γ ≤ 1 which we model by assuming
that some states are absorbing and provide zero reward.

Let H := {(s0, a0, . . . , at−1, st) : si ∈ S, i ≤ t, aj ∈
A, j < t, t ∈ Z≥0} be the space of state-action histories,
and let Π = {π : H → ∆(A)} be the space of policies
which map such histories to distributions over actions. Let

the expected return of policy π ∈ Π on task µ be Jµ(π) =
Eµ,π[

∑∞
t=0 γ

tRµ(st, at)], where Eµ,π is the expectation
is over state-action sequences (s0, a0, s1, a1, . . . ) sampled
from ρµ, Pµ and π. For each task µ, we assume that Markov
decision processMµ is such that Jµ(·) exists for any policy,
and that an optimal policy exists that maximises Jµ(·). Let
J∗µ be the expected return of such an optimal policy.

Distribution Dµ . A demonstration is a sequence d :=
(o0, o1, . . . , oT−1) of observations ot ∈ Ω of random length
T ∈ Z>0. Observations might be state-action pairs so that
Ω ⊆ S × A, they might be states so that Ω ⊆ S, or they
might be images or some other sensor measurements that
only provide partial information about the state. In general,
such observations come from a demonstrator, they need not
be associated with the Markov decision processMµ. We
denote the set of all observation sequences of finite non-zero
length by Ω+, using the Kleene plus.

Collections of demonstrations of task µ are sampled from
a distribution Dµ. A collection of demonstrations d :=
(d0, . . . , dn−1) ∼ Dµ consists of a random number n ∈
Z>0 of individual demonstrations. We denote the set of
collections of demonstrations by D := (Ω+)+.

Problem Statement. A few-shot imitation problem is
given by a distribution η over tasks, and for each task µ
a Markov decision processMµ and a distribution Dµ over
collections of demonstrations, as described above. The aim
is to find an agent α : D→ Π which maps a collection of
demonstrations d ∼ Dµ of a task µ ∼ η to a policy, so as to
maximize the average return over tasks:

max
α:D→Π

Eµ∼ηEd∼DµJµ(α(d)).

It is customary to assume that a policy is given by a prob-
ability mass or density function over the actions A. Under
this assumption, the above aim is equivalent to finding a
demonstration-conditioned policy π that assigns probability
π(a|h,d) to action a, given history h and demonstrations
d, which maximizes

Eµ∼ηEd∼DµEµ,π(·|·,d)

[ ∞∑
t=0

γtRµ(st, at)

]
. (1)

3.2. DCRL Method

DCRL takes a simple and direct approach to the few-shot
imitation problem. As input, we are given a training set

X := {(di,Mµi)}N−1
i=0 ,

where each di ∈ D is a collection of demonstrations of a
task µi andMµi is the Markov decision process for that
task. We train a demonstration-conditioned policy π to
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Algorithm 1 Demonstration-conditioned reinforcement
learning

1: Input: Training set X := {(di,Mµi)}N−1
i=0 , trainable

parameters θ
2: Buffer← ∅
3: while not converged do
4: i ∼ Uniform({0, . . . , N − 1})
5: s0, done← InitEnvironment(Mµi )
6: for t = 0, 1, . . . until done do
7: at ∼ πθ(·|ht,di) where ht = (s0, a0, . . . , st)
8: Rt, st+1, done← EnvironmentStep(Mµi , st, at)
9: Buffer← Buffer ∪ {(Rt, ht+1, done,di)}

10: end for
11: if it is time for an update then
12: θ ← UpdatePolicy(Buffer, θ)
13: end if
14: end while
15: return πθ

maximize the empirical average cumulative reward

1

N

N−1∑
i=0

Jµi(π(·|·,di)). (2)

To approximately maximize this objective, we propose to
use an RL algorithm in which we simply append the demon-
stration to the state in the replay buffer, as shown in Algo-
rithm 1.

At test time, DCRL does not require access to a reward func-
tion. Nor does it require additional interaction with the test
environment to tune the policy. Rather, given a collection
of demonstrations dtest of a new test task, one simply feeds
those demonstrations along with the current history h to the
learned policy, and takes actions a ∼ π(·|h,dtest).

Generalization. When might DCRL produce policies that
generalize to new tasks µ which are not present in the train-
ing set?

For there to exist a policy that attains a high value for the
objective of the few-shot imitation problem (1), the demon-
strations must carry sufficient information about the nature
of the task at hand. For instance, one might consider few-
shot imitation problems that are separable in the sense that
there exists a mapping α : D → Π that attains the upper
bound Eµ∼ηJ∗µ on the objective (1).

In the next subsection, we shall explore demonstration-
conditioned policies with a specific structure π(a|h,d) =
F (a, h,Φ(d)), where Φ : D → E maps a collection of
demonstrations to an embedding space E , and F maps his-
tories and embeddings to action probabilities.

One might think of the embedding function Φ as a classifier
that maps demonstrations to task identities, andF as a policy

for each identified task. However, different tasks may have
identical optimal policies and are not always distinguishable
based on demonstrations. In such situations, even if a perfect
classifier mapping demonstrations to task identities does not
exist, it is sometimes still possible to attain the upper bound

Eµ∼ηEd∼DµJµ(F (·|·,Φ(d))) = Eµ∼ηJ∗µ

on the objective (1). In the Supplementary Material, we
present experiments exploring the notion that two collec-
tions of demonstrations are close (in some sense) under Φ
if and only if they have similar optimal policies, and that
generalization to new tasks is achieved by interpolating in
this embedding space.

3.3. Transformer-Based Policy Network

Motivated by the role of attention in human task con-
trol (Rothkopf et al., 2007) and its successful application
to natural language processing (Vaswani et al., 2017), sev-
eral previous works on few-shot imitation have explored
policy architectures that rely on attention mechanisms and
transformers (Duan et al., 2017; Mishra et al., 2018; James
et al., 2018; Dasari & Gupta, 2020; Cachet et al., 2020).
While Duan et al. (2017) mention the potential interest of
policies that condition on multiple demonstrations to resolve
potential ambiguities, all previously proposed policies ei-
ther take only one demonstration as input, or they encode
several demonstrations independently and then average the
encodings (James et al., 2018). In contrast, we consider
policies with cross-demonstration attention, which accept
a variable number of demonstrations as input, and which
process demonstrations simultaneously, enabling a richer
integration of information than is possible by averaging.
This advantage is particularly clear in our experiments on
navigation (Section 4.2).

While the results of transformer-based policies are impres-
sive, their computational and memory complexities grow
quadratically with the size of their input. This becomes pro-
hibitive when the input consists of multiple demonstrations,
each of which is a multivariate time series. To overcome this
cost, we explore the application of transformers with axial
attention, which were recently proposed by Ho et al. (2019).
Axial attention is one of several techniques (Tay et al., 2020)
recently proposed to improve the efficiency of transformers.
While axial attention has previously been applied to visual
data (Wang & Liu, 2020), it has not previously been applied
to policy architectures.

In the remainder of this section, we describe the overall
architecture and then our encoder layers with axial attention.

Overall Architecture. Figure 2 shows our proposed pol-
icy architecture. It consists of an encoder and a decoder.
The encoder maps a collection of demonstrations to an em-
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Figure 2. Simplified view of the proposed DCRL policy architec-
ture. The model takes a collection of demonstrations and the
agent’s history as input, and outputs the action distribution (policy
head) and estimated value function (value head). See the Supple-
mentary Material for hyperparameters.

bedding. The decoder treats this embedding as context and
maps the agent’s history to an action and a value function.

In more detail, we are given a collection of demonstrations
d, which we treat as an array of size T×n×dobs, where T is
the maximum length of the demonstrations, n is the number
of demonstrations, and dobs is the dimension of the observa-
tions. Demonstrations shorter than T are masked, and we
map each observation to a latent space of dimension H . As
multi-head self-attention is equivariant to permutations of its
input, we add 2D positional encoding to the demonstrations,
as recently proposed for images (Wang & Liu, 2020; Carion
et al., 2020). We pass the result through a sequence of L
encoder layers, each encoder layer having distinct trainable
parameters, but an identical architecture, which is described
below. The output of each encoder layer is of size T×n×H .
We average this output over its demonstration dimension, to
get an embedding e of size T ×H .

Next we process the agent’s history ht. We map each ele-
ment of ht to a latent space of dimension H , and we add
1D positional encoding. The resulting array of size T ′ ×H ,
where T ′ is the length of the history, is fed through a se-
quence of L decoder layers. Each decoder layer has the
architecture used in Vaswani et al. (2017), consisting of
multi-head self-attention, multi-head cross-attention using
embedding e, and a feedforward network, each surrounded
by a residual connection and followed by layer normal-
ization. The output of the last decoder layer is fed to a
multi-layer perceptron, giving a distribution from which
we sample an action at. Optionally, depending on the RL
algorithm, the output is also fed to a second multi-layer
perceptron, giving an estimate of the state-value function Vt.
Full details can be found in the Supplementary Material.

Encoder Layers with Axial Attention. Following the ax-
ial attention approach of Ho et al. (2019), each of our en-

coder layers consists of a temporal layer, followed by a
cross-demonstration layer, and then a pointwise feedfor-
ward network. Each of these layers is surrounded by a
residual connection and followed by layer normalization.
For input X ∈ RT×n×H , the temporal layer has output
Y ∈ RT×n×H with elements

Ytik = MultiHeadSelfAttention(X(0,i))tk,

where each X(0,i) ∈ RT×H is the matrix with elements
X

(0,i)
tk = Xtik, and the multi-head self-attention is that

of Vaswani et al. (2017). The cross-demonstration layer has
output Y ∈ RT×n×H with elements

Ytik = MultiHeadSelfAttention(X(1,t))ik,

where each X(1,t) ∈ Rn×H has elements X(1,t)
ik = Xtik.

For inputs in RT×n×H , the computation and (backpropaga-
tion) memory complexities of a conventional encoder are
both O(T 2n2), considering H as well as the number of
heads and layers to be fixed, whereas with axial attention,
these complexities are reduced to O(Tn(T + n)). Without
this saving, we began to run out of GPU memory while
training, even for n = 4.

4. Experiments
This section addresses the following questions. (Q1) Is
DCRL a competitive approach to few-shot imitation? (Q2)
Does DCRL provide a good initialisation for fine-tuning on
test tasks? (Q3) What is the benefit of cross-demonstration
attention? (Q4) How robust is DCRL to a domain shift
between the demonstrator and the agent? (Q5) Can DCRL
improve upon suboptimal demonstrations?

First, we describe the baseline methods with which we com-
pare, and our evaluation protocol. Then, we discuss our
results on a robotic manipulation benchmark and a naviga-
tion benchmark.

Baselines. We compare DCRL with two demonstration-
conditioned behavioural cloning (DCBC) methods, and a
multi-task reinforcement learning (MTRL) approach. Each
DCBC method uses the same architecture as DCRL (the
MLP value head in Figure 2 is simply ignored), but is trained
to minimize a BC loss. For continuous actions, the BC loss
is the squared error in the mean action output of the policy
MLP, and for discrete actions, it is the cross-entropy loss.

DCBC+MT (Multi-Task). This baseline minimizes the BC
loss for predicting actions in the training demonstrations.

DCBC+REPTILE. This baseline uses Reptile coupled with
BC loss to meta-train the model. Reptile (Nichol et al.,
2018) is a meta-learning algorithm that yields similar per-
formance to MAML (Finn et al., 2017a), while being less
computationally expensive.
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Except for the architecture and use of multiple demonstra-
tions as input, DCBC+MT is the approach of Duan et al.
(2017) and DCBC+REPTILE is that of Cachet et al. (2020).

MTRL. This baseline pretrains a model with multi-task RL,
to maximize the average reward over training tasks, as in
DCRL. However, we ablated the encoder part of the network,
which takes the demonstrations as input. When training, we
provide the task ID to the last layer, so the other layers
learn a task-independent representation. At test time, we
randomly initialize the last layer, and finetune it with BC,
while freezing the rest of the network.

The DCRL, MTRL and DCBC-based baselines take the
agents’ full observation-action histories as input. History-
dependent policies are a natural choice here, as the bench-
mark environments are both POMDPs (Igl et al., 2018), and
because some tasks (e.g. clap twice then stop) are hard to
imitate given only an agent’s current state.

Training Protocol. First, we sample 5000 demonstrations
of each task. To do so, we train one policy per task with
PPO (Schulman et al., 2017), until each policy has at least a
99% success rate according to a task-specific success crite-
rion. We then sample successful trajectories from these poli-
cies. We train DCRL and the two baselines using demonstra-
tions sampled uniformly from this collection, and sample the
number of such demonstrations uniformly from {1, . . . , 4}.

We train DCRL as shown in Algorithm 1, using PPO in
line 12. We chose PPO for its simplicity, its relatively short
training times, and the high quality of the resulting policies.
Most other RL algorithms could be used instead. It takes
about one day to train DCRL for both benchmarks, using a
Tesla V100 GPU. Training requires about 250 million envi-
ronment frames. The model has about 5.5× 105 learnable
parameters.

Evaluation Protocol. We evaluate the methods on tasks
not present in the dataset. To evaluate a policy for a single
task, we apply it for 300 episodes, with randomly sampled
demonstrations and initial conditions for each episode. We
report the average and standard deviation of the return and
success rate for each task in the Supplementary Material.
For brevity, this section mostly reports averages over all
test tasks and focuses on success rates, as these can be
interpreted without a detailed understanding of the reward.

4.1. Manipulation Benchmark

We use Meta-World, a robotic manipulation benchmark,
originally designed to assess the performance of meta-
learning algorithms (Yu et al., 2019b).

The reward function specified in that paper sometimes
makes it preferable for agents to stay in regions of high
reward, than to successfully complete a task. So in this

paper, we use a modified reward, which acts like the time
derivative of the original reward. Our task-specific policies
always converge to a 100% success rate for this reward,
as defined by the Meta-World success criteria, which we
did not modify. Thus, our modified reward preserves the
behaviour originally intended by the environment designer.
The modified reward is discussed in detail in the Supple-
mentary Material.

Otherwise, the benchmark is as in Yu et al. (2019b), with
observations in R13, actions in [−1, 1]4 and transitions com-
puted with MuJoCo (Todorov et al., 2012). The positions
of the objects manipulated and the goal are sampled at the
start of each episode, and an episode ends if a task-specific
success criterion is met, or if the time-out of 200 steps (Yu
et al., 2019c) is reached.

We adopt the evaluation protocol ML45 defined in Yu et al.
(2019b). Thus, we randomly partition the 50 tasks into 10
groups of 5. Then we work with 10 models for each method
compared, each model being trained on 45 tasks and tested
on 5 hold-out tasks.

On this benchmark, using an Nvidia 2080 Ti GPU, the execu-
tion time of our transformer-based architecture is as follows.
Embedding a collection of four demonstrations takes 3.05
ms, and this is only done once per episode. Predicting an
action from the embedding and history takes up to 2.7 ms.

4.1.1. FEW-SHOT IMITATION

Table 1. Return and success rate of DCRL and DCBC+MT aver-
aged over all Meta-World tasks, for one or five input demonstra-
tions.

Return Success Rate
# Demonstrations 1 5 1 5
DCRL (ours) 296.34 289.21 48% 48%
DCBC+MT 109.25 120.42 17% 24%

Table 1 compares the discounted return and success rate of
DCRL with those of DCBC+MT, on the task of few-shot
imitation, with no fine-tuning. DCRL significantly improves
on the baseline, although its performance does not increase
when more demonstrations are provided.

4.1.2. FEW-SHOT IMITATION WITH FINE-TUNING

We now ask if we can fine-tune DCRL effectively on new
tasks, assuming that actions are available in the demonstra-
tions. Fine-tuning DCRL with behaviour cloning only takes
few seconds for each task.

As shown in Figure 3, DCRL attains a 90% success rate
over all Meta-World tasks, after fine-tuning on only four
demonstrations. This is a large improvement on the success
rates of RL2, PEARL and MAML reported in Yu et al.
(2019b), as discussed in the Supplementary Material.
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Figure 3. Success rate averaged over all Meta-World tasks, after
fine-tuning with a given number of demonstrations, then using
those same demonstrations as policy input.

As in Cachet et al. (2020), we observe that DCRL+
REPTILE gives a better initialisation point than DCBC+MT,
although this advantage decreases with the number
of demonstrations. MTRL performs comparably to
DCBC+MT. Meanwhile, DCRL gives the best initialisation
point. We conjecture that this is because DCRL can interact
with the environment during training, and thus overcome
the compounding errors that plague BC-based methods (Ra-
jaraman et al., 2020).

4.1.3. ROBUSTNESS TO DOMAIN SHIFT

To assess the robustness of DCRL to a domain shift between
the demonstrator and the agent, we collected demonstrations
using PPO policies for a LIMS2-AMBIDEX robot (Kim,
2015), rather than the Sawyer robot used in the original
Meta-World benchmark. The AMBIDEX manipulator has
seven degrees of freedom like the Sawyer, but its obser-
vations are in R18 as they contain information about the
gripper orientation, and it has a different mechanical struc-
ture. We were only able to get PPO to converge for the
AMBIDEX model on 43 out of the 50 Meta-World tasks, so
the results of this experiment are averages over those tasks.

Table 2 presents the average return and success rate for
DCRL with no domain shift (trained and tested with Sawyer
demonstrations and Sawyer environment), and for DCRL
with domain shift (trained and tested with AMBIDEX
demonstrations and Sawyer environment). The results for
the two settings are similar, suggesting that DCRL can in-
deed cope with a domain shift. In future, it will be inter-
esting to explore more extreme domain shifts, involving
natural language and videos of humans.

Table 2. Return and success rate of DCRL averaged over 43 Meta-
World tasks, using demonstrations from Sawyer (top row) or from
AMBIDEX (bottom row) as input.

Return Success Rate
# Demonstrations 1 5 1 5
DCRL 315.90 322.69 51% 51%
DCRL (AMBIDEX) 308.42 328.70 45% 48%

4.1.4. IMPROVING ON SUBOPTIMAL DEMONSTRATIONS

To explore if DCRL can outperform a suboptimal demonstra-
tor when presented with a new task, we sampled demonstra-
tions by adding noise to the actions taken by task-specific
expert PPO policies. We added zero-mean Gaussian noise
with covariance σ2I4×4, where the standard deviation σ is
an adjustable parameter.

Figure 4. Success rate of perturbed experts against success rate
of DCRL using three demonstrations from the perturbed experts.
Success is averaged over all Meta-World tasks.

Figure 4 shows that the experts still outperform DCRL for
σ ≤ 2. However, for σ > 2, DCRL is clearly more success-
ful than the task-specific demonstrator, even though it has
never encountered the task before.

4.2. Navigation Benchmark

Our second benchmark involves 60 tasks, each correspond-
ing to a maze layout. As shown in Figure 5, the agent must
navigate between a given pair of positions. Our main moti-
vation for introducing this benchmark is to challenge agents’
abilities to integrate information across demonstrations, to a
greater extent than the Meta-World benchmark. As no infor-
mation in an agent’s observation specifies the current layout,
the agents must use the demonstrations to learn about the
layout in order to reach its goal point efficiently without
hitting walls.

In each task, observations are in R7 (agent and goal posi-
tions, agent velocity and orientation), there are four actions
(forward, backward, turn left and turn right), the reward
is minus the Euclidean distance between the agent and the
goal with a bonus for reaching the goal and a penalty for
hitting walls, the transition function is computed with Viz-
Doom (Kempka et al., 2016), and the initial position of the
agent and the goal are sampled uniformly. Full details are
in the Supplementary Material.

In all experiments on this benchmark, we train on a fixed
set of 50 mazes and test on the remaining 10 mazes.

4.2.1. FEW-SHOT IMITATION

Table 3 compares the performance of DCRL with DCBC+
MT, for few-shot imitation with no fine-tuning. As in the
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Figure 5. Three examples of navigation tasks. Crosses are goals,
black dots are demonstrations and green dots are a DCRL agent’s
history.

analogous results for Meta-World (Table 1), DCRL signif-
icantly improves on the baseline, but in contrast to those
analogous results, DCRL’s performance increases as more
demonstrations are provided. One explanation for this in-
crease may be that different demonstrations often cover
different parts of the maze, so some pairs of initial and goal
positions may only be addressed by integrating information
from different demonstrations.

Table 3. Return and success rate averaged over the 10 test mazes
using one or five demonstrations as input.

Return Success Rate
# Demonstrations 1 5 1 5
DCRL 61.79 74.17 77% 85%
DCBC+MT 17.52 17.87 68% 68%

4.2.2. FEW-SHOT IMITATION WITH FINE-TUNING

Figure 6 shows that fine-tuning provides smaller perfor-
mance improvements for this benchmark than the analogous
results for Meta-World (Figure 3). Our interpretation of this
is that most demonstrations are from episodes with rather
different initial and goal positions than those in the episode
that the agent is confronted with. Thus, while the agent
can learn about the structure of the maze by examining
the demonstrations, it does not stand to benefit much from
cloning the demonstrator’s actions.

The MTRL baseline lags further behind other methods here
than it did in the manipulation benchmark. Partly, this is be-
cause it lacks the cross-demonstration attention available to
the other methods. Moreover in MTRL, task-specific infor-
mation only influences the last layer of the policy network,
whereas in the demonstration-conditioned methods, the in-
fluence is much richer, with every decoder layer accessing
the task embedding via cross-attention.

4.2.3. CROSS-DEMONSTRATION ATTENTION

To understand the benefit of cross-demonstration attention,
we compared DCRL using five demonstrations as input, with
an algorithm in which we feed each of these five demon-
strations to DCRL one at a time, and then we average the
resulting action probabilities. As shown in Figure 7, cross-

Figure 6. Success rate averaged over 10 unseen mazes using the
given number of demonstrations both as fine-tuning data and as
input.

demonstration attention has a consistent advantage for all 10
test mazes, in line with the expectation of Duan et al. (2017)
that attending to multiple demonstrations should help when
one demonstration does not fully resolve ambiguity in the
objective.

Figure 7. Success rate for each test maze using 5 demonstrations,
with and without cross-demonstration attention.

5. Conclusions
The aim of few-shot imitation is to reduce the number
of demonstrations required to learn to perform new tasks.
We presented a new approach to few-shot imitation called
demonstration-conditioned reinforcement learning (DCRL).
While DCRL requires the specification of reward functions
for training, we show that this extra cost can be outweighed
by a reduction in the number of demonstrations required at
inference time and an improved success rate on new tasks,
relative to other recent few-shot imitation methods. More-
over, our results on robotic manipulation and navigation
benchmarks show that DCRL can improve on suboptimal
demonstrators and succeed even when there is a domain
shift between the agent and demonstrator.
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