
Appendix
A. Functional Pruning
In this method, we perform forward parsing of the MM from the start-state to the final state. During parsing, we only
consider outgoing transactions from a decision point for the purpose of pruning. Over here, each transition is weighted as
per it’s visitation frequency which is empirically estimated by multiple runs of the MM. At each decision point, we consider
each transition for pruning in the least to most frequency order. Once a transition is pruned, the overall MM is evaluated for
decay in performance. During evaluation, if we encounter the pruned observation transaction, we transact through the most
frequent branch of the decision point. If there is a decay in performance, the transition is restored and other candidates are
considered. This simple and greedy functional pruning method is able to keep the performance, while removing unnecessary
branches from the MM. Since sequence of actions at two branch may be identical, or different than one another, this type of
MM minimization may change the behavior of the agent, after functional pruning. Algorithm 1 shows the pseudo-code of
functional pruning.

Algorithm 1 Functional Pruning
Output: Pruned MM
DecisionPoints = []
PrunedBranches = []
for node in (Nodes in MM) do

if node is decision point then
DecisionPoints.append(node and frequency)

end if
end for
for DP in DecisionPoints do

leastFreqBranch = the least frequent branch
mostFreqBranch = the most frequent branch
new MM = prune leastFreqDP from MM
for node in new MM do

if node is in leastFreqBranch then
node = mostFreqBranch

end if
end for
performance = record the performance of new MM
if performance unchanged then

PrunedBranches.append(leastFreqBranch)
end if

end for
for PB in PrunedBranches do

remove PB from MM
end for
Return MM

B. Pre-processing
In Atari games, input images are pre-processed. This has been done by applying a wrapper over OpenAI gym environments
which gray-scales and resizes input images from 210×160 to 80×80 shape. Also, We use deterministic Atari environments
with frameskip = 4. For Pong and SpaceInvaders, we changed the action space to [Noop, RightFire, LeftFire] and [Noop,
Fire, Right, Left],respectively. These pre-processing steps are done in order to ease policy training and interpretation.

In classic control tasks, we do not exert any pre-processing on input features and action spaces.



C. Training Details
We used A3C with Adam optimizer (lr = 1e−4) to train our Recurrent Policy Network(RPN). Also, we used discount= 0.99
and calculated policy loss using Generalized Advantage Estimation (GAE)(λ = 1.0).

Atari. In this case, RPN comprises of 4 convolutional layers (kernel size 3, strides 2, padding 1, and 32, 32, 16, 8 filters
respectively) with intermediate ReLU activations. The last convolutional layer has ReLU6. This is followed by a GRU Cell
having 32 hidden units. The output of GRU is consumed by a ”policy” and ”value” linear network having ’action-space’ and
’1’ unit, respectively.

Continuous Control Tasks. RPN is composed of 2 linear layers having 16 and 8 units, respectively. First layer’s activation
function is ELU and second layer’s is ReLU6. Rest of the architecture is same as for Atari.

QBNs. Each QBN comprises of ’n’ layer encoder and ’n’ layer decoder. At the bottleneck, we used the same TernaryTanh
operator to quantize the encoded representation as done in prior work. This quantized representation is fed to the decoder.
Also, We used Tanh as intermediate activation’s for encoder and decoder. We used n = 2 and n = 3 and apply RelU6, Tanh
activation to last layers of Qo and Qh, respectively. In each QBN’s encoder, for the first layer there are 8 × QBN SIZE
neurons, and for the second layer there are 4 × QBN SIZE neurons. In the final layer there are QBN SIZE neurons. For
QBN’s decoder, the order is reversed. We use Adam optimizer (lr = 1e− 4) and max norm of the gradients was set to 5.

D. Quantitative analyses
Table 1 provides the results of original MM, minimal MM, and our approach, for two QBN pairs. For either pair, our
results are consistent, and agent with the pruned MM performs the same as the original agent, except for Acrobot and
LunarLander. In those two environments, we have a small drop in performance, but agent is still able to solve the task. We
have not included the detailed information about each interpretable reduction step, Section 4.1, since their purpose is to
make visualization simpler. The underlying MM would not change by applying interpretable reductions, and basically,
everything is the same as original MM.

According to Table 1, in minimal MM, except for one case, CartPole(4,4), the number of decision points and number of
states are equal. Also, the number of decision points increases in many cases comparing to the original MM, which makes
explainability capability more complex. As pointed out in the paper, Section 5.1, it is because minimal MMs integrate the
decision points with unrelated states. This strongly obscures the ability to interpret agent’s decision making process.



E. Qualitative analyses
Since Moore Machines are large, we uploaded all of them here: https://tinyurl.com/y96d8jub for better understanding of
their details.

E.1. Atari: Case Studies

MsPacman. The original MM for MsPacman with QBNs of size (64, 100) has 34 decision points before accounting for the
warm-up and termination periods. After the reduction for warm-up and termination the MM is left with 19 decision points.
We observed that most of the branches in the MM are visited only once and any single state transition is covered no more
than 4 times during an episode. This indicates that little high-level generalization of the strategy is occurring. We considered
the differential saliency at all decision points and show one example in Figure 1a. The saliency primarily focuses on the
middle of the map at a location which distinguishes the presence of Pacman and less attention at a location distinguishing
the presence of a ghost. By applying the functional pruning, we are able to remove all “non-strategic” branches from all
decision points throughout the MM. This emphasizes that these salient features simply serve as arbitrary landmarks with no
strategic value. This left us with an open-loop controller with no drop in performance. In fact, performance improved by 20
points.

The pruned MM, depicted in Figure 1b, gives the insight that agent’s policy is a pruned open-loop policy. The edges with
two parallel lines indicate the start-up and termination phases of the game, which is an interpretable reduction introduced in
the paper. On the other hand, the minimal MM, shown in Figure 1c, gives no insights about the agent’s behavior. Since
semantically unrelated states are matched to each other, complexity is even increased. Figure 2 shows an example of this
introduced complexity. All four frames in Figure 2 are outgoing observations of a decision point, S3, in the minimal MM.
As it can be seen, these observations are semantically distinct to humans. Figure 2a shows a frame early in the game, where
there are lots of rewards available and ghosts are not out completely. Figure 2b and c show a frame in the middle of the
game. In b, Pacman is not being threatened by any ghosts, but in c there is a very close ghost to it. Figure 2d shows a frame
from almost end of the game where rewards are sparse. Although these frames encode very different semantics, but minimal
MM treats them semantically related, which is misleading in terms of interpretation.

https://tinyurl.com/y96d8jub


(a) (b)

(c)

Figure 1. MsPacman: a) Differential saliency for a sample decision point. The first row shows a sample observation that occurs for each
branch. The second row gives differential saliency for pairs of observations (dotted arrows indicate the baseline), b) pruned MM, c)
minimal MM.

(a) (b) (c) (d)

Figure 2. Different observations as branches of decision point S3 in minimal MM.



Breakout. QBN pair of (64, 100) is considered in this game as well. In Figure 3a, pruned MM, and in Figure 3b, minimal
MM can be seen. Breakout’s policy turned out to be a pruned open-loop policy, but this could not be possibly understood by
looking at the minimal MM. In fact, it is hard to get any explanation about policy based on minimal MM.

Figure 4 shows four semantically different observations that are turned into branches of a state in the minimal MM. This set
of various observations are the outgoing branches of decision point S9 in the corresponding minimal MM.

(a)

(b)

Figure 3. Breakout: a) pruned MM, b) minimal MM.

(a) (b) (c) (d)

Figure 4. Different observations as branches of decision point S9 in minimal MM.



Other games (Boxing, SeaQuest, SpaceInvaders). Similar scenario happens in all other environments as well. As an
example, we consider Boxing. Figure 5 shows the pruned MM and minimal MM, where minimal MM looks tangled and
very hard to decode. Pruned MM looks like a straight path, which shows that at key decision points, policy does not
strategically rely on observations, instead it relies on memory. Figure 6 shows four different observations as branches of S5

in the minimal MM. Figure 6a is where agent is hitting the opponent, Figure 6b agent is being hit, and in Figure 6c and d
there is a distance between the two players. This shows how different each observation is, in terms of interpretation. But
minimal MM counts them as semantically relevant states which is misleading. Figure 7 and Figure 8 demonstrate similar
properties for SeaQuest. And Figure 9 and Figure 10 illustrate them for SpaceInvaders.

(a)

(b)

Figure 5. Boxing: a) pruned MM, b) minimal MM.



(a) (b) (c) (d)

Figure 6. Different observations as branches of decision point S5 in minimal MM.

(a)

(b)

Figure 7. SeaQuest: a) pruned MM, b) minimal MM.



(a) (b) (c) (d)

Figure 8. Different observations as branches of decision point S6 in minimal MM.

(a)

(b)

Figure 9. SeaQuest: a) pruned MM, b) minimal MM.



(a) (b) (c) (d)

Figure 10. Different observations as branches of decision point S6 in minimal MM.



E.2. Stochastic Classic Control Tasks

LunarLander. Regarding the minimal MM, due to its big size, it was not possible to be added here. Minimizing MM adds
a lot of unexpected and unfavorable complexities to the MM, which makes it uninterpretable, while giving no information
on agent’s behavior. Functional pruning does not provide much insights into the MM of LunarLander, but our proposed
differential saliency tool gives very interesting insights. To the best of our knowledge, this level of insight has not been
given in any prior work.

Figure 11. Pruned MMs for LunarLander. Next to the pruned MM it the saliency of features for first decision point. For each saliency
map, input image and baseline image are shown.

F. Interpreting another RL policy
To study the behavior of a more recent RL policy, we apply the same steps of our method to a policy learned by the R2D2
algorithm (Kapturowski et al., 2018). To be consistent with the A3C algorithm, which is studies in the main paper, we
have replaced the LSTM module of R2D2 with a GRU network. R2D2’s policy outperforms A3C in every environment we
studied, and consequently, the policy’s behavior is different from A3C’s. However, after applying our method and studying
the resulting MMs, we obtained insights that align with those extracted from the A3C policy. Table 1 provides detailed
quantitative results for the R2D2 learning algorithm case.

Table 1. MM results obtained from the R2D2 RL algorithm.

Game QBN Sizes Original MM Functional pruning Minimal MM
Nh No DP States Obs. Perf. DP States Obs. Perf. DP States Obs. Perf.

Bowling 32 50 3 781 761 19 0 619 511 19 7 7 12 19
64 100 2 718 709 18 0 640 501 18 4 4 10 18

Boxing 32 50 0 1320 1307 100 0 1320 1307 100 15 15 119 100
64 100 0 991 980 100 0 991 980 100 15 15 121 100

Breakout 32 50 2 3391 3312 758 0 3110 3091 758 14 14 37 758
64 100 3 2019 1971 763 0 1671 1620 763 19 19 39 763

Pacman 32 50 21 1201 1171 10k 0 982 921 10k 27 27 81 10k
64 100 25 1181 1151 10k 0 901 811 10k 19 19 82 10k

Pong 32 50 0 291 277 21 0 291 277 21 3 3 15 21
64 100 0 309 291 21 0 309 291 21 4 4 14 21

SeaQuest 32 50 28 2819 2781 381k 0 1872 1794 381k 23 23 191 381k
64 100 19 2711 2618 390k 0 1896 1813 390k 21 21 205 390k

Space
Invaders

32 50 63 1802 1769 51k 0 1562 1523 51k 28 28 59 51k
64 100 42 2182 2001 52k 0 1301 1232 52k 9 9 29 52k


	Functional Pruning
	Pre-processing
	Training Details
	Quantitative analyses
	Qualitative analyses
	Atari: Case Studies
	Stochastic Classic Control Tasks

	Interpreting another RL policy

