Newton Method over Networks is Fast up to the Statistical Precision

Supplementary Material

This supplementary material is organized as follows. Sec. A provides additional numerical experiments, complementing
those in Sec. 5 of the main paper. In Sec. C, we establish asymptotic convergence of DiRegINA and prove some intermediate
results that are instrumental for our rate analysis. Sec. D-G are devoted to prove Sec. 4 of the paper, namely: Theorem 7 is
proved in Sec. D; Theorem 9 and Corollary 11 are proved in Sec. E; and finally, Theorem 12 is proved in Sec. F.

Furthermore, there are some convergence results stated in Table 1 that could not be stated in the paper because of space limit;
they are reported here in the following sections: i) the case of quadratic functions f; in the setting of Theorem 9 is stated in
Theorem 18 in Sec. E.4 while the case of quadratic f;’s in the setting of Theorem 12 is stated in Theorem 19, Sec. G.

A. Additional Numerical Experiments
Convex (non-strongly convex) objective

We consider a (non-strongly) convex instance of the regression problem. Specifically, we have: fi(z) = (1/2n) || Az — b;||®
and K = R%, where A; and b; are determined by the scaled LIBSVM dataset space-ga (N = 3107, d = 6, and
£ = 0.6353). The network is simulated as the ErdGs-Rényi network model, with m = 30 and two connectivity values,
p = 0.3843 and p = 0.8032. We compared DiRegINA with the algorithms described in Sec. 4, namely: NN-1, NT, DIGing
and SONATA-F. Note that NN-1 and NT are not guaranteed to converge when applied to convex (non-strongly convex)
functions. The tuning of the algorithm is the same as the one described in Sec. 5.1. In Fig. 4, we plot the optimization error
versus the communication rounds achieved by the aforementioned algorithms in the two network settings, p = 0.3843 and
p = 0.8032. As already observed for the other simulated problems (cf. Sec. 5.1), SONATA-F shows similar performance of
DiRegINA when running on well-connected networks while its performance deteriorates in poorly connected network. NT
seems to be non-convergent while NN1 and DIGing converge, yet slow, to acceptable accuracy.
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Figure 4. Distributed ridge regression on space—-ga dataset and Erd6s-Rényi graph with (a) p = 0.3843 (b) p = 0.8032.

O(1/+/mn)-regularized logistic regression

We train logistic regression models, regularized by an additive /5-norm (with coefficient A > 0). The problem is an

instance of (P), with each f;(z) = —(1/n) Z;;l[gf” ln(zgj)) + (1 - fi(j))ln(l - zzw)] + (A/2)||z||? and K = RY,
where zfj) 21/(1+ e’<a£j)7””>) and binary class labels §§j) € {0,1} and vectors agj), t=1,...mandj=1,...,nare

determined by the data set. We considered the LIBSVM a4a (N = 4,781, d = 123) and we set A = 1/y/mn. The Network
is simulated according to the Erd6s-Rényi model with m = 30 and connectivity p = 0.3372 and p = 0.7387.

We compare DiRegINA , NN-1, DIGing, SONATA-F and NT, all initialized from the same random point. The free parameters
of the algorithms are tuned manually; the best practical performance are observed with the following tuning: DiRegINA is
tuned as described in Sec. 5.2,i.e., 7 =1, M = le — 3, and K = 1; NN-1, o = le — 3 and ¢ = 1; DIGing, stepsize equal
to 1; SONATA-F, 7 = 0.1; NT, e = 0.2 and o = 0.05.
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Figure 5. Distributed logistic regression on a4a dataset and Erd6s-Rényi graph with (a) p = 0.3372 (b) p = 0.7387.

In Fig. 4, we plot the optimization error versus the communication rounds achieved by the aforementioned algorithms in
two network settings corresponding to p = 0.3372 and p = 0.7387. In both settings (panels (a)-(b)), NN-1 and DIGing
still exhibits slow convergence, with a slight advantage of DIGing over NN-1. DiRegINA , NT and SONATA-F, perform
similarly, with DiRegINA showing some improvements when the network is better connected [panel (a)].

B. Notations and Preliminary Results

We begin introducing some notation which will be used in all the proofs, along with some preliminary results.

Define
§Y & sY —VF(z¥) and BY £ V2fi(a¥) — V2F(zY), (17)

The local surrogate function E(y, xY) in (7a) can be rewritten as

1 M; v
Fi(y;z7) éF(xi-’)Jr<VF(~T?)+5§’7y—90?>+§<[V2F($§')+Bf+ﬂﬂ (y—$?)7y—$§'>+?||y—ﬂfi\|3- (18)

Let us recall the following basic result, which is a consequence of Assumption 3.

Lemma 1 (Nesterov (2018, Lemma 1.2.4)). Let F' : R? — R be a twice-differentiable function satisfying Assumption 3.
Then, for all z,y € R,

[Fy) — F(x) ~ (VF(),y — ) — 2 (VF@)(y— )y~ )| < © ly—al®. (19)
|VF() - VE@) - V2E@) - )] < 5 Iy -l (20)
Setting x = 7 in (19) implies
F(at) + (V@) y —ab) + 5 (VFE)y - o)y — o) S F) + ¢ ly =2, vy €Y,

which, together with (18), gives the following upper bound for the surrogate function E defined in (18):

v 1 v M;+L K v v
Buwia?) <F@) + 5l - 2ty + 2y 0P 4 0ty -2ty e R, @
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£ (Azx,z). We also denote

Agl &gt — gy A, JE11T /m, (22)

where we remind that xZ” is obtained by the minimization of the local surrogate function F (y; ). The rest of the symbols
and notations are as defined in the main manuscript.

C. Asymptotic convergence of DiRegINA

In this section we prove the following theorem stating asymptotic convergence of DiRegINA .

Theorem 13. Let Assumptions 1 and 3-5 hold, M; > L and 7; = 2B forall i = 1,...,m. If a reference matrix W
satisfying Assumption 6 is used in steps (7b)-(7c), with p = Apax(W — J) < 1 and K = (9(1/\/1 — p) (explicit condition
is provided in eq. (41)), then p” — 0 and ||z} — || — 0, asv — oo foralli,j =1,...,m.

We prove the theorem in three main steps:

Step 1 (Sec. C.1): Deriving optimization bounds on the per-iteration decrease of p*;
Step 2 (Sec. C.2): Bounding the gradient tracking error §”, which in turn affects the per-iteration decrease of p”;
Step 3 (Sec. C.3): Constructing a proper Lyapunov function based on the error terms in the previous two steps, whose

dynamics imply asymptotic convergence of DiRegINA .

To simplify the derivations, we study the case of strongly convex or nonstronlgy convex F' together, by setting i = 0 in the
latter case.

C.1. Optimization error bounds

In this subsection we establish an upper bound for p*+! — p¥ [cf. (32)]. We begin with two technical intermediate
results—Lemma 2 and Lemma 3.

Lemma 2. Under Assumption 1, there holds

o o Mz i + A v
Fy(af*sal) < Fatial) - S Ak — B ey 23)
Proof. By the optimality of xi”+ in (18), we infer
2 v v M; v(3
(s¥ 4+ [V2fi(x)) + I ] Ax¥, Ax¥) < 5 |AzY]”. (24)

Since Fj(aV;a?) = F(z?), we have

(2 K3

Fi(zVt:a?) — F(x )

? 77 K2

7 K2

W (ot 0t —af) 4 ([Pt 4 md] Aaf, Aat) + 0 lat* —at]

(24) 1 M,
_% v+ z/3_,U/i+TZ‘ vt 2

Lemma 3. Let Assumptions 1 and 3-4 hold. Then, any arbitrary € > 0, we have

- M L
F(x7) = Fy(a{"ay) < -

v Ti_B_G v 1 V2
Moy a0 a2 4 - ) 23)
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Proof. Taylor’s theorem applied to functions Fl(, x¥) and F'(-) around z¥ yields

F(xVT) =F(a¥) + (VF(x¥), AzY) + Azt T HY Az, (262)
Fi(al*sal) =Fu(alsa?) + (VE(alia)), Acy ) + Aaf T HY A, (26b)

197

where

1
HY :/ (1 —-O0)VZF (02" + (1 — 0)z¥)db,
0

PR Rt

1
HY :/ (1 —O)\V2E; (0t + (1 — 0)a¥;z)do.
0
Since F(x¥;2%) = F(x¥) and VF;(2?; %) = VF(a¥) + 67, subtracting (26a)-(26b) gives

77 K2

F(ath) — E(a?tay) =((HY — HY) Al Azt — (8¢, AxY) . 27

K2

Now let us simplify (27). Note that the hessian of ﬁ(, x¥)is

V2Fi(wiza}) = V2F(2}) + BY + 7.l + MiG(wi;2)), (28)
where T
1 (x; — a¥)(x; — 2¥)
G (aisat) £ 5 (o = oty 1 P I ),
2 (|
Hence,

HY — H/
1 1 B
:/ (1—0)V?F (02" + (1 — 0)zY) df — / (1—O)V?E; (0z4F + (1 — 0)Y;2Y) db
0 0
1 1 1
@/ (1 6)V2F (62 + (1 0)2) db — / (1—6) [V2F(a¥) + BY] df - / (1= 0)r:1d6
0 0 0
1
—/ (1 —0)M;0G (x4 +;2Y)do
0
1
= [[a=0) (2F (0t + (1= 0)at) - VFG) 0 29)
0
1 1 1
_/ (1_9)Bgd9—/ (1—9)Ti1d9—/ (1= 0)M0G (2" 2)do
0 0 0
@ 1
5 / (1= 0)L6|a>+ — 2|18
0
1
/ (1—-6)BYdf — / (1—6)r,1do — / (1 —0)M;0G (x4 ;2¥)db
0
Mo, L BY

= - FGEra) + Lt - - 21— 2

where (a) holds since V2F is L-Lipschitz continuous. Combining (27) and (29), we conclude

v, M- L

Flatt) - Fi(a 1Aat)* - Z|lAx u||2_,<3um At) — {07, Act)

Mz

v Ti_ﬁ v V2
L aatiP - B a4 L e,

for arbitrary € > 0, where the last inequality is due to the Cauchy-Schwarz inequality and | (BY Az?, AzY) | < ||AzY||?,
which is a consequence of (17) and Assumption 4.
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We are now in a position to prove the main result of this subsection.

Combining (23) in Lemma 3 with (25) in Lemma 2, and using F, (x¥;a¥) = F(x¥), yields

v v M v .uZ B+€ v 1 v
Pt - P < - (- 5 ) 1etlP - (5 + - 255 et P + 5 1011P.

Since under either Assumption 1 or Assumption 2 combined with Assumption 4 it holds that ;; > max {0, u — 8}, we
obtain

Mi L 0, - v v
F(z:.”+)F(xf)§(2>|A - (W*” 52“)||A (R T E

Denoting p* ™ £ (1/m) 31", {F(z/") — F(%)}, we derive a simple relation with p* !

N 1 m ) 1 m m
vl 4 PR — — F( y+1) a 1 F( W, )
P’ 4+ F(2) m; x; m; zz: K )i T

(a) m
2 LS Wi r () @ LS () -t + F@,

ij=1 j=1

€1V

where (a) is due to convexity of F' (cf. Assumptions 1 and 2) and Z;”:l (Wk)ij = 1 (cf. Assumption 6); and in (b) we used
Z?il(WK)ij = 1 (cf. Assumption 6). Summing (30) over ¢ while setting e = 3, 7; = 2 and M; > L/3 (recall that it is
assumed M; > L), gives the desired per-iteration decrease of p” when ||0¥|| is sufficiently small:

@31) v max(p y y
prt—pt < prt —pr < - —2 ZIIAw I+ g |10 [ (32)

C.2. Network error bounds

The goal of this subsection is to prove an upper bound for ||6”|| in terms of the number of communication steps K, implying
that this error can be made sufficiently small by choosing sufficiently large K. For notation simplicity and without loss of
generality, we assume d = 1; the case d > 1 follows trivially.

Recall that 27 = (2¥)™,, s £ (s¥)7,, J = (1/m)1,,1], and

1)z 1) 8"
o =2 (I —J)x” ”—1m”;n ) sﬁ_é(I—J)s”:s”—lmz’;l, Az” & (Az)™,
Note that the vectors z] and s’ are the consensus and gradient-tracking errors; when ||z || = [|s] || = 0, we have z} = z7
and sy = s forall¢,j =1,...,m. The following holds for 2/ and s' .

Lemma 4 (Proposition 3.5 in Sun et al. (2019)). Under Assumptions 1 and 5-6, for all v > 0,

2" < prcll=t || + prc[| Az (33a)
I < prclls | + 2Qmaxpx |24 | + @maxpc || A ), (33b)
where pr = Amax(Wk — J) < 1. Note that in case of K -rounds of communications using a reference matrix W with

P = Mnax(W — J) < 1, we have px = p*; if Chebyshev acceleration is employed, we have py = (1 —v1- p) K

Now let us bound ¢7 defined in (17). Note that by column-stochasticity of Wy and initialization rule s =Vfi(z ) it can
be trivially concluded from (7c) that

T = Zij(xj)
j=1
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Hence,

1
2
oz I1? =5t -

+ % S i) - VEE|
j=1

1T sV 2 1T v 2
max v m¥L v 34
m Z ’ - 34
17572 4Q2 . » y 17272
+ 2 (mnz o - 22|,
m
where (a) is due to Qmax-Lipschitz continuity of V f;. Summing (34) over ¢ and taking the square root, gives
1671 < 8 & V2 ("] + 2Qumaxl|zL[]) - (35)
It remains to bound 8" defined above:
- (a)
3T = V2 (I8 + 2Qmaxll= 1) <prevV2 (15| + 4Qmax 2L []) + 3V2Qmaxpr [ Az ||
SQPKSV + 3\/§Qmapr”A$U”v
where in (a) we used Lemma 4 [cf. (33a)-(33b)]. Consequently,
(6"F1)? <8p%(6")* + 36Qnaxrk | A" 1>, (36)

Since px decreases as K increases, the latter inequality provides a leverage to make ot sufficiently small by choosing K
sufficiently large.
C.3. Asymptotic convergence

We combine the results of the previous two subsections to finally prove Theorem 13. Combining (32) and (35), we obtain

’ v 1 Sv
ot g BBy ppe L, @)

2m 2mp

IN

p

Next, we combine (36) with (37) multiplied by some weight w > 0 to obtain

v Sv v w Sv max(& ) 36 v

wp T FP s+ (s o) 02— (P - Bz g ) lase o

Let w = ¢, 3, for some 0 < ¢, < 1. Then, if

max(ﬁ,u) 36 9
8 — <e¢ — 39
pK+2 5— 4m w mdprv (39)
(38) becomes
= < w max(/3, y

wpu+1 + (5u+1)2 Swpu + Cw((;V)Q o 47516 /u') ||A£C ||2 (40)

Note that by Lemma 4, condition (39) holds if

1 24/2 12 max
K > ——log | max V2 vmQ . 41

T—p \/cw(l — Ly Vewfmax(B, p)

Denoting ~
€ £ wp” + (6")?, (42)
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let us show that £ — 0 as v — oo, which implies that the optimization error p” and network error & asymptotically vanish.
Since £ > 0, inequality (40) implies Y>>, ||Az¥||? Y|| = 0; and ||Az”|| < Dy, for some Dy > 0
and all v > 0. Further, {£”}, is non-increasing and ||€¥|| < D5 for some Dy > 0 and all v > 0. Thus, p¥ < Ds/w,
which together with Assumption 1(iv) and Assumption 2, also implies ||z} || < D3 for some Ds, all i and v > 0. Using
||[Az¥|| — 0 and (36), if 8p% < 1 (which holds under (41)), we obtain that 5 — 0. Finally, it remains to show that p* — 0.
Using optimality condition of x;"" defined in (7a), we get

M.
<VF(xy) + 68 + [VPF(a)) + BY + 1| Azt + 71||Axg\|m:y, z— x5+> > 0.

Rearranging terms gives

(VF(z})+ V?F(2¥) Azl T — 2T)

(43)
<—||Am”\|Aml, T 7Y+ (0,2l - 3) + (Braal, @l 7)),
where BY £ BY 4 ;1. By convexity of F', we can write
0>F(Z) - F(a™)
> (VF(a{"),7 - 2}")
=(VE({T) = VF(z}) — V?F(2}) Az}, 7 — 2! ") + (VF(2¥) + V?F(2}) Az}, T — z¥T) 44)
SR - VR - VPP A, 5 - at ) + (S At At 2t~ 7)

+ <5:, 2t -7+ <1§;A:cg,xy+ - 5> .

Using Lipschitz continuity of VF, |[Az?|| — 0 and 6 — 0 (hence ||0?|| — 0), we conclude that the RHS of (44)
asymptotically vanishes, for all i = 1,...,m. Hence, F(z/") — F(Z) — 0, forall i = 1,...,m. Using (31), we finally
obtain p¥ — 0.

Finally, by (35) and ¥ — 0, we obtain ||s* || — 0 and ||z || — 0, implying ||z} — z¥]| — 0, foralld,j =1,...,mas
v — oo. This concludes the proof of Theorem 13.

Remark 14. Note that (36) implies

(6")? < p%Ds, Ds 2 8Dy +36Q2, D3, Vv >0, (45)

max

since (6)% < €¥ < Dy and || Az || < Dy, for all v > 0.

D. Proof of Theorem 7

We first prove a detailed “region-based” complexity of DiRegINA (cf. Theorem 15, Subsec. D.1) for the prevalent scenario
0 < B < 1 [recall that typically 5 = O(1/+/n)]. For the sake of completeness, the case 3 > 1 is studied in Theorem 16 (cf.
Subsec. D.2). Building on Theorems 15-16, we can finally prove the main result, Theorem 7 (cf. Subsec. D.3).

D.1. Complexity Analysis when 0 < 5 <1

Theorem 15 (0 < 8 < 1and L > 0). Let Assumptions I and 3 -5 hold along with0 < 5 < 1. Let M; = L > 0, 7; = 20,
and recall the definition of D > 0 implying ||2? — Z|| < D, foralli = 1,...,m. Wlo.g. assume D > 2/L. Pick an
accuracy € > 0. If a reference matrix W satisfying Assumption 6 is used in steps (7b)-(7¢), with p 2 Apax(W — J) < 1
and K = O(log(l /€)//1 = p) (the explicit expression of K can be found in (63)), then the sequence {p"”} generated by
DiRegINA satisfies the following:

(a) if p* > 2LD?,
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(b) if B* - (2LD?) < p” < 2LD?,

L 244-LD3
= T;
(c) ife <p* < B*- (2LD?),
2
1
v <242 . (LD? 2,57,7.
p’ < (LD —- -5
Proof. Recalling Lemma 3 from the proof of Theorem 13, we can write
~ 1
F(ai*) < Fiaytsa)) + o 10717, (46)

for arbitrary € > 0, M; > L, and 7; > (3 + €. In addition, by the upperbound approximation of E(, x¥) in (21), there holds

n v 1 V(|2 M;+L v3 1 V(|2
Fz‘(y;ﬂfi)SF(y)+§||y*$i|\(;a+n+€)1+7|\y* wi "+ 5 671", Yy € K (47)

Let g € (0,1]. Sete = 8 and 7; = 2§3. By (46)-(47) and x;’Jr being the minimizer of ﬁ(, x¥) [see (7a)], we obtain
F(a*) - F(7)

_ R M+ L T

< F(y)— F 2 S e e PR =16

f,rélzrcl{ () = F@) + 28 ly = 271"+ —5— lly = 271" + 5 llo7 }
M; +L

M = v 14 1 14
< min {F(y)— F@)+28]y /| + Iy — 2 11° + = 671
a€l0,a0] ﬁ (48)

:y:o@—l—(l—a)x;—’}

~ v Ml + L ~ v 1 v
+2802 |7 — af P + = @ - 2P+ 5 o)
6 g
where the last inequality holds by the convexity of F'. Note that, by definition, ||z — Z|| < D, foralli = 1,...,m.
Assuming ||z¥ — Z|| < D, forall i = 1,...,m, we prove descent at iteration v + 1, i.e. p**1 < p”, unless p* = 0. Note
that by Assumption 1(iv), if {p”}, is non-increasing, then ||z¥ — Z|| < D forally > 0andi = 1,...,m. Now set M; = L
in (48) and compute the mean over 7 = 1, ..., m, which yields
3D LD? 1
1 < min {(1 —a)p’ +2Ba?D? + 2P + — ||6¥] } (49)
a€[0,a0] 3 mg
Denote 5
LD
C, 2 - (50)

Since D > 2, it holds 23D? < 3BC}. Then, setting vy = min{1,p”/(68C1)} in (49) yields

Pl < min {(l—a) +38C1a% + C1a® t3 H‘S”H }

o aG[O,min{l,%}]
(51)

< min {(1—a/2)p + 0’ + — ||5V|| }

a€l0,min{1,55z-}]
Let us assess (51) over the following “regions”. Denoting by o* the minimizer of the optimization problem at the RHS of
(51), we have the following:
(a) If p” > 6C1, then o* = 1 and
1

11 1
u+1 - ¥ - LI [ 32 2 )
P Ok IS (G4 g ) s I (52)

\o}



Newton Method over Networks is Fast up to the Statistical Precision

and under the condition

1 1 )
—6” < —p —||§7|" < C
81 < 57 = == 8" < €.

(52) yields

T—p mBC,
(b) If 63°Cy < p” < 6C}, then a* = /&= and
v\3/2
e - T e,
3v/6C,
and if (similar to derivation of (54))
1 1 Ds 1 2 _ a3 (p”)3/2
K> -—1lo = — ||§Y||" < B°C; = — ||¥
> i gior () = PP E0 = s B
(55) implies
pu+1 < pu o (py)3/2.
- 6/6C"
Finally, since p” is non-increasing,
11 P’ — prt! @ s7ee ()P
\/W 1/pl’ (\/pT_'_ W) /pupu+1 - (\/74_ /u+1) /prl/-'rl
1 1
> é —_
ZCo 601
and consequently,
1 1
V<
3 _02(1/+ 1 )2 e’
o\ ovm
(©) If £ < p” < 682Cy, then o* = & and
v\2
u+1<1/_(p) LCSVQ
A T 6“1,
and if (similar to derivation of (54))
11 36C Dy £? (»")?
K> - =1 — |6 = — |6
= /T-p 2 Og( me? > 5o I* < = 3680, H I*< = 3680,
we deduce from (58)
v\2
py+1 S v (p ) .
365C,
Since p” is non-increasing,
1 B 1 _ pu _ pu+1 (6>0) SGB#Cl(pU)Q
\/F I (\/]97"‘ py+1) s - (\/]?_,_ /pu+1> /pvpr 1
>Cp = ve

(53)

(54)

(55)

(56)

(57

(58)

(59)

(60)

(61)
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and consequently,

1 1 2
P’ < < ——=722.C%. 5 . (62)

T, 1 \? T Bv? 12
ColV+ -
éo/p°

Finally, combining all the conditions (41), (54),(56), and (59), the requirement on K reads

1 1 16 D
K> - =log [ max { —, 22m Qo , 0 , (63)
1—p 2 Cw Cwﬁ max(ﬁ, ,U') min {mﬂch mpBiCy, 736775 52}
where Dj and C, are defined in (45) and (50), respectively. O]

D.2. Complexity Analysis when 3 > 1

Theorem 16 (3 > 1 and L > 0). Let Assumptions I and 3-5 hold and 3 > 1. Let M; = L > 0, ; = 23, and recall the
definition of D > 0 implying max;cm, |29 — Z|| < D. W.lo.g. assume D > 2/L. Pick an arbitrary € > 0. If a reference

matrix W satisfying Assumption 6 is used in steps (1b)-(7¢), with p 2 Apax(W — J) < 1and K = O(log(1/¢)/v/T = p)
(the explicit expression is given in (63)), then the sequence {p*} generated by DiRegINA satisfies the following:

(a) ifp* > B - (2LD?),

(b) ife <p” < B-(2LD?),
2
p¥ <242 . (LD?*)?. 5 %

Proof. Excluding 3, the parameter setting is identical to Theorem 15. Recall (51), i.e.,

ps min o f(—a/p ot e oo 10P ) (64)
aG[O,min{l,Gng}]

where (' is defined in (50). Denoting by o* the minimizer of the optimization problem at the RHS of (51), we have:
(a) If p¥ > 68C1, then o = 1 and under (63), (64) yields

1% 4+15V 51/
p“ST/p < —p”.

(=}

(b) If e < p¥ < 68C1, then o™ = P”_ Under (63), (64) yields

65CH

v+1 v (pV)Q

<
PSP - 3650,
and following similar steps as in derivation of (62), we obtain
1 62 1
< =72%.C% C.
Phs v ! v?
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D.3. Proof of main theorem

We proceed to prove Theorem 7. Given an accuracy 0 < ¢ < 1, when 0 < § < 1, Theorem 15 gives the following
expression of rate: to achieve p” < ¢, DiRegINA requires

O(log((ié,)—&—«/m—i—mm):O( LD3+B(I’D3)>7 (65)
1 € € € €

iterations, while if 5 > 1, by Theorem 16, DiRegINA requires

() 2427) o222

iterations. Therefore, (65) is a valid rate complexity expression (in terms of iterations) in both discussed cases (i.e. 0 < § < 1
and 3 > 1). Now, recall that every iteration requires K rounds of communications, with K satisfying (41) and (63); hence
K =0 (1/yT=p-log(1/e)) = O (1//T = p-e~/2), for any arbitrary small e > 0. Therefore the final communication

complexity reads
5 1 /LD3 3 (LD?)
T—p ' clta + JSE :

E. Proof of Theorem 9 and Corollary 11

We begin introducing some intermediate technical results, instrumental to proving the main theorems, namely: i) Lemmata
6-5 in Sec. E.1; and ii) a detailed “region-based” complexity of DiRegINA as in in Theorem 17 (cf. Sec. E.2). We prove
Theorem 9 and the improved rates in case of quadratic functions in Sec. E.3 and Sec. E.4, respectively. Finally, Corollary 11
is proved in Sec. E.5.

E.1. Preliminary results

We establish necessary connections between the optimization error p”, the network error ||§”|| and ||Az”|| in Lemmata 5-6:
Lemma 5. Let Assumptions 2-4 hold, 7; = 23, and M; > L/3. Then

1 & 2
=S aw|? < = pt+ ——1l6"]1%, (66)
m mppu

8
I
where p¥ is defined in (9).

Proof. By p-strongly convexity of F' and optimality of Z,

Fla) = F@) 25 ot =2l 2 G o =t "= 5 llay - 317

>E et — 2t | = (Fa)) — F@)).

K3 3

Averaging the above inequalities over ¢ = 1, ..., m, yields

1 G v 4 14 v

=D llAw)® < = (0 + ),

mis H
where p*™ = (1/m) 31", {F(z{") — F(Z)}. Using (32) proves (66). O
Lemma 6. Let Assumptions 2-4 hold and set T; = 23. Define

12
& b max = max M;.

_— M.
VIZ+4MZ,, i€im]

Wo
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Then

! Y 7 v v 8 v
Y {FGE) = F@) <o (o b (ol h) + o 181 @
i=1
where
% m v+ v 2\ 2
T XA CASEA DR

o Sy

oS et - 2| > e
if C: \/Em |‘xi”+—xz’~’”2<w0.

Proof. Recall (43), a consequence of optimality of x;’+ (defined in (7a)), reads

(VF(z V) + V2F(2¥) Az T —ait)
>( B laat a2~ 7) + (5t 24" - 5) + (B

(68)
BYAg?, vt — 5> :

where B = BY 4 7,1 and recall Az? = z¥+ —

x¥ [cf. (22)]. By p-strongly convexity of F'

F(z) — F(a¥")
> (VF (@), 8 —af ") + £ ||lovt -3

= (VE(a}") = VF(a}) = V2F(a))Acy & — oyt ) + & ot 3]
+ (VF(a}) + V2F(al)Aal, 5 - o)
£ (VF(th) - VR - VREA,E )+ lert - )

(69)
+< v||AzY, 2 —> (67, 27T —7) + <B”wazy+ 55>
>——HVF (a4+) — VF(a¥) - V2F () Act|?
< N

2t > (0,20t = 3) + (Braa, ot - 7),
and by applying Lemma 1 (cf. inequality (20)) to the first term on the RHS of (69) along with Cauchy-schwarz inequality,
yield

F(@) — F(z')

?

L2 M v MZ‘G(] v
>~ [N |7 —
8u 46

N I o v

1 et =3l = 5 e = 5 et =l + (B
(a) <L2 M;

>— =+

1 7

Mo T i
AzxY 4 — F vy F o v <BVA voovt >
8y 46()) | Az | < o + ,u) (F(ay™) - F(2)) 2, 1611 + ( BvAa? |z z)

for arbitrary €g, €1 > 0, where (a) is due to the u-strongly convexity of F' and optimality of Z. By Assumption 4 and some
algebraic manipulations, the last term on the RHS of (70) is lower-bounded as

v v+ =~
B Axy, x; m> (70)

v ~ 6 +Tl v (6+Tl) v ~112
(Aal, 2t —3)5, >~ lawy|? - ZE eyt - 3
(g) B—‘,—TZ

jaa? - 2CE5 (pr) - r @),

with arbitrary €5 > 0, where (a) follows from the p-strong convexity of F' and optimality of z. Set

(71)

_ _H — s
2Mmax’ ‘= 4 ’ “ 4(ﬂ + Tmax) ’
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where Tpax = maX;e(m] Tis then combining (70)-(71) and averaging over ¢ = 1,...,m, lead to
1 - v ~ L2 + 4Mr%1ax G v 5 + Tmax v 8 v 2
—> (Fay") ~F(@@) < 2 laatl® iZqu I+ e a2
i=1 i=1
The bound (67) is a direct consequence of (72), with 7; = 23, forall: =1,...,m. O

E.2. Preliminary complexity results
Theorem 17. Let Assumptions 2-5 hold. Let also M; > L and 7; = 20, foralli =1, ... m, and denote

Myax + L)V2
( +L)v2m Minax £ max M;,

Cr2¢.
2 5 3,&3/2 ’ i€[m]

Jor some arbitrary § > 1. If a reference matrix W satisfying Assumption 6 is used in steps (7b)-(7c), with p £
Amax(W —J) < land K = O(1/+/1 — p) (the explicit expression of K is given in (97)), then the sequence {p*} generated
by DiRegINA satisfies the following:

(a) If \
3
P2 gt e (145
then
(") < ) - V3CQ'
(b) Assume [exclusively in this case (b)] B < p and denote
N NG L 2120 g%

~v A v/ 2 L2
P =p/ct, c S (L2+4M§1ax) Py = Dy aME. m

Ifp” > p, and p*~t < 2, thenp” < (p¥—1)2

(c) If
” 9 B2
R O TV (73)
then {p”} converges Q-linearly to zero with rate
—1 —1
max (03, pt) 1 pmax(B,p)
14 ——= 14— ——F1——= . 74
( T dmb, ) ( Y56 B (74)

Proof. We organize the proof into three parts, (a)-(c), in accordance with the three cases in the statement of the theorem.

(a) Recall Lemma 3 from the proof of Theorem 13:

F(zyT) < K2/t )+—WWH (75)

K2 — K2

for arbitrary € > 0, where M; > L and 7; > (3 + €. In addition, by the upperbound approximation of E(, x¥)in (21), there
holds

1 o2 M;+ L » y
Fi(y;x}) <F(y) + sy = o lpsrsor + —5—ly—= AN +*II5 I*, vyek. (76)
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Set 7; = 23 and € = f3, then by (75)-(76) and xi”+ being the minimizer of 13(, x),

F(z'*) - F(3)

3

< min {F(y) — F@) + 28y — =¥ ] +

< min {F(y) — F(@)+28]ly — «¥|?

(@)

a€el0,a0]

+260* |7 —

¢ min {u—aMFuw—F@»—ggiﬁMn

M+L

Ml—i—L

2

ay)” +

M; + L
6

T +|Wn}
MLy e S

zy — 7|

o? ||z -

where (a) is due to the u-strong convexity of F. If g = 1/(1 + 45/u), (77) implies

F@/f) - F@) < min {(1-a)(F}) - F@)+

K2

a€l0,a0]

M1+L 3~
Ta |z —

where by the u-strongly convexity of F' and optimality of Z, we also deduce

F(al*) - F(@)

< min {(1704) (F(z})— F(2)) +

a€l0,a0]

Averaging (78) over 7 = 1,2, ..., m while using (31

P < min {(1-a)p” + G (p)?

a€l0,a0]

M, +L , (
—
6

), yields

where Myax = max;cp,) M; and £ > 1 is arbitrary.

V2 Ay
+7||5 I }7 Cy=¢-

y=az+ (1 -a)x
oI+ 51517 .
oI+ 5 1517 .

3/2
wwnﬂﬂﬁ L)

(Mpax + L)V2m

3/~L3/2

)

v
3

} a7

(78)

(79

Denote by o the minimizer of the RHS of (79); then if p* > p, = 1/(9C3;), we have a* = 1/+/3C5+/p”, and

2(]9 )3/4
v+1 <p¥ _ + i 51/
P e H I
If
Fid 3/4 Fid
181 < o) g 10 < g
(80) yields
1
v+l 3/4 Yy >0 A )
P <p = () 20, =
Note that, by (45) and Lemma 4, condition (81) holds if
1 1 Ds+/
K> - —log 36532 .
l=p 2 mpp;’
We now prove by induction that (82) implies
(pu)1/4 <l 2 (p0)1/4 _ %4 vu > 0.

7(1}”)3/4,

Clearly, (84) holds for v = 0. Since the RHS of (82) is increasing (as a function of p*) when p” > (3¢/ 4)4 =

(which holds since p > p, ), then p” < 12 implies

prtt <t a3,

(80)

(81)

(82)

(83)

(84)

1/(9-2°C3)
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which also implies p**! < (2 1, as by definition of [ in (84),

(L + 1) (2+12,,) <cl.

= ™

l lu+1 (ll/ - lv+1) (ll/ + lv+1) (112/ + ZZ-H) =

(b) Recall (40) (from the proof of Theorem 13), which under Assumptions 2-6 and condition (41), reads
v+1 Srv+1\2 v N2V % V2
wp?™ 4 (8T swp¥ + € (87)7 = | Aa . (85)

Recall also Lemma 6 when condition C is satisfied, which together with (31), implies

m 2 2
o (Sl ) s E s w©

mu

Note that p¥+1 > p., implies that condition C in Lemma 6 holds, as proved next by contradiction. Suppose prtl > p, but
[|Az”|| < wp. Then Lemma 6 yields

2() 2.124 .574
*L2—|—4M2 my’

max

L GD 1442
p, <P < pt < —— Wi+ H5”||
m

implying 5 > pu, which is in contradiction with the assumption; note that (a) holds under (similar to derivation of (83))

1 1 D 8 1448%w3
K> - = log 752 — 7“5V”2 < ﬂ. (87)
T—p 2 1832w mi mi

Now since = — z” is subadditive for 0 < h < 1, i.e. (a + b)h < ah 4 b" for any a,b > 0, (86) together with (35) imply

m ., 1 ]
=D lAT P <= by () [ 6 (88)
: muby

Combining (85) with (88) yields

it E 5 5

4m\/> myby
and since 6¥ < VE¥ < V/Dy, Vv > 0 (see the discussion in Subsec. C.3, proof of Theorem 13), we get

v+1 Sv+142 < / y+1 i / C’wﬁlu /

Since p**1 > Py under (similar to derivation of (83))

wpz/+1 + (5%&-1)2 S wpz/ + cw(gu)Q

11 64D5m2b, C2 - wu/p
K> Log (B2MTNCE ) oy < DV (90)
1—p 2 cB212p, 8m+/by

(89) yields

v+1 +1 v A K
—+ c\/p¥ < s Cc= .
b b =P 8m\/ b1

Denote by p” £ p”/c?, then we get p*** + \/p*+1 < p” which implies quadratic convergence when p”! > p_ and
pr<1l=p’< 2.

(¢) Again recall (40):

wmax(8, )

wpu+1 + (Sv+1)2 Swpv + Cw(gu)Z - 1
m

||Az”|[>. 91)
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Invoking Lemma 6 under condition C and 7; = 203, along with (31) and (35), we have

- 8 - 1442
v+1 <b {/+ v 2 Fid 2 b A )
P < 2;:1 A e GO Sy (92)
Combining (91) and (92) yields
- 2 ; -
w 1+ max(ﬁvﬂ) pu+1+(6u+1)2 Swpu+ Cw‘i’ wmzx(ﬁ /u) (51/)27 (93)
4mb2 m //fb2

where by choosing c,, to satisfy

(CﬁM}W%(Hmw)l @ Cw§<1+2ﬂm>w>l (Hmaxw,my, ©04)

m2ubsy - m2ubsy 4mbs

[where (a) is due to w = ¢,,3 defined in Sec. C.3], (93) becomes

w (14 max(p) P+ (02 <wp” + 1+ max(, ) ™ (8")?
4mb2 - 4mb2 ’

implying linear convergence of {{”}, where

Cy 2 w (1 n mz);fg;ﬂ)> py + (('5'1/)27

and decay rate

max (3, 1)\ " B 1 pmax(B,p)\ ™
(1+4mb2> (1+576~62) . (95)

Therefore, {p”}, converges Q-linearly with rate (95).

Now let us derive (73) that defines this region. The goal is to identify the region where C (cf. Lemma 6) holds. Under the
condition (similar to derivation of (83))

1 1 4Ds 2(0%)?  w?
K> - ~log <> = <7 96)
T—p 2 Buws Bu 2

and Lemma 5, there holds
1 & 8 W
— S Az < Zpt+ 20
m — W 2m

which implies that C is necessarily satisfied when

0
16m L2+ 4M?2 m

max

p

Finally, unifying the conditions on K derived in (41). (83), (87), (90), (96), K must satisfy

PR SR SO S G 122mQ2%,.. 330, 1 64m2b,C2 4 o7
= VT-p 28\ Dscw’ DscwBmax(B, 1) mpgpi/* 186%ws’ ¢, B pu?p, " Buas | |

hs

where recall that ¢, > 0 must satisfy (94). O
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E.3. Proof of Theorem 9

Let M; = Lforalli =1,...,m, and set the free parameter £ > 1 (defined in Theorem 17) to § = 100+/5, and define the
regions of convergence,

(RO): Qo <p",
RD): O <p¥ < Qy,
(R2): max(e, Q) <p” < Oy,
R3): e <p” < max(e,Na),
where
1 o 2-12t B
640L2 m’

Qo =244 -D*u, Q =c*/2=
and ¢ and p, are defined in Theorem 17.

Using Theorem 15, region (RO) takes at most , /&2 m D jterations. Now using Theorem 17, region (R1) lasts at most v,

LD
Q) > Q) - T > 4801/3v5 - ml/4 . |22
()77 > () 230, vy > m m

Let us conservatively consider scenarios {2y > € > €25 and € < 2o, then the region of quadratic convergence (R2) lasts for
at most

N . 1 p? 0 1 2 2
2log (QIOg (mm{QZ,E}>) < 2log [QIOg [mln{128.124 .?, T30 5}” ot > Qe < 7

iterations. Note that conditions p¥ > D, and p” < p, in Theorem 17 are sufficient conditions identifying the region of
quadratic and linear rate (or more spe01ﬁca11y C and C in Lemma 6); note that P, and p, are identical up to multiplying
constants. Hence, to obtain a valid complexity of overall performance, we p6551mlst1cally associate the region of linear
rate (R3) with & < p” < max(e, ) rather than ¢ < p” < max(e, p,); therefore, this region at most lasts for O(3/p -
log(max(e, €29)/¢)) iterations. Thus, since the number of communications per iteration is O (1/y/T=p) [cf. (41), (63),
(97) and note that € = )¢ in (63)], the overall complexity reads

~ 1 LD 2 B%u 1 B Bu 1
(s {2 ) s 5 o 2] oo 25 1))

communications.

iterations satisfying

E.4. The case of quadratic f; in Theorem 9

Here we refine the proof of Theorem 9 to enhance the rate when L = 0:

Theorem 18. Let Assumptions 2-5 hold with L = 0 and 8 < p. Denote by D,, an upperbound of p°, i.e. p° < D,, for all
v > 0. Also choose M; = G)(/ﬁ/z/\ /mD,) sufficiently small (explicit condition is provided in (98)) and T; = 20 for all
i=1,...,m. If a reference matrix W satisfying Assumption 6 is used in steps (7b)-(7c), with p = Apax(W — J) < 1 and
K=0 (1 / \/W) (explicit condition is provided in (97)), then for any given € > 0, DiRegINA returns a solution with

p¥ < ¢ after total
~ 1 D, g D,p?
-4 logl =2 —1 L
O<\/1—p {Ogog(€>+uog<u28>})

communications. Note that when 8 = O(1/y/n), e = Q(Vy) and n > m, the above communication complexity reduces to

(it o ()
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Proof. Let us specialize the results established in Theorem 17 (in particular case (b)-(c)). Note that, since L = 0, we can
impose p° < ¢2/2 by a proper choice of M;, allowing DiRegINA to circumvent the first region (associated with case (a) in
Theorem 17) and start off in the quadratic rate region. Hence we only need to derive a sufficient condition for p° < ¢?/2.
Let us first consider case (b): if M; = ©(p*/2/,/mD,), Vi, sufficiently small,

3/2 . 13
Vi— p0<_—H
! P = 5 omare

max

I

161/2mD,’

where Moy 2 max;e[m)] M;. Let us also evaluate the precision achieved in case (b), i.e. Py denote by C';; such that
M; > Cy1®?/\/mD,,Vi, then

M; < = p® <22, (98)

o gu_ g,
2 o2M2 m ~ 203, p?

max

Therefore the number of iterations to reach ¢ = €(p,) is O(log log(c2/gz)) = loglog(D,/¢), and since K =
O (1//T—p), the total number of communication will be O (1//T — p - loglog(D,/¢)).

Now let us derive the complexity when ¢ = O(QQ) (i.e. case (c) in Theorem 17). Setting L = 0
and following similar arguments, for arbitrary precision € > 0, we obtain a communication complexity
O (1/v/T=p- {loglog(Dy/e) + B/pulog(52 D,/ (1%e)) }). =

E.5. Proof of Corollary 11

Let us customize the rate established in Theorem 17 (in particular case (b)-(c)). We derive a sufficient condition for
p° < ¢2/2 which guarantees that the initial point is in the region of quadratic convergence. Using initialization policy (8),
there holds p° < Ca /n for some C'a > 0. Hence, under

_ 64005 L% 1

0 0 2
B " TP = saomEe pse/

DiRegINA converges quadratically to the precision

220120 B
Bz_ 5,2 m

By 8 = O(1/y/n), p, = O(Vy). Hence, since K = o} (1/+/T=p), the total number of communication will be
O (1/yT=p-loglog(y®/(mL*Vi))).
F. Proof of Theorem 12

Let M; = Lforalli =1,...,m, and set the free parameter ¢ = 5083/ (3) (defined in Theorem 17) and define the regions
of convergence,

(RO): Qo <p”,
RD: Oy <p” < Q,
R2): e<p” <y,
where
Qo =244-D?*u, O = %9-%.

Using Theorem 15, region (RO) takes at most ,/% iteration; note that ;1 = (3?) by assumption n > m, thus Qp =
Q(B? - 2LD3). Now using Theorem 17, region (R1) lasts at most v, iteration satisfying

P

SA\V4 L 514 2 v/ BLD\/m

1 = - > _—

()" > (Q) v > 240V2 -
12\/302 1%
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Finally, by case (c) in Theorem 17, region (R2) lasts for O(3/ . - log(Q1 /¢)). Thus, since communication cost per iteration
is O (1/\/1 — p) [cf. (41), (97)], the overall complexity is

~ 1 LD e B g By 1
O(m{ M<1+m '\/;>+'ulog<mL2~E>}>.

G. The case of quadratic f; in Theorem 12

Theorem 19. Instate the setting of Theorem 12 where L = Q. Then, the total number of communications for DiRegINA to

make p¥ < € reads
~ 1 8 1
=1 -] ].
© (vl—p I Og(E))

When 3 = O(1/+/n), e = Q(Vy) and n > m, the above communication complexity reduces to

(e ()

Proof. We customize case (¢) in Theorem 17, when L = 0. Note that C in Lemma 6 holds for all » > 0 and condition (96)
is no longer required. Therefore, the algorithm converges linearly with rate (74) and returns a solution within £ precision
within O (3/p - log(1/¢)) iterations and since K = O (1/y/T = p) [cf. (41)], the total number of required communications

isO (1/y/T—p-B/u-log(1/e)). O




