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APPENDIX

A. Theorems and Proofs

Theorem 2.2 (Householder Sketch). Let X € R"*? be the original data matriz, y € R™ be the corresponding

output label or response vector, and n > d. Let X = QR be Householder QR decomposition. Then, (R, QTy)

is a memory-efficient and theoretically accurate sketch of original data (X,y) such that XTX = RTR, and

d(d+3))
2

has memory footprint of ( elements, computed in time O(nd?).

Proof. From Equations 1 and 2, and X = QR, where QQT = QTQ =1

IXw = yll2 = |QRw = 2 = [QRw — QQ"y|2 = |Ql2[|Rw — Q"y|> = || Rw — Q" y||2

(Accurate sketch) So, it is possible to replace the original data (X,y) used in existing LMS solvers with
(R, Q"y) which preserves the covariance X7 X = RTQTQR = RT R and solves the optimization problem
accurately. For example, Ridge regression with ridge parameter )\ solves (X7 X + Al)w = X Ty in primal
form which can be reformulated to (RT R + A)w = RT(QTy).

(Memory savings) R is a d x d upper triangular matrix with ( @) elements above the diagonal and d

on the diagonal resulting in (@) elements compared to original data matrix X that has nd elements. QTy

is a reflected response vector. It is to be noted that only top d rows of Q7 will be sufficient to compute QTy

since n > d. Hence, reflected response vector (Q7y) is of size d compared to the original LMS formulation

d(d+3))
2

with response vector y of size n. Hence, the total memory footprint of (R, QTy) is O( elements which

makes it memory-efficient than the original (X, y) occupying n(d + 1) space.

(Time complexity) The above sketch (R,QTy) is computed via Householder QR decomposition
(HOUSEHOLDER-QR, in Step 1 of Algorithm 1) of X which generates upper triangular matrix, R, and
orthonormal matrix @) that is internally stored as Householder reflectors. The time complexity of the above
decomposition is O(nd? —d?*/3) (Golub & Van Loan, 2012). Calculation of QT'y is done implicitly by applying
Householder reflectors to the response vector y (MULTIPLY-QC in Step 2 of Algorithm 1) in time O(nd)
(Golub & Van Loan 2012). Hence, it can be seen that the total computation time for the sketch (R, QTy) is
O(nd? + nd — d*/3) which results in O(nd?) for n > d. O



Theorem 2.3. Let X € R"*¢ y € R", (R, QTy) := HOUSEHOLDER-SKETCH(X,y) that accelerates primal
ridge solver via RIDGE-QR. Then, (R,QTy) is also the Householder sketch for the corresponding Kernel
Ridge Regression problem that accelerates the dual problem via KERNELRIDGE-QR, and solves it with the
same memory and time complexity, independent of data size (n), as that of primal RIDGE-QR.

Proof. Kernel Ridge Regression with original data (X,y) solves (K + \I)8 = y, where, K € R™*" is the
Kernel matrix, and 5 € R" is the vector of dual variables. For any pair of row vectors in input data,
z;,x; € R1*4, each element of Kernel matrix K (i, ) = (x,x;), where () is a Reproducing Kernel Hilbert
Space (RKHS) kernel function such that x(z;, z;) = (¢(z;), ¢(z;)) and ¢() is transformation from input space
to RKHS feature space (Burges, |1998|).

For a linear kernel function, x(z;,z;) = xix]T, K = XXT, and the objective is to solve the equation

(XXT + M\)B = y such that the model coefficient in input space, w = X7 3. By applying X = QR via
HouseEHOLDER-QR(X), the above dual problem reformulates to
(XXT+AD)B =
(QRRTQT + \I)j =
(QRRQ™ +2QQ")5 =
Q(RRTQ" +2Q")B =
(RRTQ" + Q)8 = Q"
= (RR" +X)B =7

Y
= Y
= Y
= Y
= )

where, j = QTy and § = Q7. The model coefficients in the input space,
w=X"8=RTQ"3=R"j

Hence, solving (X X7T + \I)3 = y, system of n equations in n unknowns in KERNELRIDGE with original
(X,y) is equivalent to solving a much smaller system of d equations in d unknowns (n > d), accurately and
faster, with (RRT + \I)$ = ¢ in KERNELRIDGE-QR with memory-efficient (R, QTy) sketch. It is worth
noting here that once (R, Q7y) sketch is available, the memory and time complexity for solving dual in
KERNELRIDGE-QR is independent of data size n, and is same to that of solving the same problem in
primal form via RIDGE-QR. Figure 4(a) demonstrates the the above similarity in solving RIDGE-QR,, and
KERNELRIDGE-QR (with linear kernel) based on computation time. Moreover, KERNELRIDGE-QR calculates
the model coefficient w using a triangular matrix in w = R” 3 in d? flops compared to (2n — 1)d flops for
w = XT3 in the original KERNELRIDGE with (X, ).

For any non-linear kernel function such as Radial Basis Function, it is possible to represent K ~ AAT
with some low-rank matrix, A € R™** via any kernel approximation techniques (Williams & Seeger} 2001} [Si
et al.,2017). This can be followed by constructing memory-efficient (R, Qy) := HOUSEHOLDER-SKETCH(A, y)
from Algorithm 1. Now, solving the approximated dual problem formulation for non-linear kernels via
KERNELRIDGE-QR is equivalent in space and time complexity to solving the approximated problem in primal
form via RIDGE-QR on (R, Q7y). Moreover, any of the above RIDGE-QR. or KERNELRIDGE-QR is faster
than solving the primal form via RIDGE with (A, y).

Hence, (R, QTy) is also the Householder sketch for Kernel Ridge Regression , where, R is defined based
on linear or non-linear kernel, for accelerating the dual problem via KERNELRIDGE-QR. O]



Theorem 3.1 (Distributed Householder-QR (Dass et al., |[2018)). Let X = (X{|...|XI)T, where, X; € R"*¢
be local data matriz of parallel worker, i =1,... p, where n > d, and, n = pn. Let, X; = Q; R; be constructed
via local HOUSEHOLDER-QR. (see Algorithm 1) for each i = 1,...,p, in parallel. Then, X = QR for
the complete data matriz can be constructed exactly, such that Q = diag(Q1,...,Qp)Qm, and R = Ry,
where Rsaer = Qu Ry via another HOUSEHOLDER-QR on Rgiger = (R1T|...|RZ)T gathered from all
workers. The above DISTRIBUTED HOUSEHOLDER-QR has a computational time complexity of O(%dQ), with

a communicated data volume of (d(dTH)) elements by each worker.
Proof.
X1 Q1R Ry
Xo Q2R Ry
X=1.1|= . =diag(Q1,...,Qp)
Xp QpRy Ry
Ry
Ry
Let us define, Rstock = | - | = Qu Ry, via HOUSEHOLDER-QR in Algorithm 1 (or Theorem 2.1). Then,
Ry

X = diag(Qh DRI Qp)Rstack = diag(Qla sy Qp)QMRM

Also, it is given that X = QR via HOUSEHOLDER-QR on complete matrix X. Hence, Q@ = diag(Q1,...,Qp)Qum,
is the orthogonal matrix, and, R = R is the upper triangular matrix.

Time complexity and Communication volume. For a given local data X; € R"*? where, n = fp,
each X; = Q;R; at i—th parallel worker is computed via local HOUSEHOLDER-QR (as per Algorithm 1,
and Theorem 2.1). From Theorem each local HOUSEHOLDER-QR takes O(nd? — d®/3), in parallel
for all the workers. Subsequently, Rsiock = Qnar Ry is performed via master HOUSEHOLDER-QR in time
O(xpd x d* — d3/3), where, Rytacr, € RP?¥4 is obtained by gathering (communicating) local upper-triangular
matrices R; € R4, ie., (@) elements from each parallel worker i = 1,...,p to the master (i = 1).
Hence, total computation time for DISTRIBUTED HOUSEHOLDER-QR is O(7d? + pd® — 2d3/3) or O(%dQ)
for n > d (i.e. n > pd). It is worth noticing that the above computational time is dominant by local
HOUSEHOLDER-QR as observed in Figure 2(a). O



Corollary 3.1.1 (Distributed Multiply-Qc). Let ¢ = (c{|...[c])T € R", where, ¢; € R™ be some local vector
at parallel worker with local data matrix X;, i =1,...,p, where n > d, and, n = pn. Let, orthogonal matrices
Qum, and Q;, i =1,...,p be constructed via DISTRIBUTED HOUSEHOLDER-QR as per Theorem [3.1] such that
Q= diag(Q1,...,Qp)Qun. Then, the reflected vector, QTc (or Qc) can be constructed exactly by making

(p+ 1) calls to MULTIPLY-QC (see Step 2 in Algorithm 1) such that QTc = Q% ((QTc1)T]. .. |(QZC,,)T)T or,
Qc=diag(Qi,...,Qp)Qu(cl|...|¢h)T. The above DISTRIBUTED MULTIPLY-QC has a computational time
complexity of O(%d +pd2), with a communicated data volume of (d) elements by each worker.

Proof. From Theorem for X = (X{|...|X])7T, its corresponding orthogonal matrix Q = diag(Q1,...,Qp)Qum-
Hence,

Q" = Qidiag(Qf,....Qp)

For a given vector ¢ € R”, QT'c via MULTIPLY-QC (Step 2 in Algorithm 1) can be equivalently computed
from ¢ = (cT]... |c§)T comprising local vector ¢; € R™, where, i = 1,...,p, as follows

T
14
T

2C2
QTc=Q%diag(QT,. .., Qg)c = Q%

Qp ¢

In DISTRIBUTED MULTIPLY-QC algorithm, the above is implemented as follows. Each worker, i =1,...,p,
computes its local reflected vectors Q7 ¢; € R? via MULTIPLY-QC (refer Step 2 in Algorithm 1) in parallel with
time O(2nd) as shown in Theorem Once these local reflected vectors, each of size d elements are gathered

T
(communicated) from each worker to the master, a stacked vector (( TehT). .. |(QZC,,)T) € Rrdxd g

constructed. Then, a master MULTIPLY-QC is applied on this stacked vector using Q7 in time O(2xpdxd), i.e.,
O(2pd?). Hence, total computation time of DISTRIBUTED MULTIPLY-QC is O(27d + 2pd?), i.e., O(%d + pd?),
since n = np. O



B. Figures

For more clarity, we provide enlarged figures from Section 4 (Experiments and Results) of the main paper.
Following is the organization of figures in the supplementary document.

(a)(b) Page 6 , (c)(j) Page 7 , (d)(e)(f) Page 8 , (g)(h)(i) Page 9, (k)(1) Page 10
Figure 2: (a)(b)(c) Page 11

(a)(
Figure 4: (a)(b)(c) Page 14

Figure 1: (a)(b

Figure 3: b)(c) Page 12, (d)(e)(f) Page 13
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Figure 1: Sequential training time on n = 24M, and various feature dimension d = {3,5,7,10,25,50} (d)
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Figure 1: Sequential training time for various
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Figure 2: Training time analysis for DISTRIBUTED RIDGE-QR with zoomed insets depicting communication
time (a): Stage 1: DISTRIBUTED HOUSEHOLDER-QR timings, (b): Stage 2: DISTRIBUTED MULTIPLY-QC
and RIDGE solver timings, (c): Combined timing percentage spent on each stage for computation and
communication
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Figure 3: (Scalability) Parallel speedup for DISTRIBUTED RIDGR-QR on synthetic datasets of size (a)
500K x 100 (b) 1M x 100 (c) 2M x 100
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Figure 3: (Scalability) Parallel speedup for DISTRIBUTED RIDGR-QR on synthetic datasets for various
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Distributed forms time vs parallel workers
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Figure 4: (a): Comparing distributed implementations of RIDGE-QR, KERNELRIDGE-QR (linear kernel),
and RIDGE-ADMM for 10M x 10 synthetic data based on (a) Computation time (b) Accuracy (x107%), w*
comparison of RIDGE-QR and RIDGE-BOOST, w* is solution from scikit-learn RIDGE. (c) Accuracy (x10711)
comparison of LINREG-QR and LINREG-B0o0OST on Household Power Consumption dataset (~ 2M x 8), w*
is solution from scikit-learn LINEARREGRESSION
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C. Algorithms

Algorithm 1: HOUSEHOLDER-SKETCH(X, y); see Theorem [2.2]

Input: A matrix X € R"*¢ a vector y € R"
Output: A matrix R € R*? is upper triangular such that X7 X = RTR, and a vector § € R? is top
d elements of the reflected vector QTy
(V, R) .= HOUSEHOLDER-QR/(X) // see Theorem 2.1, Algorithm
y = MuLtipLY-Qc(V,y, “T’) // implicit QTy, see (Golub & Vvan Loan|, 2012)), see
Algorithm

R+ R[0:d,:] // dxd triangular block
7 < y[0:d] // top d elements
5 return (R, 9)

N =

W

Algorithm 2: LMS-QR(X,y,parans)

Input: A matrix X € R"*¢, a vector y € R”, and a list of LMS parameters, params

Output: A vector of model coefficients, w € R?
1 (R,7) = HOUSEHOLDER-SKETCH(X,7y) // see Algorithm
2 w = LMS(R,y,params) // LINREG, RIDGECV, LASSOCV, ELASTICCV in sckit-learn
3 return w

Algorithm 3: DISTRIBUTED LMS-QR(p, X,y,params)

Input: A scalar p > 0 parallel workers (cores or users), a matrix X = (X7 |... |X§)T7 X, e R ¥4 4
vector y = (y1|... \yg)T, y; € R7, a list of LMS parameters, params

Output: A vector of model coefficients, w € R?

//  (V,R) = DISTRIBUTED HOUSEHOLDER-QR(X), see Theorem

for every worker i € {1,2,...,p} do

(Vi, R;) = HOUSEHOLDER-QR(X;) // see Theorem 2.1

R;+ R;[0:d,:] // dxd triangular block

Rstack = GATHER(R;, root =0) // Rgigek = vstack(Ri,...,R,) at Master

end

if i == 1 then // check for Master

(Var, Rar) == HOUSEHOLDER-QR(Rstack) // see Theorem 2.1

Ry < Ry[0:d,:] // dxd triangular block

end

© o N o AN W N

/] V= [Vl, .. .,VP,VM} is never centralized or shared

// Q=diag(Qn,...,Qp)@um,and, R =Ry, see Theorem

// y:= DISTRIBUTED MurTIiPLY-Qc(V,y, ‘T’), see Corollary m
10 for every worker i € {1,2,...,p} do
11 y; == MurtteLy-Qe(Vy, v, “T') // implicit QTy;, see Algorithm
12 Ui < 3i[0:d] // select top d elements
13 Ustack = GATHER(Y;, root =0) // Ystack = vstack(yi,...,yp) at Master
14 if i==1then // check for Master

15 yar = MULTIPLY-QC(Var, Ustack, “T') // implicit QY ¥stack, see Algorithm
16 ym < ym[0:d] // select top d elements

17 end

18 end

19 §i=yir // §=QTy = QL ((QTy)TI...1(QFy,)T)"
// Solving LMS
20 if i ==1then // check for Master
21 w = LMS(R, y,params) // run LMS solver at Master
22 BROADCAST(w,root =0) // every worker receives the global model
23 end
24 return w
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Algorithm 4: (V, R) + X, via HOUSEHOLDER-QR, refer Theorem 2.1

Input: A matrix X € R"¥4
Output: Householder reflector set V, Upper trapezoidal matrix R € R"*4
1 for j < 1toddo
2 vj +— X(j:n,j)
3 v (1) < v;(1) + sign(v;(1)) x |lvj|l, // scalar update
4 vj 4 // vector normalization

llvsill,
5 X(Ginj:d)«X{y:nj:d) —2xv; <vj, X(j:n,j:d)>
6 R=X(j:n,j:d)

7 end

8 V<« [v1,vs,...,v4] // set of d-reflectors

9 return (V, R)

Algorithm 5: Computing implicit Q7y via MULTIPLY-QC
Input: Householder reflector set V, a vector y € R™
Output: § + (QTy) e R"
c+y
for j «+ 1 toddo
‘ c(j:n)+c(j:n)—2x ’uj(vJT c(j:n))
end
Yy<c
return y
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