
SUPPLEMENTARY
Householder Sketch for Accurate and Accelerated

Least-Mean-Squares Solvers

Jyotikrishna Dass and Rabi Mahapatra
Texas A&M University

June 11, 2021

APPENDIX

A. Theorems and Proofs
Theorem 2.2 (Householder Sketch). Let X ∈ Rn×d be the original data matrix, y ∈ Rn be the corresponding
output label or response vector, and n� d. Let X = QR be Householder QR decomposition. Then, (R,QT y)
is a memory-efficient and theoretically accurate sketch of original data (X, y) such that XTX = RTR, and
has memory footprint of

(d(d+3)
2

)
elements, computed in time O(nd2).

Proof. From Equations 1 and 2, and X = QR, where QQT = QTQ = I

‖Xw − y‖2 = ‖QRw − y‖2 = ‖QRw −QQT y‖2 = ‖Q‖2‖Rw −QT y‖2 = ‖Rw −QT y‖2

(Accurate sketch) So, it is possible to replace the original data (X, y) used in existing LMS solvers with
(R,QT y) which preserves the covariance XTX = RTQTQR = RTR and solves the optimization problem
accurately. For example, Ridge regression with ridge parameter λ solves (XTX + λI)w = XT y in primal
form which can be reformulated to (RTR+ λI)w = RT (QT y).

(Memory savings) R is a d×d upper triangular matrix with
(d(d−1)

2

)
elements above the diagonal and d

on the diagonal resulting in
(d(d+1)

2

)
elements compared to original data matrix X that has nd elements. QT y

is a reflected response vector. It is to be noted that only top d rows of QT will be sufficient to compute QT y
since n� d. Hence, reflected response vector (QT y) is of size d compared to the original LMS formulation
with response vector y of size n. Hence, the total memory footprint of (R,QT y) is O

(d(d+3)
2

)
elements which

makes it memory-efficient than the original (X, y) occupying n(d+ 1) space.

(Time complexity) The above sketch (R,QT y) is computed via Householder QR decomposition
(Householder-QR in Step 1 of Algorithm 1) of X which generates upper triangular matrix, R, and
orthonormal matrix Q that is internally stored as Householder reflectors. The time complexity of the above
decomposition is O(nd2−d3/3) (Golub & Van Loan, 2012). Calculation of QT y is done implicitly by applying
Householder reflectors to the response vector y (Multiply-Qc in Step 2 of Algorithm 1) in time O(nd)
(Golub & Van Loan, 2012). Hence, it can be seen that the total computation time for the sketch (R,QT y) is
O(nd2 + nd− d3/3) which results in O(nd2) for n� d.

1

Theorem 2.3. Let X ∈ Rn×d, y ∈ Rn, (R,QT y) := Householder-Sketch(X, y) that accelerates primal
ridge solver via Ridge-QR. Then, (R,QT y) is also the Householder sketch for the corresponding Kernel
Ridge Regression problem that accelerates the dual problem via KernelRidge-QR, and solves it with the
same memory and time complexity, independent of data size

(
n
)
, as that of primal Ridge-QR.

Proof. Kernel Ridge Regression with original data (X, y) solves (K + λI)β = y, where, K ∈ Rn×n is the
Kernel matrix, and β ∈ Rn is the vector of dual variables. For any pair of row vectors in input data,
xi, xj ∈ R1×d, each element of Kernel matrix K(i, j) = κ(xi, xj), where κ() is a Reproducing Kernel Hilbert
Space (RKHS) kernel function such that κ(xi, xj) = 〈φ(xi), φ(xj)〉 and φ() is transformation from input space
to RKHS feature space (Burges, 1998).

For a linear kernel function, κ(xi, xj) = xix
T
j , K = XXT , and the objective is to solve the equation

(XXT + λI)β = y such that the model coefficient in input space, w = XTβ. By applying X = QR via
Householder-QR(X), the above dual problem reformulates to

(XXT + λI)β = y

⇒ (QRRTQT + λI)β = y

⇒ (QRRTQT + λQQT)β = y

⇒ Q(RRTQT + λQT)β = y

⇒ (RRTQT + λQT)β = QT y

⇒ (RRT + λI)β̄ = ȳ

where, ȳ = QT y and β̄ = QTβ. The model coefficients in the input space,

w = XTβ = RTQTβ = RT β̄

Hence, solving (XXT + λI)β = y, system of n equations in n unknowns in KernelRidge with original
(X, y) is equivalent to solving a much smaller system of d equations in d unknowns (n� d), accurately and
faster, with (RRT + λI)β̄ = ȳ in KernelRidge-QR with memory-efficient (R,QT y) sketch. It is worth
noting here that once (R,QT y) sketch is available, the memory and time complexity for solving dual in
KernelRidge-QR is independent of data size n, and is same to that of solving the same problem in
primal form via Ridge-QR. Figure 4(a) demonstrates the the above similarity in solving Ridge-QR, and
KernelRidge-QR (with linear kernel) based on computation time. Moreover, KernelRidge-QR calculates
the model coefficient w using a triangular matrix in w = RT β̄ in d2 flops compared to (2n − 1)d flops for
w = XTβ in the original KernelRidge with (X, y).

For any non-linear kernel function such as Radial Basis Function, it is possible to represent K ≈ AAT

with some low-rank matrix, A ∈ Rn×k via any kernel approximation techniques (Williams & Seeger, 2001; Si
et al., 2017). This can be followed by constructing memory-efficient (R,QT y) := Householder-Sketch(A, y)
from Algorithm 1. Now, solving the approximated dual problem formulation for non-linear kernels via
KernelRidge-QR is equivalent in space and time complexity to solving the approximated problem in primal
form via Ridge-QR on (R,QT y). Moreover, any of the above Ridge-QR or KernelRidge-QR is faster
than solving the primal form via Ridge with (A, y).

Hence, (R,QT y) is also the Householder sketch for Kernel Ridge Regression , where, R is defined based
on linear or non-linear kernel, for accelerating the dual problem via KernelRidge-QR.

2

Theorem 3.1 (Distributed Householder-QR (Dass et al., 2018)). Let X = (XT
1 | . . . |XT

p)T , where, Xi ∈ Rn̂×d

be local data matrix of parallel worker, i = 1, . . . , p, where n̂� d, and, n = pn̂. Let, Xi = QiRi be constructed
via local Householder-QR (see Algorithm 1) for each i = 1, . . . , p, in parallel. Then, X = QR for
the complete data matrix can be constructed exactly, such that Q = diag(Q1, . . . , Qp)QM , and R = RM ,
where Rstack = QMRM via another Householder-QR on Rstack = (RT

1 | . . . |RT
p)T gathered from all

workers. The above Distributed Householder-QR has a computational time complexity of O
(
n
p d

2
)
, with

a communicated data volume of
(d(d+1)

2

)
elements by each worker.

Proof.

X =

X1

X2

.

.
Xp

 =

Q1R1

Q2R2

.

.
QpRp

 = diag(Q1, . . . , Qp)

R1

R2

.

.
Rp

Let us define, Rstack =

R1

R2

.

.
Rp

 = QMRM , via Householder-QR in Algorithm 1 (or Theorem 2.1). Then,

X = diag(Q1, . . . , Qp)Rstack = diag(Q1, . . . , Qp)QMRM

Also, it is given thatX = QR via Householder-QR on complete matrixX. Hence, Q = diag(Q1, . . . , Qp)QM ,
is the orthogonal matrix, and, R = RM is the upper triangular matrix.

Time complexity and Communication volume. For a given local data Xi ∈ Rn̂×d, where, n = n̂p,
each Xi = QiRi at i−th parallel worker is computed via local Householder-QR (as per Algorithm 1,
and Theorem 2.1). From Theorem 2.2, each local Householder-QR takes O(n̂d2 − d3/3), in parallel
for all the workers. Subsequently, Rstack = QMRM is performed via master Householder-QR in time
O(×pd× d2 − d3/3), where, Rstack ∈ Rpd×d is obtained by gathering (communicating) local upper-triangular
matrices Ri ∈ Rd×d, i.e.,

(d(d+1)
2

)
elements from each parallel worker i = 1, . . . , p to the master (i = 1).

Hence, total computation time for Distributed Householder-QR is O(n̂d2 + pd3 − 2d3/3) or O(n
p d

2)

for n̂ � d (i.e. n � pd). It is worth noticing that the above computational time is dominant by local
Householder-QR as observed in Figure 2(a).

3

Corollary 3.1.1 (Distributed Multiply-Qc). Let c = (cT1 | . . . |cTp)T ∈ Rn, where, ci ∈ Rn̂ be some local vector
at parallel worker with local data matrix Xi, i = 1, . . . , p, where n̂� d, and, n = pn̂. Let, orthogonal matrices
QM , and Qi, i = 1, . . . , p be constructed via Distributed Householder-QR as per Theorem 3.1 such that
Q = diag(Q1, . . . , Qp)QM . Then, the reflected vector, QT c (or Qc) can be constructed exactly by making
(p+ 1) calls to Multiply-Qc (see Step 2 in Algorithm 1) such that QT c = QT

M

(
(QT

1 c1)T | . . . |(QT
p cp)T

)T or,
Qc = diag(Q1, . . . , Qp)QM (cT1 | . . . |cTp)T . The above Distributed Multiply-Qc has a computational time
complexity of O

(
n
p d+ pd2

)
, with a communicated data volume of

(
d
)
elements by each worker.

Proof. From Theorem 3.1, forX = (XT
1 | . . . |XT

p)T , its corresponding orthogonal matrixQ = diag(Q1, . . . , Qp)QM .
Hence,

QT = QT
Mdiag(QT

1 , . . . , Q
T
p)

For a given vector c ∈ Rn, QT c via Multiply-Qc (Step 2 in Algorithm 1) can be equivalently computed
from c = (cT1 | . . . |cTp)T comprising local vector ci ∈ Rn̂, where, i = 1, . . . , p, as follows

QT c = QT
Mdiag(QT

1 , . . . , Q
T
p)c = QT

M

QT
1 c1

QT
2 c2
.
.

QT
p cp

In Distributed Multiply-Qc algorithm, the above is implemented as follows. Each worker, i = 1, . . . , p,
computes its local reflected vectors QT

i ci ∈ Rd via Multiply-Qc (refer Step 2 in Algorithm 1) in parallel with
time O(2n̂d) as shown in Theorem 2.2. Once these local reflected vectors, each of size d elements are gathered

(communicated) from each worker to the master, a stacked vector
(

(QT
1 c1)T | . . . |(QT

p cp)T
)T
∈ Rpd×d is

constructed. Then, a master Multiply-Qc is applied on this stacked vector usingQT
M in time O(2×pd×d), i.e.,

O(2pd2). Hence, total computation time of Distributed Multiply-Qc is O(2n̂d+ 2pd2), i.e., O(np d+ pd2),
since n = n̂p.

4

B. Figures
For more clarity, we provide enlarged figures from Section 4 (Experiments and Results) of the main paper.
Following is the organization of figures in the supplementary document.

Figure 1: (a)(b) Page 6 , (c)(j) Page 7 , (d)(e)(f) Page 8 , (g)(h)(i) Page 9, (k)(l) Page 10

Figure 2: (a)(b)(c) Page 11

Figure 3: (a)(b)(c) Page 12 , (d)(e)(f) Page 13

Figure 4: (a)(b)(c) Page 14

5

24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 4.8M 9.6M 19.2M 24M

Data size, n

0.05 0.05

0.1 0.1

0.5 0.5

1.0 1.0

5 5

10 10

50 50

100 100

500 500

1000 1000
C

om
pu

ta
ti

on
ti

m
e

(s
ec

on
ds

)

Figure 1 (a)

Sequential training time on data n× d
RIDGECV (d=3)

RIDGE-BOOST (d=3)

RIDGE-QR (d=3)

RIDGECV (d=5)

RIDGE-BOOST (d=5)

RIDGE-QR (d=5)

RIDGECV (d=7)

RIDGE-BOOST (d=7)

RIDGE-QR (d=7)

24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 4.8M 9.6M 19.2M 24M

Data size, n

0.05 0.05

0.1 0.1

0.5 0.5

1.0 1.0

5 5

10 10

50 50

100 100

500 500

1000 1000

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (b)

Sequential training time on data n× d
LASSOCV (d=3)

LASSO-BOOST (d=3)

LASSO-QR (d=3)

LASSOCV (d=5)

LASSO-BOOST (d=5)

LASSO-QR (d=5)

LASSOCV (d=7)

LASSO-BOOST (d=7)

LASSO-QR (d=7)

Figure 1: Sequential training time (a)Ridge (b)LASSO
6

24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 4.8M 9.6M 19.2M 24M

Data size, n

0.05 0.05

0.1 0.1

0.5 0.5

1.0 1.0

5 5

10 10

50 50

100 100

500 500

1000 1000
C

om
pu

ta
ti

on
ti

m
e

(s
ec

on
ds

)

Figure 1 (c)

Sequential training time on data n× d
ELASTICCV (d=3)

ELASTIC-BOOST (d=3)

ELASTIC-QR (d=3)

ELASTICCV (d=5)

ELASTIC-BOOST (d=5)

ELASTIC-QR (d=5)

ELASTICCV (d=7)

ELASTIC-BOOST (d=7)

ELASTIC-QR (d=7)

24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 4.8M 9.6M 19.2M 24M

Data size, n

0.05 0.05

0.1 0.1

0.5 0.5

1.0 1.0

5 5

10 10

50 50

100 100

500 500

1000 1000

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (j)

Sequential training time on data n× d
LINREG (d=3)

LINREG-BOOST (d=3)

LINREG-QR (d=3)

LINREG (d=5)

LINREG-BOOST (d=5)

LINREG-QR (d=5)

LINREG (d=7)

LINREG-BOOST (d=7)

LINREG-QR (d=7)

Figure 1: Sequential training time (c)Elastic-net (j)Linear Regression
7

3 5 7 10 25 50

Feature dimension, d

0.1 0.1

1 1

10 10

100 100

1000 1000

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (d)

Sequential Training Time vs Feature dimension, on n = 24M

RIDGECV

RIDGE-BOOST

RIDGE-QR

3 5 7 10 25 50

Feature dimension, d

0.1 0.1

1 1

10 10

100 100

1000 1000

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (e)

Sequential Training Time vs Feature dimension, on n = 24M

LASSOCV

LASSO-BOOST

LASSO-QR

3 5 7 10 25 50

Feature dimension, d

0.1 0.1

1 1

10 10

100 100

1000 1000

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (f)

Sequential Training Time vs Feature dimension, on n = 24M

ELASTICCV

ELASTIC-BOOST

ELASTIC-QR

Figure 1: Sequential training time on n = 24M , and various feature dimension d = {3, 5, 7, 10, 25, 50} (d)
Ridge, (e) LASSO, (f) Elastic-net

8

24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 4.8M 9.6M 19.2M 24M

Data size, n

0.05 0.05

0.1 0.1

0.5 0.5

1.0 1.0

5 5

10 10

50 50

100 100

500 500

1000 1000

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (g)

Training Time vs Datasize at various Hyperparameter |A|
RIDGECV (|A|=50)

RIDGE-BOOST (|A|=50)

RIDGE-QR (|A|=50)

RIDGECV (|A|=100)

RIDGE-BOOST (|A|=100)

RIDGE-QR (|A|=100)

RIDGECV (|A|=200)

RIDGE-BOOST (|A|=200)

RIDGE-QR (|A|=200)

RIDGECV (|A|=300)

RIDGE-BOOST (|A|=300)

RIDGE-QR (|A|=300)

24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 4.8M 9.6M 19.2M 24M

Data size, n

0.05 0.05

0.1 0.1

0.5 0.5

1.0 1.0

5 5

10 10

50 50

100 100

500 500

1000 1000

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (h)

Training Time vs Datasize at various Hyperparameter |A|
LASSOCV (|A|=50)

LASSO-BOOST (|A|=50)

LASSO-QR (|A|=50)

LASSOCV (|A|=100)

LASSO-BOOST (|A|=100)

LASSO-QR (|A|=100)

LASSOCV (|A|=200)

LASSO-BOOST (|A|=200)

LASSO-QR (|A|=200)

LASSOCV (|A|=300)

LASSO-BOOST (|A|=300)

LASSO-QR (|A|=300)

24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 4.8M 9.6M 19.2M 24M

Data size, n

0.05 0.05

0.1 0.1

0.5 0.5

1.0 1.0

5 5

10 10

50 50

100 100

500 500

1000 1000

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (i)

Training Time vs Datasize at various Hyperparameter |A|
ELASTICCV (|A|=50)

ELASTIC-BOOST (|A|=50)

ELASTIC-QR (|A|=50)

ELASTICCV (|A|=100)

ELASTIC-BOOST (|A|=100)

ELASTIC-QR (|A|=100)

ELASTICCV (|A|=200)

ELASTIC-BOOST (|A|=200)

ELASTIC-QR (|A|=200)

ELASTICCV (|A|=300)

ELASTIC-BOOST (|A|=300)

ELASTIC-QR (|A|=300)

Figure 1: Sequential training time for various hyper-parameter set size |A| (g) Ridge, (h) LASSO, (i)
Elastic-net

9

40 60 80 100 120 140 160 180 200

|A|

0.1 0.1

1 1

10 10
C

om
pu

ta
ti

on
ti

m
e

(s
ec

on
ds

)

Figure 1 (k)

3D Road Network, 434874 x 2
RIDGECV

RIDGE-BOOST

RIDGE-QR

LASSOCV

LASSO-BOOST

LASSO-QR

ELASTICCV

ELASTIC-BOOST

ELASTIC-QR

40 60 80 100 120 140 160 180 200

|A|

0.1 0.1

1 1

10 10

100 100

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 1 (l)

Household Power Consumption, 2075259 x 2
RIDGECV

RIDGE-BOOST

RIDGE-QR

LASSOCV

LASSO-BOOST

LASSO-QR

ELASTICCV

ELASTIC-BOOST

ELASTIC-QR

Figure 1: Sequential training time for various hyper-parameter set size |A| (k) 3D Road Network dataset (l)
Household Power Consumption dataset 10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Computation time (seconds)

2

4

8

16

Nu
m

be
r o

f p
ar

al
le

l w
or

ke
rs

, p

Figure 2 (a)

Stage 1: Distributed Householder-QR
Compute (local QR)
Compute (master QR)
Communicate

1.1735 1.1740 1.1745

0.541 0.542

0.251 0.252

0.124 0.125

0.0 0.1 0.2 0.3 0.4
Computation time (seconds)

2

4

8

16

Nu
m

be
r o

f p
ar

al
le

l w
or

ke
rs

, p

Figure 2 (b)

Stage 2: Distributed Multiply-Qc and RIDGE
Compute (Q'y)
Compute (Ridge)
Communicate

0.278 0.280 0.282

0.124 0.126

0.0600 0.0625

0.0275 0.0300

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Percentage of total computation time

2

4

8

16

Nu
m

be
r o

f p
ar

al
le

l w
or

ke
rs

, p

Figure 2 (c)

Distributed RIDGE-QR for data size: 10M X 10
Compute (Stage 1)
Compute (Stage 2)
Communicate (Stage 1)
Communicate (Stage 2)

99.5 99.6 99.7 99.8 99.9 100

Figure 2: Training time analysis for Distributed Ridge-QR with zoomed insets depicting communication
time (a): Stage 1: Distributed Householder-QR timings, (b): Stage 2: Distributed Multiply-Qc
and Ridge solver timings, (c): Combined timing percentage spent on each stage for computation and
communication

11

1 2 4 8 16

Number of parallel workers, p

2

4

6

8

10

12

14

16

P
ar

al
le

l
S

p
ee

du
p

Data: 500K x 100

Figure 3 (a)

Ideal Speedup

RIDGE-ADMM

RIDGE-QR

KERNELRIDGE-QR

1 2 4 8 16

Number of parallel workers, p

2.5

5.0

7.5

10.0

12.5

15.0

17.5

P
ar

al
le

l
S

p
ee

du
p

Data: 1M x 100

Figure 3 (b)

Ideal Speedup

RIDGE-ADMM

RIDGE-QR

KERNELRIDGE-QR

1 2 4 8 16

Number of parallel workers, p

2

4

6

8

10

12

14

16

P
ar

al
le

l
S

p
ee

du
p

Data: 2M x 100

Figure 3 (c)

Ideal Speedup

RIDGE-ADMM

RIDGE-QR

KERNELRIDGE-QR

Figure 3: (Scalability) Parallel speedup for Distributed Ridgr-QR on synthetic datasets of size (a)
500K × 100 (b) 1M × 100 (c) 2M × 100

12

1 2 4 8 16

Number of parallel workers, p

2

4

6

8

10

12

14

16

P
ar

al
le

l
S

p
ee

du
p

Data: 500K x d

Figure 3 (d)

Ideal Speedup

d=5

d=10

d=25

d=50

d=100

1 2 4 8 16

Number of parallel workers, p

2

4

6

8

10

12

14

16

P
ar

al
le

l
S

p
ee

du
p

Data: 1M x d

Figure 3 (e)

Ideal Speedup

d=5

d=10

d=25

d=50

d=100

1 2 4 8 16

Number of parallel workers, p

2

4

6

8

10

12

14

16

P
ar

al
le

l
S

p
ee

du
p

Data: 2M x d

Figure 3 (f)

Ideal Speedup

d=5

d=10

d=25

d=50

d=100

Figure 3: (Scalability) Parallel speedup for Distributed Ridgr-QR on synthetic datasets for various
feature dimension size d = {5, 10, 25, 50, 100} (d) 500K × d (e) 1M × d (f) 2M × d

13

1 2 4 8 16

Number of parallel workers, p

0.1 0.1

0.3 0.3

0.5 0.5

1 1

3 3

5 5

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

Figure 4 (a)

Distributed forms time vs parallel workers

RIDGE-QR

KERNELRIDGE-QR

RIDGE-ADMM

RIDGE-QR (p=1)

KERNELRIDGE-QR (p=1)

RIDGE-ADMM (p=1)

1 2 4 8 16

Number of parallel workers, p

0 0

5 5

10 10

15 15

20 20

25 25

ab
s(
‖X

w
∗
−
y
‖ 2
−
‖X

w
−
y
‖ 2

)

Data: 10M x 10

×10−6

Figure 4 (b)

Sequential numerical stability vs number of samples
RIDGE-QR

KERNELRIDGE-QR

RIDGE-ADMM

250000 500000 750000 1000000 1250000 1500000 1750000 2000000

Number of samples, n

0 0

1 1

2 2

3 3

4 4

5 5

6 6

ab
s(
‖X

w
∗
−
y
‖ 2
−
‖X

w
−
y
‖ 2

)

×10−11

Figure 4 (c)

LINREG-BOOST

LINREG-QR

Figure 4: (a): Comparing distributed implementations of RIDGE-QR, KernelRidge-QR (linear kernel),
and Ridge-ADMM for 10M × 10 synthetic data based on (a) Computation time (b) Accuracy (×10−6), w∗
comparison of Ridge-QR and Ridge-Boost, w∗ is solution from scikit-learn Ridge. (c) Accuracy (×10−11)
comparison of LinReg-QR and LinReg-Boost on Household Power Consumption dataset (∼ 2M × 8), w∗
is solution from scikit-learn LinearRegression

14

C. Algorithms

Algorithm 1: Householder-Sketch(X, y); see Theorem 2.2

Input: A matrix X ∈ Rn×d, a vector y ∈ Rn

Output: A matrix R ∈ Rd×d is upper triangular such that XTX = RTR, and a vector ȳ ∈ Rd is top
d elements of the reflected vector QT y

1 (V, R) := Householder-QR(X) // see Theorem 2.1, Algorithm 4
2 ȳ := Multiply-Qc(V, y,‘T’) // implicit QT y, see (Golub & Van Loan, 2012), see

Algorithm 5
3 R←− R[0 : d, :] // d× d triangular block
4 ȳ ←− ȳ[0 : d] // top d elements
5 return (R, ȳ)

Algorithm 2: LMS-QR(X, y,params)

Input: A matrix X ∈ Rn×d, a vector y ∈ Rn, and a list of LMS parameters, params
Output: A vector of model coefficients, w ∈ Rd

1 (R, ȳ) := Householder-Sketch(X, y) // see Algorithm 1
2 w := LMS(R, ȳ, params) // LINREG, RIDGECV, LASSOCV, ELASTICCV in sckit-learn
3 return w

Algorithm 3: Distributed LMS-QR(p,X, y,params)

Input: A scalar p > 0 parallel workers (cores or users), a matrix X = (XT
1 | . . . |XT

p)T , Xi ∈ R
n
p×d , a

vector y = (yT1 | . . . |yTp)T , yi ∈ R
n
p , a list of LMS parameters, params

Output: A vector of model coefficients, w ∈ Rd

// (V,R) := DISTRIBUTED HOUSEHOLDER-QR(X), see Theorem 3.1
1 for every worker i ∈ {1, 2, . . . , p} do
2 (Vi, Ri) := Householder-QR(Xi) // see Theorem 2.1
3 Ri ←− Ri[0 : d, :] // d× d triangular block
4 Rstack := Gather(Ri,root = 0) // Rstack = vstack(R1, . . . , Rp) at Master
5 end
6 if i == 1 then // check for Master
7 (VM , RM) := Householder-QR(Rstack) // see Theorem 2.1
8 RM ←− RM [0 : d, :] // d× d triangular block
9 end
// V :=

[
V1, . . . ,Vp,VM

]
is never centralized or shared

// Q = diag(Q1, . . . , Qp)QM ,and, R = RM, see Theorem 3.1
// ȳ := DISTRIBUTED MULTIPLY-QC(V,y,‘T’), see Corollary 3.1.1

10 for every worker i ∈ {1, 2, . . . , p} do
11 ȳi := Multiply-Qc(Vi, yi,‘T’) // implicit QT

i yi, see Algorithm 5
12 ȳi ←− ȳi[0 : d] // select top d elements
13 ȳstack := Gather(ȳi,root = 0) // ȳstack = vstack(ȳ1, . . . , ȳp) at Master
14 if i == 1 then // check for Master
15 ¯yM := Multiply-Qc(VM , ȳstack,‘T’) // implicit QT

M ȳstack, see Algorithm 5
16 ¯yM ←− ¯yM [0 : d] // select top d elements
17 end
18 end
19 ȳ := ¯yM // ȳ = QT y = QT

M

(
(QT

1 y1)T | . . . |(QT
p yp)T

)T
// Solving LMS

20 if i == 1 then // check for Master
21 w := LMS(R, ȳ, params) // run LMS solver at Master
22 Broadcast(w,root = 0) // every worker receives the global model
23 end
24 return w

15

Algorithm 4: (V, R)← X, via Householder-QR, refer Theorem 2.1

Input: A matrix X ∈ Rn×d

Output: Householder reflector set V, Upper trapezoidal matrix R ∈ Rn×d

1 for j ← 1 to d do
2 vj ← X(j : n, j)
3 vj(1)← vj(1) + sign(vj(1))× ‖vj‖2 // scalar update
4 vj ← vj

‖vj‖2
// vector normalization

5 X(j : n, j : d)← X(j : n, j : d)− 2× vj < vj , X(j : n, j : d) >
6 R = X(j : n, j : d)

7 end
8 V ← [v1, v2, . . . , vd] // set of d-reflectors
9 return (V, R)

Algorithm 5: Computing implicit QT y via Multiply-Qc
Input: Householder reflector set V, a vector y ∈ Rn

Output: ȳ ←
(
QT y

)
∈ Rn

1 c← y
2 for j ← 1 to d do
3 c(j : n)← c(j : n)− 2× vj(vTj c(j : n))

4 end
5 ȳ ← c
6 return ȳ

References
Burges, C. J. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2
(2):121–167, 1998.

Dass, J., Sarin, V., and Mahapatra, R. N. Fast and communication-efficient algorithm for distributed support vector
machine training. IEEE Transactions on Parallel and Distributed Systems, 30(5):1065–1076, 2018.

Golub, G. H. and Van Loan, C. F. Matrix computations, volume 3. JHU press, 2012.

Si, S., Hsieh, C.-J., and Dhillon, I. S. Memory efficient kernel approximation. The Journal of Machine Learning
Research, 18(1):682–713, 2017.

Williams, C. K. and Seeger, M. Using the nyström method to speed up kernel machines. In Advances in neural
information processing systems, pp. 682–688, 2001.

16

