SUPPLEMENTARY
Householder Sketch for Accurate and Accelerated
Least-Mean-Squares Solvers

Jyotikrishna Dass and Rabi Mahapatra
Texas A&M University

June 11, 2021

APPENDIX

A. Theorems and Proofs

Theorem 2.2 (Householder Sketch). Let X € R"*? be the original data matriz, y € R™ be the corresponding

output label or response vector, and n > d. Let X = QR be Householder QR decomposition. Then, (R, QTy)

is a memory-efficient and theoretically accurate sketch of original data (X,y) such that XTX = RTR, and

d(d+3))
2

has memory footprint of ( elements, computed in time O(nd?).

Proof. From Equations 1 and 2, and X = QR, where QQT = QTQ =1

IXw = yll2 = |QRw = 2 = [QRw — QQ"y|2 = |Ql2[|Rw — Q"y|> = || Rw — Q" y||2

(Accurate sketch) So, it is possible to replace the original data (X,y) used in existing LMS solvers with
(R, Q"y) which preserves the covariance X7 X = RTQTQR = RT R and solves the optimization problem
accurately. For example, Ridge regression with ridge parameter )\ solves (X7 X + Al)w = X Ty in primal
form which can be reformulated to (RT R + A)w = RT(QTy).

(Memory savings) R is a d x d upper triangular matrix with ( @) elements above the diagonal and d

on the diagonal resulting in (@) elements compared to original data matrix X that has nd elements. QTy

is a reflected response vector. It is to be noted that only top d rows of Q7 will be sufficient to compute QTy

since n > d. Hence, reflected response vector (Q7y) is of size d compared to the original LMS formulation

d(d+3))
2

with response vector y of size n. Hence, the total memory footprint of (R, QTy) is O( elements which

makes it memory-efficient than the original (X, y) occupying n(d + 1) space.

(Time complexity) The above sketch (R,QTy) is computed via Householder QR decomposition
(HOUSEHOLDER-QR, in Step 1 of Algorithm 1) of X which generates upper triangular matrix, R, and
orthonormal matrix @) that is internally stored as Householder reflectors. The time complexity of the above
decomposition is O(nd? —d?*/3) (Golub & Van Loan, 2012). Calculation of QT'y is done implicitly by applying
Householder reflectors to the response vector y (MULTIPLY-QC in Step 2 of Algorithm 1) in time O(nd)
(Golub & Van Loan 2012). Hence, it can be seen that the total computation time for the sketch (R, QTy) is
O(nd? + nd — d*/3) which results in O(nd?) for n > d. O



Theorem 2.3. Let X € R"*¢ y € R", (R, QTy) := HOUSEHOLDER-SKETCH(X,y) that accelerates primal
ridge solver via RIDGE-QR. Then, (R,QTy) is also the Householder sketch for the corresponding Kernel
Ridge Regression problem that accelerates the dual problem via KERNELRIDGE-QR, and solves it with the
same memory and time complexity, independent of data size (n), as that of primal RIDGE-QR.

Proof. Kernel Ridge Regression with original data (X,y) solves (K + \I)8 = y, where, K € R™*" is the
Kernel matrix, and 5 € R" is the vector of dual variables. For any pair of row vectors in input data,
z;,x; € R1*4, each element of Kernel matrix K (i, ) = (x,x;), where () is a Reproducing Kernel Hilbert
Space (RKHS) kernel function such that x(z;, z;) = (¢(z;), ¢(z;)) and ¢() is transformation from input space
to RKHS feature space (Burges, |1998|).

For a linear kernel function, x(z;,z;) = xix]T, K = XXT, and the objective is to solve the equation

(XXT + M\)B = y such that the model coefficient in input space, w = X7 3. By applying X = QR via
HouseEHOLDER-QR(X), the above dual problem reformulates to
(XXT+AD)B =
(QRRTQT + \I)j =
(QRRQ™ +2QQ")5 =
Q(RRTQ" +2Q")B =
(RRTQ" + Q)8 = Q"
= (RR" +X)B =7

Y
= Y
= Y
= Y
= )

where, j = QTy and § = Q7. The model coefficients in the input space,
w=X"8=RTQ"3=R"j

Hence, solving (X X7T + \I)3 = y, system of n equations in n unknowns in KERNELRIDGE with original
(X,y) is equivalent to solving a much smaller system of d equations in d unknowns (n > d), accurately and
faster, with (RRT + \I)$ = ¢ in KERNELRIDGE-QR with memory-efficient (R, QTy) sketch. It is worth
noting here that once (R, Q7y) sketch is available, the memory and time complexity for solving dual in
KERNELRIDGE-QR is independent of data size n, and is same to that of solving the same problem in
primal form via RIDGE-QR. Figure 4(a) demonstrates the the above similarity in solving RIDGE-QR,, and
KERNELRIDGE-QR (with linear kernel) based on computation time. Moreover, KERNELRIDGE-QR calculates
the model coefficient w using a triangular matrix in w = R” 3 in d? flops compared to (2n — 1)d flops for
w = XT3 in the original KERNELRIDGE with (X, ).

For any non-linear kernel function such as Radial Basis Function, it is possible to represent K ~ AAT
with some low-rank matrix, A € R™** via any kernel approximation techniques (Williams & Seeger} 2001} [Si
et al.,2017). This can be followed by constructing memory-efficient (R, Qy) := HOUSEHOLDER-SKETCH(A, y)
from Algorithm 1. Now, solving the approximated dual problem formulation for non-linear kernels via
KERNELRIDGE-QR is equivalent in space and time complexity to solving the approximated problem in primal
form via RIDGE-QR on (R, Q7y). Moreover, any of the above RIDGE-QR. or KERNELRIDGE-QR is faster
than solving the primal form via RIDGE with (A, y).

Hence, (R, QTy) is also the Householder sketch for Kernel Ridge Regression , where, R is defined based
on linear or non-linear kernel, for accelerating the dual problem via KERNELRIDGE-QR. O]



Theorem 3.1 (Distributed Householder-QR (Dass et al., |[2018)). Let X = (X{|...|XI)T, where, X; € R"*¢
be local data matriz of parallel worker, i =1,... p, where n > d, and, n = pn. Let, X; = Q; R; be constructed
via local HOUSEHOLDER-QR. (see Algorithm 1) for each i = 1,...,p, in parallel. Then, X = QR for
the complete data matriz can be constructed exactly, such that Q = diag(Q1,...,Qp)Qm, and R = Ry,
where Rsaer = Qu Ry via another HOUSEHOLDER-QR on Rgiger = (R1T|...|RZ)T gathered from all
workers. The above DISTRIBUTED HOUSEHOLDER-QR has a computational time complexity of O(%dQ), with

a communicated data volume of (d(dTH)) elements by each worker.
Proof.
X1 Q1R Ry
Xo Q2R Ry
X=1.1|= . =diag(Q1,...,Qp)
Xp QpRy Ry
Ry
Ry
Let us define, Rstock = | - | = Qu Ry, via HOUSEHOLDER-QR in Algorithm 1 (or Theorem 2.1). Then,
Ry

X = diag(Qh DRI Qp)Rstack = diag(Qla sy Qp)QMRM

Also, it is given that X = QR via HOUSEHOLDER-QR on complete matrix X. Hence, Q@ = diag(Q1,...,Qp)Qum,
is the orthogonal matrix, and, R = R is the upper triangular matrix.

Time complexity and Communication volume. For a given local data X; € R"*? where, n = fp,
each X; = Q;R; at i—th parallel worker is computed via local HOUSEHOLDER-QR (as per Algorithm 1,
and Theorem 2.1). From Theorem each local HOUSEHOLDER-QR takes O(nd? — d®/3), in parallel
for all the workers. Subsequently, Rsiock = Qnar Ry is performed via master HOUSEHOLDER-QR in time
O(xpd x d* — d3/3), where, Rytacr, € RP?¥4 is obtained by gathering (communicating) local upper-triangular
matrices R; € R4, ie., (@) elements from each parallel worker i = 1,...,p to the master (i = 1).
Hence, total computation time for DISTRIBUTED HOUSEHOLDER-QR is O(7d? + pd® — 2d3/3) or O(%dQ)
for n > d (i.e. n > pd). It is worth noticing that the above computational time is dominant by local
HOUSEHOLDER-QR as observed in Figure 2(a). O



Corollary 3.1.1 (Distributed Multiply-Qc). Let ¢ = (c{|...[c])T € R", where, ¢; € R™ be some local vector
at parallel worker with local data matrix X;, i =1,...,p, where n > d, and, n = pn. Let, orthogonal matrices
Qum, and Q;, i =1,...,p be constructed via DISTRIBUTED HOUSEHOLDER-QR as per Theorem [3.1] such that
Q= diag(Q1,...,Qp)Qun. Then, the reflected vector, QTc (or Qc) can be constructed exactly by making

(p+ 1) calls to MULTIPLY-QC (see Step 2 in Algorithm 1) such that QTc = Q% ((QTc1)T]. .. |(QZC,,)T)T or,
Qc=diag(Qi,...,Qp)Qu(cl|...|¢h)T. The above DISTRIBUTED MULTIPLY-QC has a computational time
complexity of O(%d +pd2), with a communicated data volume of (d) elements by each worker.

Proof. From Theorem for X = (X{|...|X])7T, its corresponding orthogonal matrix Q = diag(Q1,...,Qp)Qum-
Hence,

Q" = Qidiag(Qf,....Qp)

For a given vector ¢ € R”, QT'c via MULTIPLY-QC (Step 2 in Algorithm 1) can be equivalently computed
from ¢ = (cT]... |c§)T comprising local vector ¢; € R™, where, i = 1,...,p, as follows

T
14
T

2C2
QTc=Q%diag(QT,. .., Qg)c = Q%

Qp ¢

In DISTRIBUTED MULTIPLY-QC algorithm, the above is implemented as follows. Each worker, i =1,...,p,
computes its local reflected vectors Q7 ¢; € R? via MULTIPLY-QC (refer Step 2 in Algorithm 1) in parallel with
time O(2nd) as shown in Theorem Once these local reflected vectors, each of size d elements are gathered

T
(communicated) from each worker to the master, a stacked vector (( TehT). .. |(QZC,,)T) € Rrdxd g

constructed. Then, a master MULTIPLY-QC is applied on this stacked vector using Q7 in time O(2xpdxd), i.e.,
O(2pd?). Hence, total computation time of DISTRIBUTED MULTIPLY-QC is O(27d + 2pd?), i.e., O(%d + pd?),
since n = np. O



B. Figures

For more clarity, we provide enlarged figures from Section 4 (Experiments and Results) of the main paper.
Following is the organization of figures in the supplementary document.

(a)(b) Page 6 , (c)(j) Page 7 , (d)(e)(f) Page 8 , (g)(h)(i) Page 9, (k)(1) Page 10
Figure 2: (a)(b)(c) Page 11

(a)(
Figure 4: (a)(b)(c) Page 14

Figure 1: (a)(b

Figure 3: b)(c) Page 12, (d)(e)(f) Page 13



Computation time (seconds)

Computation time (seconds)

Sequential training time on data n x d

1000 1000
—A— RIDGECV (d=3)

500 { —=—# = RIDGE-BOOST (d=3) - 500
--A+ RIDGE-QR (d=3)
—®— RIDGECV (d=5)
- - RIDGE-BOOST (d=5)
..M RIDGE-QR (d=5)

100 { —e— RIDGECV (d=7) r 100
--® - RIDGE-BOOST (d=7)

501 :--@-- RIDGE-QR (d=7) 50
10 - 10
5 L5
1.0 5 L 1.0
0.5 - L 0.5
0.1 1 0.1
0.05 : : : | : : : | : : : 0.05
24K 48K 96K 102K 240K 480K 960K  1.02M  2.4M 48M 96M  192M  24M
Data size, n
Figure 1 (a)

Sequential training time on data n x d
1000 1000

—A— LASSOCV (d=3)
500 | ==& = LASSO-BOOST (d=3) L 500
--A--+ LASSO-QR (d=3)
—8— LASSOCV (d=5)
- - LASSO-BOOST (d=5)
100 --- M-+ LASSO-QR (d=5) - 100
—@— LASSOCV (d=7)
50 1 —-@ - LASSO-BOOST (d=7) [ 50
. _ _
@ LASSO-QR (d=7) e
_ - -
10 4 - 2 ___f10
- ,‘—
’r -
5 ,”’l’ 5
/’ ‘
I T
T e I
PR S
1.0 4 - et 10
I MY Sl
05 - Fos
A
0.14 F0.1
0.05 F0.05
ok
24K 48K 96K 192K 240K 480K 960K  1.92M  2.4M 48M 96M  192M  24M
Data size, n
Figure 1 (b)

Figure 1: Sequential training time (a)Ridge (b)LASSO

6



1000

Computation time (seconds)

Computation time (seconds)

1000

Sequential training time on data n x d

1000
—A— ELASTICCV (d=3)
500 { === ELASTIC-BOOST (d=3) - 500
--A- ELASTIC-QR (d=3)
—B— ELASTICCV (d=5)
-8 - ELASTIC-BOOST (d=5)
100 ---@-- ELASTIC-QR (d=5) L 100
—@— ELASTICCV (d=7)
50 1 - -@ - ELASTIC-BOOST (d=7) [ 50
.-@:+ ELASTIC-QR (d=7)
10 4 L 10
5 e F5
——
R
1.0 4 - 1.0
051 L o5
0.14 L 0.1
0.05 1 L 0.05
24K 48K 96K 102K 240K 960K  1.92M  24M  48M  96M  192M  24M
Data size, n
Figure 1 (c)
Sequential training time on data n x d
1000
500 —&— LINREG (d=3) F 500
-—& - LINREG-BOOST (d=3)
--A LINREG-QR (d=3)
—B— LINREG (d=5)

100§ —-m - LINREG-BOOST (d=5) F 100
504 ---M-- LINREG-QR (d=5) F 5o
—@— LINREG (d=7) a1
--@ - LINREG-BOOST (d=7) o !

QR (d— —- _m----"

1o @ LNREG-QR (4=7) ) U— P L 10

EEEPSEELLS S -l
51 O~ - -5
h—-——&"" -
1.0 - 1.0
051 L o5
01 F0.1
0.05 F0.05
24K 48K 96K 12K 240K 960K  1.92M  24M  48M  96M  192M  24M
Data size, n
Figure 1 (j)

Figure 1: Sequential training time (c)Elastic-net (j)Linear Regression

7



Sequential Training Time vs Feature dimension, on n = 24\

1000 1000
iy
T 104 LA F 100
s '
g e —— =
s wdTTT e »
5 Lo
g ............ .
1= I °
g I A F1
]
—&— RIDGECV
--#-- RIDGE-BOOST
-..@-- RIDGE-QR
0.1 T T T T 0.1
3 5 7 10 25 50
Feature dimension, d
Figure 1 (d)
100 Sequential Training Time vs Feature dimension, on n = 24M 100
»
T 1004 A F 100
] el 4
Q e
< _a
uEJ _.//' L
Bowg--mTT k10
-
N o
8 .o’
=
L B
—&— LASSOCV
--#-- LASSO-BOOST
..... @+ LASSO-QR
0.1 0.1
3 5 7 10 25 50
Feature dimension, d
Figure 1 (e)
1000 Sequential Training Time vs Feature dimension, on n = 24\ o0
»
T 1004 A E 100
o el =
3 e
& s :
g pes .o
-
5o e F 10
e
.g Rt
3 Lo
3
E- ______ o
8 W F1
—&— ELASTICCV
--@-- ELASTIC-BOOST
----- e ELASTIC-QR
0.1 T T T T 0.1
3 5 7 10 25 50
Feature dimension, d
Figure 1 (f)

Figure 1: Sequential training time on n = 24M, and various feature dimension d = {3,5,7,10,25,50} (d)
Ridge, (e) LASSO, (f) Elastic-net



Figure 1: Sequential training time for various

Elastic-net

Computation time (seconds) Computation time (seconds)

Computation time (seconds)

1000

500

100

Training Time vs Datasize at various Hyperparameter |A|

—@— RIDGECV (|4|=50)

~ -~ RIDGE-BOOST (|4|=50)
++@:+ RIDGE-QR (|A|=50)
—— RIDGECV (|A|=100)

~ = RIDGE-BOOST (|A|=100)
++-A:+ RIDGE-QR (|A|=100)
—@— RIDGECV (|A|=200)

~ - RIDGE-BOOST (|A|=200)
-+M+ RIDGE-QR (|A|=200)
—#— RIDGECV (|A[=300)
~#-~- RIDGE-BOOST (|A|=300)
++*#:+ RIDGE-QR (|A|=300)

1000

500

0.1 0.1
0.05 0.05
24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 24M
Data size, n
Figure 1 (g)

o0 Training Time vs Datasize at various Hyperparameter |A | o0

—@— LASSOCV (|A|=50)
500 { =-@== LASSO-BOOST (|A|=50) 500
@+ LASSO-QR (|A|=50)
—A— LASSOCV (|A|=100)
—A-= LASSO-BOOST (|A|=100)
«--As+ LASSO-QR (|A|=100)
1009 g lassocv (1A]=200) 100
50] == LASSO-BOOST (|A|=200) 50

++M:+ LASSO-QR (|A|=200)
—#— LASSOCV (|A|=300)
—48-- LASSO-BOOST (|4|=300)
¥+ LASSO-QR (|4=300)

24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 24M
Data size, n
Figure 1 (h)
100 Training Time vs Datasize at various Hyperparameter |A | o0
—@— ELASTICCV (|A|=50)
500 { =-@== ELASTIC-BOOST (|A|=50) 500
«+*@+ ELASTIC-QR (|4|=50)
—A— ELASTICCV (|A|=100)
= =A== ELASTIC-BOOST (|A|=100)
«+odk+ ELASTIC-QR (|A|=100)
100 —— ELASTICCV (|4|=200) 100
50 == ELASTIC-BOOST (/A|=200) 50
«M-- ELASTIC-QR (| 00)
—®— ELASTICCV (|A|=300)
—-#-- ELASTIC-BOOST (|A|=300)
«+#++ ELASTIC-QR (|A|=300)
10
5
1.0
05
0.1
0.05
24K 48K 96K 192K 240K 480K 960K 1.92M 2.4M 24M
Data size, n
Figure 1 (i)

hyper-parameter set size |[A| (g) Ridge,

(h) LASSO, (i)



3D Road Network, 434874 x 2

—— RIDGECV —ll— LASSOCV —@— ELASTICCV
10 ] —A-- RIDGE-BOOST —{l-- LASSO-BOOST —-@—- ELASTIC-BOOST
+++A++ RIDGE-QR -4+ LASSO-QR -~ @ -+ ELASTIC-QR

-
|

Computation time (seconds)

.....-::::::::unl
:.: .......
n|-u|-'nl:unuunuu.nn::n:
............. et
I ||||||
40 60 80 100 120 140 160 180 200
Figure 1 (k)
Household Power Consumption, 2075259 x 2
100 100
—a— RIDGECV —ll— LASSOCV —@— ELASTICCV
— A=+ RIDGE-BOOST — -+ LASSO-BOOST — @—- ELASTIC-BOOST
«--Ar-+ RIDGE-QR -« flk-- LASSO-QR ««@ -+ ELASTIC-QR
0
T 104 e F 10
o
u]
9]
(7]
N—r
)
=
)
S e ———— y
o k- - l
B 1] g===---~—" A———— ‘__——“ - -l_l
] - R
S e A
= A A
E _____ PRITTEETEL LA
o | e
O e PTTITITI T LTIy O
..... A
Lo
0.1 . - ¢ o
ST Ty TEERLTEEREEEEEEEE
.......... .-....:.'-'::::=-...-.'-'.'.'.-.-.'-'--.-.-_"“‘“‘.‘____...-..nn '
eastiiiiileienn @
40 60 80 100 120 140 160 180 200
Figure 1 (1)

Figure 1: Sequential training time for various hyper-parameter set size |A| (k) 3D Road Network dataset (1)
Household Power Consumption dataset 10



Stage 1: Distributed Householder-QR

0.541 0.542

21\\'\\'\ NNNEY

1.1735 1.1740 1.1745
T

=1 Compute (local QR)
16 k 3 | EE Compute (master QR)
3 0124 0125 [ Communicate
a
=
S 8- \ |
o
— 0.251 0.252
e
©
o
AN
@
Q
1S
=3
=2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Computation time (seconds)
Figure 2 (a)

Stage 2: Distributed Multiply-Qc and RIDGE

EZ3 Compute (Q'y)
I Compute (Ridge)
0.0275 0.0300 Il Communicate

[ary
o

[e0)

0.0600 0.0625

Number of parallel workers, p
n

0278 0.280  0.282

0.0 0.1 0.2 0.3 0.4
Computation time (seconds)
Figure 2 (b)

Distributed RIDGE-QR for data size: 10M X 10
KXJ Compute (Stage 1)
\ \ \ \ 73 Compute (Stage 2)
[ Communicate (Stage 1)

I Communicate (Stage 2)
A\

=
o
L

o]
L

EN
L

Number of parallel workers, p

2 T T T T 1
4‘9.5 99.6 99.7 99.8 99.9 100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Percentage of total computation time
Figure 2 (c)

Figure 2: Training time analysis for DISTRIBUTED RIDGE-QR with zoomed insets depicting communication
time (a): Stage 1: DISTRIBUTED HOUSEHOLDER-QR timings, (b): Stage 2: DISTRIBUTED MULTIPLY-QC
and RIDGE solver timings, (c): Combined timing percentage spent on each stage for computation and
communication

11



161 = =—o= = |deal Speedup Data: 500K x 100 4
—=— RIDGE-ADMM Il

1u{ —*—— RIDGE-QR

——w»—— KERNELRIDGE-QR /

Parallel Speedup

1 2 4 8 16
Number of parallel workers, p

Figure 3 (a)

71 = === |deal Speedup Data: 1M x 100

——a—— RIDGE-ADMM .
1504 —*—— RIDGE-QR

—=—— KERNELRIDGE-QR

o
3
o
3
a 10.0 4
%)
<
T
©
a
5.04
2.5
1 2 4 8 16
Number of parallel workers, p
Figure 3 (b)
16 == =8= = |deal Speedup Data: 2M x 100
—a— RIDGE-ADMM
u4 —*—— RIDGE-QR
——+#—— KERNELRIDGE-QR
124
[=N
_g 10
5
[=N
n
T M
©
©
a
i
2]

1 2 8 16

4
Number of parallel workers, p
Figure 3 (c)

Figure 3: (Scalability) Parallel speedup for DISTRIBUTED RIDGR-QR on synthetic datasets of size (a)
500K x 100 (b) 1M x 100 (c) 2M x 100

12



16{ = =—e==|deal Speedup Data: 500K x d
—e— d=5

1u{ —&—— d=10

—+— d=25

124 —*—— d=50

—+— d=100

Parallel Speedup

1 2 4 8 16
Number of parallel workers, p

Figure 3 (d)

16 == === |deal Speedup Data: 1M x d
—e— d=5

14— d=10

—+—— d=25

12{ —*—— d=50

—4— d=100

Parallel Speedup

1 2 4 8 16
Number of parallel workers, p

Figure 3 (e)

161 == =8== |deal Speedup Data: 2M x d
—e— d=5
1u{ —*—— d=10
—+— d=25
12{ —+—— d=50

—+— d=100

Parallel Speedup

1 2 4 8 16

Number of parallel workers, p
Figure 3 (f)

Figure 3: (Scalability) Parallel speedup for DISTRIBUTED RIDGR-QR on synthetic datasets for various
feature dimension size d = {5, 10,25,50,100} (d) 500K x d (e) 1M x d (f) 2M x d

13



Distributed forms time vs parallel workers

Computation time (seconds)

o

w
o
@

—e— RIDGE-QR
—m— KERNELRIDGE-QR
—A— RIDGE-ADMM
--- RIDGE-QR (p=1)
--- KERNELRIDGE-QR (p=1)
--- RIDGE-ADMM (p=1)

0.1 T T T 0.1
1 2 4 8 16
Number of parallel workers, p
Figure 4 (a
<106 Sequential numerical stability vs number of samples
=8= RIDGE-QR
—— KERNELRIDGE-QR .
—4— RIDGE-ADMM Data: 10M x 10
25 25
=
E)
| 20 F20
=
‘ 15 15
)
E)
|
*S 104 10
=
%
e
@ 5 5
0 0
1 2 i 8 16
Number of parallel workers, p
Figure 4 (b)
X107t
61 LINREG-BOOST 6
—— LINREG-QR
5 5
—
=
=
|
- 4 r4
2
I
=
=
|
x
s 2
=
v
e}
© 14
[ Fo

250000 500000 750000 1000000 1250000 1500000 1750000 2000000

Number of samples, n
Figure 4 (c)

Figure 4: (a): Comparing distributed implementations of RIDGE-QR, KERNELRIDGE-QR (linear kernel),
and RIDGE-ADMM for 10M x 10 synthetic data based on (a) Computation time (b) Accuracy (x107%), w*
comparison of RIDGE-QR and RIDGE-BOOST, w* is solution from scikit-learn RIDGE. (c) Accuracy (x10711)
comparison of LINREG-QR and LINREG-B0o0OST on Household Power Consumption dataset (~ 2M x 8), w*
is solution from scikit-learn LINEARREGRESSION

14



C. Algorithms

Algorithm 1: HOUSEHOLDER-SKETCH(X, y); see Theorem [2.2]

Input: A matrix X € R"*¢ a vector y € R"
Output: A matrix R € R*? is upper triangular such that X7 X = RTR, and a vector § € R? is top
d elements of the reflected vector QTy
(V, R) .= HOUSEHOLDER-QR/(X) // see Theorem 2.1, Algorithm
y = MuLtipLY-Qc(V,y, “T’) // implicit QTy, see (Golub & Vvan Loan|, 2012)), see
Algorithm

R+ R[0:d,:] // dxd triangular block
7 < y[0:d] // top d elements
5 return (R, 9)

N =

W

Algorithm 2: LMS-QR(X,y,parans)

Input: A matrix X € R"*¢, a vector y € R”, and a list of LMS parameters, params

Output: A vector of model coefficients, w € R?
1 (R,7) = HOUSEHOLDER-SKETCH(X,7y) // see Algorithm
2 w = LMS(R,y,params) // LINREG, RIDGECV, LASSOCV, ELASTICCV in sckit-learn
3 return w

Algorithm 3: DISTRIBUTED LMS-QR(p, X,y,params)

Input: A scalar p > 0 parallel workers (cores or users), a matrix X = (X7 |... |X§)T7 X, e R ¥4 4
vector y = (y1|... \yg)T, y; € R7, a list of LMS parameters, params

Output: A vector of model coefficients, w € R?

//  (V,R) = DISTRIBUTED HOUSEHOLDER-QR(X), see Theorem

for every worker i € {1,2,...,p} do

(Vi, R;) = HOUSEHOLDER-QR(X;) // see Theorem 2.1

R;+ R;[0:d,:] // dxd triangular block

Rstack = GATHER(R;, root =0) // Rgigek = vstack(Ri,...,R,) at Master

end

if i == 1 then // check for Master

(Var, Rar) == HOUSEHOLDER-QR(Rstack) // see Theorem 2.1

Ry < Ry[0:d,:] // dxd triangular block

end

© o N o AN W N

/] V= [Vl, .. .,VP,VM} is never centralized or shared

// Q=diag(Qn,...,Qp)@um,and, R =Ry, see Theorem

// y:= DISTRIBUTED MurTIiPLY-Qc(V,y, ‘T’), see Corollary m
10 for every worker i € {1,2,...,p} do
11 y; == MurtteLy-Qe(Vy, v, “T') // implicit QTy;, see Algorithm
12 Ui < 3i[0:d] // select top d elements
13 Ustack = GATHER(Y;, root =0) // Ystack = vstack(yi,...,yp) at Master
14 if i==1then // check for Master

15 yar = MULTIPLY-QC(Var, Ustack, “T') // implicit QY ¥stack, see Algorithm
16 ym < ym[0:d] // select top d elements

17 end

18 end

19 §i=yir // §=QTy = QL ((QTy)TI...1(QFy,)T)"
// Solving LMS
20 if i ==1then // check for Master
21 w = LMS(R, y,params) // run LMS solver at Master
22 BROADCAST(w,root =0) // every worker receives the global model
23 end
24 return w

15



Algorithm 4: (V, R) + X, via HOUSEHOLDER-QR, refer Theorem 2.1

Input: A matrix X € R"¥4
Output: Householder reflector set V, Upper trapezoidal matrix R € R"*4
1 for j < 1toddo
2 vj +— X(j:n,j)
3 v (1) < v;(1) + sign(v;(1)) x |lvj|l, // scalar update
4 vj 4 // vector normalization

llvsill,
5 X(Ginj:d)«X{y:nj:d) —2xv; <vj, X(j:n,j:d)>
6 R=X(j:n,j:d)

7 end

8 V<« [v1,vs,...,v4] // set of d-reflectors

9 return (V, R)

Algorithm 5: Computing implicit Q7y via MULTIPLY-QC
Input: Householder reflector set V, a vector y € R™
Output: § + (QTy) e R"
c+y
for j «+ 1 toddo
‘ c(j:n)+c(j:n)—2x ’uj(vJT c(j:n))
end
Yy<c
return y

[ I U VN

References

Burges, C. J. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2
(2):121-167, 1998.

Dass, J., Sarin, V., and Mahapatra, R. N. Fast and communication-efficient algorithm for distributed support vector
machine training. IEEE Transactions on Parallel and Distributed Systems, 30(5):1065-1076, 2018.

Golub, G. H. and Van Loan, C. F. Matriz computations, volume 3. JHU press, 2012.

Si, S., Hsieh, C.-J., and Dhillon, I. S. Memory efficient kernel approximation. The Journal of Machine Learning
Research, 18(1):682-713, 2017.

Williams, C. K. and Seeger, M. Using the nystrém method to speed up kernel machines. In Advances in neural
information processing systems, pp. 682—688, 2001.

16



