SUPPLEMENTARY Householder Sketch for Accurate and Accelerated Least-Mean-Squares Solvers

Jyotikrishna Dass and Rabi Mahapatra Texas A&M University

June 11, 2021

APPENDIX

A. Theorems and Proofs

Theorem 2.2 (Householder Sketch). Let $X \in \mathbb{R}^{n \times d}$ be the original data matrix, $y \in \mathbb{R}^n$ be the corresponding output label or response vector, and $n \gg d$. Let $X = QR$ be Householder QR decomposition. Then, $(R, Q^T y)$ is a memory-efficient and theoretically accurate sketch of original data (X, y) such that $X^T X = R^T R$, and has memory footprint of $\left(\frac{d(d+3)}{2}\right)$ elements, computed in time $O(nd^2)$.

Proof. From Equations 1 and 2, and $X = QR$, where $QQ^T = Q^T Q = I$

 $||Xw - y||_2 = ||QRw - y||_2 = ||QRw - QQ^Ty||_2 = ||Q||_2 ||Rw - Q^Ty||_2 = ||Rw - Q^Ty||_2$

(Accurate sketch) So, it is possible to replace the original data (X, y) used in existing LMS solvers with $(R, Q^T y)$ which preserves the covariance $X^T X = R^T Q^T Q R = R^T R$ and solves the optimization problem accurately. For example, Ridge regression with ridge parameter λ solves $(X^T X + \lambda I)w = X^T y$ in primal form which can be reformulated to $(R^T R + \lambda I)w = R^T (Q^T y)$.

(Memory savings) R is a $d \times d$ upper triangular matrix with $\left(\frac{d(d-1)}{2}\right)$ elements above the diagonal and d on the diagonal resulting in $\left(\frac{d(d+1)}{2}\right)$ elements compared to original data matrix X that has nd elements. Q_{\perp}^T is a reflected response vector. It is to be noted that only top d rows of Q^T will be sufficient to compute $Q^T y$ since $n \gg d$. Hence, reflected response vector $(Q^T y)$ is of size d compared to the original LMS formulation with response vector y of size n. Hence, the total memory footprint of (R, Q^Ty) is $O(\frac{d(d+3)}{2})$ elements which makes it memory-efficient than the original (X, y) occupying $n(d + 1)$ space.

(Time complexity) The above sketch (R, Q^Ty) is computed via Householder QR decomposition (HOUSEHOLDER-QR in Step 1 of Algorithm 1) of X which generates upper triangular matrix, R , and orthonormal matrix Q that is internally stored as Householder reflectors. The time complexity of the above decomposition is $O(nd^2 - d^3/3)$ [\(Golub & Van Loan, 2012\)](#page-15-0). Calculation of $Q^T y$ is done implicitly by applying Householder reflectors to the response vector y (MULTIPLY-QC in Step 2 of Algorithm 1) in time $O(nd)$ [\(Golub & Van Loan, 2012\)](#page-15-0). Hence, it can be seen that the total computation time for the sketch (R, Q^Ty) is $O(nd^2 + nd - d^3/3)$ which results in $O(nd^2)$ for $n \gg d$. \Box

Theorem 2.3. Let $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, $(R, Q^T y) :=$ HOUSEHOLDER-SKETCH (X, y) that accelerates primal ridge solver via RIDGE-QR. Then, (R, Q^Ty) is also the Householder sketch for the corresponding Kernel $Ridge$ Regression problem that accelerates the dual problem via KERNELRIDGE-QR, and solves it with the same memory and time complexity, independent of data size (n) , as that of primal RIDGE-QR.

Proof. Kernel Ridge Regression with original data (X, y) solves $(K + \lambda I)\beta = y$, where, $K \in \mathbb{R}^{n \times n}$ is the Kernel matrix, and $\beta \in \mathbb{R}^n$ is the vector of dual variables. For any pair of row vectors in input data, $x_i, x_j \in \mathbb{R}^{1 \times d}$, each element of Kernel matrix $K(i, j) = \kappa(x_i, x_j)$, where $\kappa()$ is a Reproducing Kernel Hilbert Space (RKHS) kernel function such that $\kappa(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ and $\phi()$ is transformation from input space to RKHS feature space [\(Burges, 1998\)](#page-15-1).

For a linear kernel function, $\kappa(x_i, x_j) = x_i x_j^T$, $K = X X^T$, and the objective is to solve the equation $(XX^{T} + \lambda I)\beta = y$ such that the model coefficient in input space, $w = X^{T}\beta$. By applying $X = QR$ via HOUSEHOLDER- $QR(X)$, the above dual problem reformulates to

$$
(XXT + \lambda I)\beta = y
$$

\n
$$
\Rightarrow (QRRTQT + \lambda I)\beta = y
$$

\n
$$
\Rightarrow (QRRTQT + \lambda QQT)\beta = y
$$

\n
$$
\Rightarrow Q(RRTQT + \lambda QT)\beta = y
$$

\n
$$
\Rightarrow (RRTQT + \lambda QT)\beta = QTy
$$

\n
$$
\Rightarrow (RRT + \lambda I)\overline{\beta} = \overline{y}
$$

where, $\bar{y} = Q^T y$ and $\bar{\beta} = Q^T \beta$. The model coefficients in the input space,

$$
w = X^T \beta = R^T Q^T \beta = R^T \bar{\beta}
$$

Hence, solving $(XX^T + \lambda I)\beta = y$, system of n equations in n unknowns in KERNELRIDGE with original (X, y) is equivalent to solving a much smaller system of d equations in d unknowns $(n \gg d)$, accurately and faster, with $(RR^T + \lambda I)\overline{\beta} = \overline{y}$ in KERNELRIDGE-QR with memory-efficient $(R, Q^T y)$ sketch. It is worth noting here that once (R, Q^Ty) sketch is available, the memory and time complexity for solving dual in KERNELRIDGE-QR is **independent** of data size n , and is **same** to that of solving the same problem in primal form via RIDGE-QR. Figure $4(a)$ demonstrates the the above similarity in solving RIDGE-QR, and KERNELRIDGE-QR (with linear kernel) based on computation time. Moreover, KERNELRIDGE-QR calculates the model coefficient w using a triangular matrix in $w = R^T \overline{\beta}$ in d^2 flops compared to $(2n - 1)d$ flops for $w = X^T \beta$ in the original KERNELRIDGE with (X, y) .

For any non-linear kernel function such as Radial Basis Function, it is possible to represent $K \approx AA^T$ with some low-rank matrix, $A \in \mathbb{R}^{n \times k}$ via any kernel approximation techniques [\(Williams & Seeger, 2001;](#page-15-2) [Si](#page-15-3) [et al., 2017\)](#page-15-3). This can be followed by constructing memory-efficient $(R, Q^T y) :=$ HOUSEHOLDER-SKETCH (A, y) from Algorithm 1. Now, solving the approximated dual problem formulation for non-linear kernels via KERNELRIDGE-QR is equivalent in space and time complexity to solving the approximated problem in $primal$ form via RIDGE-QR on (R, Q^Ty) . Moreover, any of the above RIDGE-QR or KERNELRIDGE-QR is faster than solving the *primal* form via RIDGE with (A, y) .

Hence, (R, Q^Ty) is also the Householder sketch for Kernel Ridge Regression, where, R is defined based on linear or non-linear kernel, for accelerating the *dual* problem via KERNELRIDGE-QR. \Box

Theorem 3.1 (Distributed Householder-QR [\(Dass et al., 2018\)](#page-15-4)). Let $X = (X_1^T | \dots | X_p^T)^T$, where, $X_i \in \mathbb{R}^{n \times d}$ be local data matrix of parallel worker, $i = 1, \ldots, p$, where $\hat{n} \gg d$, and, $n = p\hat{n}$. Let, $X_i = Q_i R_i$ be constructed via local HOUSEHOLDER-QR (see Algorithm 1) for each $i = 1, \ldots, p$, in parallel. Then, $X = QR$ for the complete data matrix can be constructed exactly, such that $Q = diag(Q_1, ..., Q_p)Q_M$, and $R = R_M$, where $R_{stack} = Q_M R_M$ via another HOUSEHOLDER-QR on $R_{stack} = (R_1^T | \dots | R_p^T)^T$ gathered from all workers. The above DISTRIBUTED HOUSEHOLDER-QR has a computational time complexity of $O(\frac{n}{p}d^2)$, with a communicated data volume of $\left(\frac{d(d+1)}{2}\right)$ elements by each worker.

Proof.

$$
X = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_p \end{pmatrix} = \begin{pmatrix} Q_1 R_1 \\ Q_2 R_2 \\ \vdots \\ Q_p R_p \end{pmatrix} = \text{diag}(Q_1, \dots, Q_p) \begin{pmatrix} R_1 \\ R_2 \\ \vdots \\ R_p \end{pmatrix}
$$

Let us define, $R_{stack} =$ $\sqrt{ }$ $\overline{}$ R_1 R_{2} . . R_p \setminus $= Q_M R_M$, via Householder-QR in Algorithm 1 (or Theorem 2.1). Then,

$$
X = \text{diag}(Q_1, \ldots, Q_p) R_{stack} = \text{diag}(Q_1, \ldots, Q_p) Q_M R_M
$$

Also, it is given that $X = QR$ via HOUSEHOLDER-QR on complete matrix X. Hence, $Q = \text{diag}(Q_1, \ldots, Q_p)Q_M$. is the orthogonal matrix, and, $R = R_M$ is the upper triangular matrix.

Time complexity and Communication volume. For a given local data $X_i \in \mathbb{R}^{n \times d}$, where, $n = np$, each $X_i = Q_i R_i$ at i−th parallel worker is computed via local HOUSEHOLDER-QR (as per Algorithm 1, and Theorem 2.1). From Theorem [2.2,](#page-0-0) each local HOUSEHOLDER-QR takes $O(nd^2 - d^3/3)$, in parallel for all the workers. Subsequently, $R_{stack} = Q_M R_M$ is performed via master HOUSEHOLDER-QR in time $O(\times pd \times d^2 - d^3/3)$, where, $R_{stack} \in \mathbb{R}^{pd \times d}$ is obtained by *gathering* (communicating) local upper-triangular matrices $R_i \in \mathbb{R}^{d \times d}$, i.e., $\left(\frac{d(d+1)}{2}\right)$ elements from each parallel worker $i = 1, \ldots, p$ to the master $(i = 1)$. Hence, total computation time for DISTRIBUTED HOUSEHOLDER-QR is $O(\hat{n}d^2 + pd^3 - 2d^3/3)$ or $O(\frac{n}{p}d^2)$ for $\hat{n} \gg d$ (i.e. $n \gg pd$). It is worth noticing that the above computational time is dominant by local HOUSEHOLDER-QR as observed in Figure 2(a). HOUSEHOLDER-QR as observed in Figure 2(a).

Corollary 3.1.1 (Distributed Multiply-Qc). Let $c = (c_1^T | \dots | c_p^T)^T \in \mathbb{R}^n$, where, $c_i \in \mathbb{R}^{\hat{n}}$ be some local vector at parallel worker with local data matrix X_i , $i = 1, \ldots, p$, where $\hat{n} \gg d$, and, $n = p\hat{n}$. Let, orthogonal matrices Q_M , and Q_i , $i = 1, \ldots, p$ be constructed via DISTRIBUTED HOUSEHOLDER-QR as per Theorem [3.1](#page-2-0) such that $Q = diag(Q_1, ..., Q_p)Q_M$. Then, the reflected vector, $Q^T c$ (or Qc) can be constructed exactly by making $(p+1)$ calls to MULTIPLY-QC (see Step 2 in Algorithm 1) such that $Q^T c = Q_M^T \big((Q_1^T c_1)^T \big) \dots \big((Q_p^T c_p)^T \big)^T$ or, $Qc = diag(Q_1, ..., Q_p)Q_M(c_1^T|...|c_p^T)^T$. The above DISTRIBUTED MULTIPLY-QC has a computational time complexity of $O(\frac{n}{p}d + pd^2)$, with a communicated data volume of (d) elements by each worker.

Proof. From Theorem [3.1,](#page-2-0) for $X = (X_1^T | \dots | X_p^T)^T$, its corresponding orthogonal matrix $Q = \text{diag}(Q_1, \dots, Q_p)Q_M$. Hence,

$$
Q^T=Q_M^T\texttt{diag}(Q_1^T,\ldots,Q_p^T)
$$

For a given vector $c \in \mathbb{R}^n$, $Q^T c$ via MULTIPLY-QC (Step 2 in Algorithm 1) can be equivalently computed from $c = (c_1^T | \dots | c_p^T)^T$ comprising local vector $c_i \in \mathbb{R}^{\hat{n}}$, where, $i = 1, \dots, p$, as follows

$$
Q^{T}c = Q_{M}^{T} \text{diag}(Q_{1}^{T}, \dots, Q_{p}^{T})c = Q_{M}^{T} \begin{pmatrix} Q_{1}^{T}c_{1} \\ Q_{2}^{T}c_{2} \\ \vdots \\ Q_{p}^{T}c_{p} \end{pmatrix}
$$

In DISTRIBUTED MULTIPLY-QC algorithm, the above is implemented as follows. Each worker, $i = 1, \ldots, p$, computes its local reflected vectors $Q_i^T c_i \in \mathbb{R}^d$ via MULTIPLY-QC (refer Step 2 in Algorithm 1) in parallel with time $O(2\hat{n}d)$ as shown in Theorem [2.2.](#page-0-0) Once these local reflected vectors, each of size d elements are gathered (communicated) from each worker to the master, a stacked vector $((Q_1^Tc_1)^T|\ldots|(Q_p^Tc_p)^T)^T \in \mathbb{R}^{pd \times d}$ is constructed. Then, a master MULTIPLY-QC is applied on this stacked vector using Q_M^T in time $O(2 \times pd \times d)$, i.e., $O(2pd^2)$. Hence, total computation time of DISTRIBUTED MULTIPLY-QC is $O(2nd + 2pd^2)$, i.e., $O(\frac{n}{p}d + pd^2)$, since $n = \hat{n}p$.

B. Figures

For more clarity, we provide enlarged figures from Section 4 (Experiments and Results) of the main paper. Following is the organization of figures in the supplementary document.

Figure 1: (a)(b) Page 6 , (c)(j) Page 7 , (d)(e)(f) Page 8 , (g)(h)(i) Page 9, (k)(l) Page 10

Figure 2: $(a)(b)(c)$ Page 11

Figure 3: (a)(b)(c) Page 12, (d)(e)(f) Page 13

Figure 4: (a)(b)(c) Page 14

Figure 1: Sequential training time (a)Ridge (b)LASSO

Figure 1: Sequential training time (c)Elastic-net (j)Linear Regression

Figure 1: Sequential training time on $n = 24M$, and various feature dimension $d = \{3, 5, 7, 10, 25, 50\}$ (d) Ridge, (e) LASSO, (f) Elastic-net

Figure 1: Sequential training time for various hyper-parameter set size [|]A[|] (g) Ridge, (h) LASSO, (i) Elastic-net

Figure 1: Sequential training time for various hyper-parameter set size $|A|$ (k) 3D Road Network dataset (l) Household Power Consumption dataset 10 Household Power Consumption dataset

Figure 2: Training time analysis for DISTRIBUTED RIDGE-QR with zoomed insets depicting communication time (a): Stage 1: DISTRIBUTED HOUSEHOLDER-QR timings, (b): Stage 2: DISTRIBUTED MULTIPLY-QC and RIDGE solver timings, (c): Combined timing percentage spent on each stage for computation and communication

Figure 3: (Scalability) Parallel speedup for DISTRIBUTED RIDGR-QR on synthetic datasets of size (a) $500K \times 100$ (b) $1M \times 100$ (c) $2M \times 100$

Figure 3: (Scalability) Parallel speedup for DISTRIBUTED RIDGR-QR on synthetic datasets for various feature dimension size $d = \{5, 10, 25, 50, 100\}$ (d) $500K \times d$ (e) $1M \times d$ (f) $2M \times d$

Figure 4: (a): Comparing distributed implementations of RIDGE-QR, KERNELRIDGE-QR (linear kernel), and RIDGE-ADMM for $10M \times 10$ synthetic data based on (a) Computation time (b) Accuracy ($\times 10^{-6}$), w^* comparison of RIDGE-QR and RIDGE-BOOST, w^* is solution from scikit-learn RIDGE. (c) Accuracy (×10⁻¹¹) comparison of LINREG-QR and LINREG-BOOST on Household Power Consumption dataset ($\sim 2M \times 8$), w^* is solution from scikit-learn LinearRegression

C. Algorithms

Algorithm 1: HOUSEHOLDER-SKETCH (X, y) ; see Theorem [2.2](#page-0-0) **Input:** A matrix $X \in \mathbb{R}^{n \times d}$, a vector $y \in \mathbb{R}^n$ **Output:** A matrix $R \in \mathbb{R}^{d \times d}$ is upper triangular such that $X^T X = R^T R$, and a vector $\bar{y} \in \mathbb{R}^d$ is top d elements of the reflected vector $Q^T y$ $1 (V, R) := \text{HouseHOLDER-QR}(X)$ // see Theorem 2.1, Algorithm [4](#page-15-5) $2 \bar{y} := \text{MULTIPLY-QC}(\mathcal{V}, y, 'T')$ // implicit $Q^T y$, see [\(Golub & Van Loan, 2012\)](#page-15-0), see Algorithm [5](#page-15-6) 3 $R \leftarrow R[0:d,:]$

4 $\bar{y} \leftarrow \bar{y}[0:d]$ // d × d triangular block

4 $\bar{y} \leftarrow \bar{y}[0:d]$ // top d elements $1/7$ top d elements 5 return (R,\bar{y})

 $\overline{\textbf{Algorithm 2:}}$ LMS-QR (X, y, \texttt{params})

Input: A matrix $X \in \mathbb{R}^{n \times d}$, a vector $y \in \mathbb{R}^n$, and a list of LMS parameters, params **Output:** A vector of model coefficients, $w \in \mathbb{R}^d$ $1 (R, \bar{y}) \coloneqq$ HOUSEHOLDER-SKETCH (X, y) // see Algorithm [1](#page-14-0) $2 w := \text{LMS}(R, \bar{y}, \text{params})$ // LINREG, RIDGECV, LASSOCV, ELASTICCV in sckit-learn ³ return w

Algorithm 3: DISTRIBUTED LMS-QR $(p, X, y,$ params)

Input: A scalar $p > 0$ parallel workers (cores or users), a matrix $X = (X_1^T | \dots | X_p^T)^T, X_i \in \mathbb{R}^{\frac{n}{p} \times d}$, a vector $y = (y_1^T | \dots | y_p^T)^T, y_i \in \mathbb{R}^{\frac{n}{p}}$, a list of LMS parameters, params **Output:** A vector of model coefficients, $w \in \mathbb{R}^d$ \mathcal{V} (V , R) $:=$ **DISTRIBUTED HOUSEHOLDER-QR(X)**, see Theorem [3.1](#page-2-0) 1 for every worker $i \in \{1, 2, ..., p\}$ do

2 $\mathcal{V}_i, R_i) \coloneqq \text{HouseHOLDER-QR}(X)$ 2 $(V_i, R_i) \coloneqq \text{HouseHOLDER-QR}(X_i)$ // see Theorem 2.1 3 $R_i \leftarrow R_i[0:d,:]$ // $d \times d$ triangular block $\begin{aligned} A \quad \Big| \quad R_{stack} := \text{GATHER}(R_i,\texttt{root}=0) \; / \; / \; \; R_{stack} = \texttt{vstack}(R_1,\ldots,R_p) \; \; \texttt{at \; Master} \end{aligned}$ ⁵ end 6 if $i == 1$ then // check for Master $7~|~(\mathcal{V}_M, R_M) \coloneqq \text{HouseHOLDER-QR}(R_{stack})$ // see Theorem 2.1 8 \parallel $R_M \leftarrow R_M[0:d, :]$ // $d \times d$ triangular block ⁹ end // $\mathcal{V} = [\mathcal{V}_1, \ldots, \mathcal{V}_p, \mathcal{V}_M]$ is never centralized or shared // $Q = \text{diag}(Q_1, \ldots, Q_p)Q_M$, and, $R = R_M$, see Theorem [3.1](#page-2-0) $\mathbf{y}' = \mathbf{y}$ = **DISTRIBUTED MULTIPLY-QC(V, y, 'T')**, see Corollary [3.1.1](#page-3-0) 10 for every worker $i \in \{1, 2, ..., p\}$ do

11 $|\bar{u}_i \rangle = \text{MULTIPLY-OC}(\mathcal{V}_i, u_i, \Upsilon')$ 11 $\Big|$ $\bar{y_i} \coloneqq \text{MULTIPLY-QC}(\mathcal{V}_i, y_i, \text{`T'})$ // implicit $Q_i^T y_i$, see Algorithm [5](#page-15-6) 12 $\left| \begin{array}{l} \bar{y_i} \leftarrow \bar{y_i} [0:d] \; \text{/} \text{/} \end{array} \right.$ select top d elements 13 $\Big| \bar{y}_{stack} \coloneqq \text{GATHER}(\bar{y_i}, \text{root}=0) \text{ // } \bar{y}_{stack} = \text{vstack}(\bar{y_1}, \ldots, \bar{y_p})$ at Master 14 | if $i == 1$ then // check for Master 15 $|$ $|$ y_M^- := MULTIPLY-QC($\mathcal{V}_M, \bar{y}_{stack},$ 'T')// implicit $Q_M^T \bar{y}_{stack},$ see Algorithm [5](#page-15-6) 16 $|$ $y_M^ \leftarrow$ $y_M^ [0:d]$ // select top d elements 17 | end ¹⁸ end 19 $\bar{y} \coloneqq y_M^-$ // $\bar{y} = Q^T y = Q_M^T \big((Q_1^T y_1)^T | \dots | (Q_p^T y_p)^T \big)^T$ // **Solving LMS** 20 if $i == 1$ then // check for Master $21 \mid w \coloneqq \text{LMS}(R, \bar{y}, \text{params})$ // run LMS solver at Master 22 | BROADCAST $(w, \text{root} = 0)$ // every worker receives the global model ²³ end

```
24 return w
```
Algorithm 4: $(V, R) \leftarrow X$, via HOUSEHOLDER-QR, refer Theorem 2.1

Input: A matrix $X \in \mathbb{R}^{n \times d}$ **Output:** Householder reflector set V , Upper trapezoidal matrix $R \in \mathbb{R}^{n \times d}$ 1 for $j \leftarrow 1$ to d do
2 $\mid v_i \leftarrow X(i:n, j)$ 2 $\begin{array}{c} \n\mathbf{2} \\
\mathbf{3} \\
\mathbf{4} \\
\mathbf{5} \\
\mathbf{5} \\
\mathbf{6} \\
\mathbf{7} \\
\mathbf{8} \\
\mathbf{9} \\
\mathbf{1} \\
\mathbf{1}$ $\mathbf{3} \left\| v_j(1) \leftarrow v_j(1) + sign(v_j(1)) \times \left\| v_j \right\|_2$ // scalar update $4 \mid v_j \leftarrow \frac{v_j}{\|v_j\|}$ $\frac{v_j}{\|v_j\|_2}$ // vector normalization 5 $X(j : n, j : d) \leftarrow X(j : n, j : d) - 2 \times v_j < v_j, X(j : n, j : d) >$
6 $R = X(j : n, j : d)$ $R = X(j:n, j:d)$ 7 end 8 $V \leftarrow [v_1, v_2, \ldots, v_d]$ // set of d-reflectors 9 return (V, R)

Algorithm 5: Computing implicit $Q^T y$ via MULTIPLY-QC

Input: Householder reflector set V , a vector $y \in \mathbb{R}^n$ Output: $\bar{y} \leftarrow (Q^T y) \in \mathbb{R}^n$ 1 $c \leftarrow y$ 2 for $j \leftarrow 1$ to d do **3** $\vert c(j:n) \leftarrow c(j:n) - 2 \times v_j(v_j^T c(j:n))$ ⁴ end 5 $\bar{y} \leftarrow c$ 6 return \bar{y}

References

- Burges, C. J. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2 (2):121–167, 1998.
- Dass, J., Sarin, V., and Mahapatra, R. N. Fast and communication-efficient algorithm for distributed support vector machine training. IEEE Transactions on Parallel and Distributed Systems, 30(5):1065–1076, 2018.

Golub, G. H. and Van Loan, C. F. Matrix computations, volume 3. JHU press, 2012.

- Si, S., Hsieh, C.-J., and Dhillon, I. S. Memory efficient kernel approximation. The Journal of Machine Learning Research, 18(1):682–713, 2017.
- Williams, C. K. and Seeger, M. Using the nyström method to speed up kernel machines. In Advances in neural information processing systems, pp. 682–688, 2001.