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Abstract

Least-Mean-Squares (LMS) solvers comprise a
class of fundamental optimization problems such
as linear regression, and regularized regressions
such as Ridge, LASSO, and Elastic-Net. Data
summarization techniques for big data generate
summaries called coresets and sketches to speed
up model learning under streaming and distributed
settings. For example, (Maalouf et al., 2019) de-
sign a fast and accurate Caratheodory set on input
data to boost the performance of existing LMS
solvers. In retrospect, we explore classical House-
holder transformation as a candidate for sketching
and accurately solving LMS problems. We find it
to be a simpler, memory-efficient, and faster alter-
native that always existed to the above strong base-
line. We also present a scalable algorithm based
on the construction of distributed Householder
sketches to solve LMS problem across multiple
worker nodes. We perform thorough empirical
analysis with large synthetic and real datasets to
evaluate the performance of Householder sketch
and compare with (Maalouf et al., 2019). Our re-
sults show Householder sketch speeds up existing
LMS solvers in the scikit-learn library up to 100x-
400x. Also, it is 10x-100x faster than the above
baseline with similar numerical stability. The dis-
tributed algorithm demonstrates linear scalability
with a near-negligible communication overhead.

1. Introduction

Least-Mean-Squares (LMS) solve a fundamental slice of
machine learning optimization and statistics problems that
comprise ordinary least squares linear regression (Seber &
Lee, 2012), regularized models such as ridge regression (Ho-
erl & Kennard, 1970), LASSO (Tibshirani, 2011), Elastic-
net (Zou & Hastie, 2005). Such machine learning mod-
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els are statistically robust and easily interpretable. Hence,
they find applications in cancer research (Kidd et al., 2018),
genomics (D’Angelo et al., 2009), cryptocurrency (Pana-
giotidis et al., 2018), and most recently in understanding
factors of COVID-19 outbreak and its impact (Wang et al.,
2020; Lauer et al., 2020; Pandey et al., 2020). Training ma-
chine learning models on big data requires resources with
large memory, and high computational power. However, in
practical applications, data is naturally decentralized, which
calls for collaboratively training global machine learning
model across multiple sources without sharing original data
on a central server. A recent body of work aims to create
such secure multi-party computation framework for training
distributed regression models (Ben-Or et al., 1988; Sanil
etal., 2004; Gascon et al., 2017; Zheng et al., 2019). In addi-
tion, efforts have to be made towards feasibility of real-time
learning at these sources with relatively smaller memory
and computing capabilities. Such distributed learning frame-
work will also need to support streaming data batches to
update the models.

Addressing the above requirements entails reformulating the
fundamental machine learning problems and using smaller
and efficient representations of the original full data to accel-
erate the training time. Data summarization techniques for
big data in (Phillips, 2016; Jubran et al., 2019; Drineas et al.,
2006; Feldman et al., 2010; Clarkson & Woodruff, 2009)
generate such summaries called coresets and sketches to
solve the problems approximately. A coreset is a (weighted)
subset of data points whereas a skefch is a linear mapping
of few or all data points in the original dataset which aim to
preserve or approximate the covariance matrix. It is possible
to leverage these data summaries to speedup model learn-
ing, with data distributed across or streaming into various
locations. More recently, an award-winning work (Maalouf
et al., 2019) proposed a coreset and sketch fusion algorithm
LMS-BoOST which accurately solves and accelerates com-
mon LMS solvers for Linear, Ridge, LASSO, Elastic-Net
in scikit-learn library up to 100x.

1.1. Problem Setup

We define the Least-Mean-Squares (LMS) optimization
problem for a data set (X,y), X € R"*4 and y € R",
where, n > d, as minimizing the sum of squared loss
between the observed prediction x;w, and true response y;
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for any d- dimensional data sample IEJT € R? (row of X),
j=1,...,n, and LMS model coefficient vector w € R¢.

min f([[Xw - yll2) + g(w). M

In LINEAR REGRESSION, f(2) = 22, and g(w) = 0. In
RIDGE REGRESSION, f(2) = 22, and g(w) = M|w||z,
where, A > 0, is ridge regularization hyper-parameter. LMS
solvers in scikit-learn library solve system of linear equa-
tions, i.e. (X7 X)w = XTy (LINEAR REGRESSION), or
(XTX 4+ M)w = XTy (RIDGE REGRESSION).

1.2. Related work

The above overdetermined LMS problems can be solved
directly by computing the covariance matrix (X7 X), and
(XTX)~! in the Normal Equations. Despite its ease of
implementation, this method is not recommended due to
its numerical instability associated with squaring of con-
dition number. Moreover, computing and maintaining the
inverse, if it exists, for every new incoming data leads to
the accumulation of numerical errors, especially with 32-bit
floating-point calculations. Hence, a more numerically sta-
ble approach is to factorize X using QR decomposition into
matrix () with orthonormal columns, and upper triangular
matrix R, when n > d. QR decomposition handles a much
wider range of matrix by avoiding the condition-number-
squaring effect (Golub & Van Loan, 2012).

QR decomposition is a pre-processing step to solve LMS
problems. A standard method of obtaining a () R Factoriza-
tion is via Gram-Schmidt Orthogonalization (Bjorck, 1994)
that is unstable compared to Q) R via Householder reflectors
(Golub & Van Loan, 2012). For applications with sparse
input matrices, Givens rotation (George & Heath, 1980)
allows full exploitation of the underlying sparsity where
non-zeros can be successively annihilated. However, it is to
be noted that Householder transformation uses fewer arith-
metic operations compared to Givens rotations (Golub &
Van Loan, 2012). Nevertheless, it is always possible to
compute efficient sketch by switching between Householder
transformation and Given rotation implementation of QR
decomposition based on the sparsity of the input data with-
out much change in the structure of the framework. We
also note that Householder transformation is uncondition-
ally backward stable, by applying only orthogonal trans-
formations, hence solving LMS problems is accurate. For
rank-deficient systems where rank, < d, Rank-Revealing
QR (Chan, 1987) can be used with an additional computa-
tion cost of O(d?r) which is negligible in our problem setup
since r < d <K n.

Various iterative methods have been proposed to solve Least
squares problems such as LSQR (Paige & Saunders, 1982),
LSMR (Fong & Saunders, 2011), Stochastic proximal accel-
erated gradient descent (Nitanda, 2014), and more recently

randomized methods with random mixing and random sam-
pling such as LSRN (Meng et al., 2014) and Blendenpic
(Avron et al., 2010). These results are approximate solu-
tions. However, our focus is using a theoretically accurate
sketch of the input data which could be directly plugged to
accelerate scikit-learn LMS solvers.

Our work is inspired by the recent work of (Maalouf et al.,
2019) which proposed a novel coreset-sketch fusion algo-
rithm called LMS-BOOST to accurately solve and accel-
erate scikit-learn LMS solvers based on (Carathéodory,
1907) theorem. Specifically, LMS-BOOST generates ac-
curate coresets from the proposed faster implementation
of Caratheodory set. The fundamental idea in this fusion
algorithm is to partition the n data points each with feature
dimension d into multiple clusters optimally. Then, one com-
putes sketch for each cluster, followed by generating coreset
for the union of sketches. Finally, one creates a union of
clusters corresponding to selected sketches above and recur-
sively runs the original (slower) Caratheodory algorithm on
this union to generate sufficiently small coreset. Algorithm
3 in (Maalouf et al., 2019) uses such coreset to summarize
the data into a Caratheodory matrix, S € R(@+1)xd 4 per
Algorithm 2, Theorem 3.2 in (Maalouf et al., 2019) to pre-
serve the input covariance i.e. X7 X = S7S, Finally, the
above matrix is used as a summarized data for LMS solvers
with the asymptotic time complexity of O(nd? +logn x d®).
In retrospect, we seek to explore classical Householder trans-
formation as a candidate for sketching and accurately solv-
ing LMS problems such that it is computationally faster
than LM S-B0OOST (Maalouf et al., 2019).

1.3. Contributions

We note that (Maalouf et al., 2019) considers classical QR
decomposition approach to be numerically stable alternative
for solving LMS problems which we discussed in previous
section. However, it makes the following claims without
providing any theoretical or empirical analysis.

Claim 1: QR decomposition is relatively time-consuming.

Claim 2: QR decomposition is unsuitable for exact factor-
ization for streaming data.

In this work, we set to rigorously test and check for validity
of the above claims made against the Q) R decomposition. In
this regard, we pose the following questions, respectively.

Q1: Whether a classical and simple approach such as QR
decomposition could (theoretically) accurately solve
and accelerate common LMS solvers compared to the
above state of the art recursive and clustering-based
fusion algorithm?

Q2: Whether a numerically stable algorithm could generate
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accurate distributed sketches via exact factorization on
streaming data?

On using Householder-based QR decomposition, we an-
swer the above questions affirmatively and thereby show
both of the above claims made against () R decomposition
to be False. In this work, we strongly advocate for QR
decomposition using Householder reflectors as a theoreti-
cally accurate sketch for LMS problems by preserving the
covariance of the input matrix, and demonstrate it to be rela-
tively much simpler, memory-efficient, and computationally
effective alternative to the fast Caratheodory set based fu-
sion algorithm proposed in (Maalouf et al., 2019). Then,
we justify distributed Householder-QQ R as a numerically
stable candidate to generate distributed sketches via exact
factorization on streaming data. Our main contributions are

1. We provide a critical analysis based on thorough
comparison of Householder-based LMS-QR and
Caratheodory-based LMS-B0OOST (Maalouf et al.,
2019), both theoretically and via extensive empirical
results which are missing in the literature. In Sec-
tion 2 we show that a classical Householder-based
QR generates R € R4 in O(nd?® — d®/3) time
whereas LMS-B0OOST constructs S € R(@*+1)xd jp
O(nd? + d® x logn) time. Note, XTX = RTR is
similarly preserved but LMS-QR theoretically and
empirically outperforms LMS-BOOST by upto 10x to
100x (refer Section 4(ii)). We used same datasets and
baselines as (Maalouf et al., 2019) for fair comparison
and even experimented with larger dataset sizes upto
24 M x 50 while theirs was upto 2M x 7.

2. We offer a decentralized Q)R setup to generate dis-
tributed Householder sketches for exactly factoriz-
ing the input data partitioned across multiple worker
nodes without sharing the original data. Analytically,
for exact factorization across p separate workers, it
takes O(%d2) time with communicated data volume
of d(d 4+ 1)/2 elements per worker where d < n/p
(refer, Theorem 3.1). In Section 4(iii) we empirically
demonstrate Algorithm 3 to have negligible commu-
nication overhead resulting in linear scalability (ideal)
and capability to handle dominant computations for
accurate distributed sketches.

Hence, the goal of this manuscript is to provide a strong
case for classical Householder-based QR decomposition
and demonstrate its performance capabilities for solving
common LMS problems. Eventually, we shed light on
benefits of the Householder representations in terms of its
memory, computation time to accelerate LMS solvers, its
numerical stability, feasibility of being deployed on dis-
tributed network to handle large sample size and feature
dimensions, and scalability across multiple worker nodes.

4§+« y[0:d

Algorithm 1 HOUSEHOLDER-SKETCH(X, y); see Theo-

rem 2.2

Input: A matrix X € R"*? avector y € R"

Output: A matrix R € R?*? is upper triangular such that
XTX = RTR, and a vector j € R? is top d
elements of the reflected vector Q7'y

(V, R) .= HOUSEHOLDER-QR(X) // see Theorem

2.1, see Algorithm 4 in Supplementary

g == MULTIPLY-QC(V, ¥y, ‘T") // implicit

QTy, see (Golub & Van Loan, 2012), see
Algorithm 5 in Supplementary
R+ R[0:d,] // dxd triangular block
// top d elements

return (R, 3)

2. Least Mean Squares - QR

In this section we review LMS-QR; QR decomposition
based Least-Mean-Squares (LMS) solver via Householder
transformation. The LMS objective in Equation (1) with
X = QR reformulates to

min f(|QRw — y]l2) + g(w) @

where, () is an n x n orthogonal matrix and Risann X d
upper trapezoidal matrix when n > d. We assume the data
matrix X is full column rank. With Householder transfor-
mation, the benefit is avoiding the explicit computation and
storing of large () which otherwise becomes prohibitive for
big data sets. Rather, one may simply represent () as d
Householder matrices X = {H(j) : j = 1,...,d} such
that @ = H(1)x H(2)...x H(d). Each H (j) has the form
H(j)=1—tau x v(j) x v(j)’, where tau is a real scalar,
and v(j) is a real vector called Householder reflector which
we store in the reflector set V = {v(j) : j = 1,...,d}.
In essence, any operations involving () are now computed
using the above memory-efficient reflector set. Theorem 2.1
formally presents Householder-QR.

Theorem 2.1 (Householder-QR (Golub & Van Loan, 2012)).
Let matrix X € R"*? with n > d. Householder QR decom-
position of X generates set of d Householder matrices H
and an n X d upper trapezoidal matrix R. The Householder
matrices are stored as a set of d Householder reflectors V.
Total memory footprint of above factors is nd elements with
time complexity of O(nd?) for n >> d.

We now present Theorem 2.2 which uses the factors from
Householder-QR to create Householder sketch as per Algo-
rithm 1 for further applications in LMS problems.

Theorem 2.2 (Householder Sketch). Let X € R"*9 pe
the original data matrix, y € R"™ be the corresponding
output label or response vector, and n > d. Let X =
QR be Householder QR decomposition. Then, (R, Q*y)
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Algorithm 2 LMS-QR(X, y, params)

Algorithm 3 DISTRIBUTED LMS-QR(p, X, y, params)

Input: A matrix X € R"*%, a vector y € R, and a list of
LMS parameters, params

Output: A vector of model coefficients, w € R4

(R,y) = HOUSEHOLDER-SKETCH(X,y)
Algorithm 1

w = LMS(R,y,params) // LINREG, RIDGECV,
LASSOCV, ELASTICCV in sckit-learn

return w

// see

is a memory-efficient and theoretically accurate sketch of
original data (X,y) such that XX = RTR, and has

memory footprint of (M) elements, computed in time

O(nd?). ’

Proof. From Equations (1) and (2), and X = @R, where
QRT=QTQ=1

[Xw —yl2= [|QRw — y|2= |QRw — QQ"yll2
= [ Qll2l|Bw — Q" yll2= [|[Rw — Q" yll2

See remaining proof in supplementary material.

O

Accelerating LMS solvers. Householder sketch (R, Q7'y)
is precomputed and applied directly to existing LMS solvers
in scikit-learn library instead of original (X, y). Reducing
the memory cost from O(nd) in (X, y) to O(d?) in House-
holder sketch (R, Q'y) speeds up the LMS solver. Specifi-
cally, with the Householder sketch, the time for constructing
RTR and RT(QTy) are O(d?) and O(d?), respectively
which are significantly faster than the original time O(nd?)
and O(nd) spent by the solver on constructing X X and
X Ty, respectively. Then, LMS solves a primal problem
with system of d equations and d unknowns (w, solver coef-
ficients). We present LMS-QR formally in Algorithm 2. It
is to be noted that constructing HOUSEHOLDER-SKETCH
takes O(nd?) for n >> d (see Theorem 2.2), and is more
computationally dominant than running the LMS solver
such as LINREG, RIDGECYV, LASSOCYV, ELASTICCV
in sckit-learn. The above trend is also empirically validated
in Figure 2 for RIDGE solver as proof of concept.

3. Distributed LMS-QR

In this section, we present a distributed version of LMS-QR
that parallelizes the computations, and, scales Algorithm 2
across multiple workers (computing cores or users) to solve
the global LMS problem. We recall that HOUSEHOLDER-
SKETCH (see Algorithm 1) is the more computational dom-
inant step than the solver in LMS-QR (see Algorithm
2). HOUSEHOLDER-SKETCH calls HOUSEHOLDER-QR

ST

- W

Input: A scalar p > 0 parallel workers (cores or users),
amatrix X = (X7[...[Xx)7, X, € R¥*  a
vectory = (yi |...|y}) ", yi € R%, a list of LMS
parameters, params

Output: A vector of model coefficients, w € R4

//  (V,R) = DISTRIBUTED

HOUSEHOLDER-QR (X), see Theorem 3.1

for every workeri € {1,2,...,p} do

Vi, R;) HOUSEHOLDER-QR(Xj)
Theorem 2.1

R;+ R;[0:d,:]// dxd triangular block

Rsiack = GATHER(R;,root = 0) // Rstack =
vstack(Ry,...,R,) at Master

// see

end

6 ifi =— 1then // check for Master

10
11

12
13

14
15

16

17
18

19

20
21

22

23
24

(Va, Rar) == HOUSEHOLDER-QR(Rgtqck) // see
Theorem 2.1

R]\/[ — R]\/[[O
block

d,:] // d x d triangular

end
/)Y =V,
or shared

// Q = diag(Qu,...

Theorem 3.1

. Vp, V] 1s never centralized

,Qp)Qum,and, R = Ry, see

/]y ‘= DISTRIBUTED
MurLTiPLY-Qc (V,y, ‘T’), see Corollary
3.1.1

for every workeri € {1,2,...,p} do
¥; = MULTIPLY-QC(V;,y;, *T’) // implicit
QTy; ,see Algorithm 5 in Supp.
i < 9:]0:d] // select top d elements
Ustack = GATHER(y;, root 0) // Ystack
vstack(yi,...,¥p) at Master
if: == 1then // check for Master
Ym MULTIPLY—QC(VMvgstack:a ‘T,)
// implicit QR Fstack
—  yml[0 d] // select top d
elements

Ym

end

end
g=yu// §=Q%y = QL ((QTy)"I-. . 1(QFy,)")"
// Solving LMS
ifi == 1then // check for Master
w = LMS(R,y,params) // run LMS solver
at Master
BROADCAST(w, root = 0) // every worker
receives the global model
end
return w
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to perform X = (R decomposition on the data matrix.
Then, MULTIPLY-QC is invoked to eventually compute
7=QTy e R

Now, we show the feasibility of exactly distributing LMS-
QR algorithm across multiple worker nodes without any
approximations. To design a DISTRIBUTED LMS-QR
in Algorithm 3, the more computationally expensive
HOUSEHOLDER-SKETCH algorithm is parallelized across
multiple workers. This is achieved via DISTRIBUTED
HOUSEHOLDER-QR (see Theorem 3.1, and Steps 1-9 in
Algorithm 3), and DISTRIBUTED MULTIPLY-QC (see Corol-
lary 3.1.1, and Steps 10-19 in Algorithm 3) which create
local and master Householder sketches from the local data
(Xi,yi),i=1,...,p, generated i.i.d. at each worker node.
Finally, we run the LMS solver (Steps 20 - 24 in Algorithm
3) at the master with (R, Qy), and broadcast the global
LMS model coefficients w to all the workers.

Theorem 3.1 (Distributed Householder-QR (Dass et al.,
2018)). Let X = (XT|...|XI)T, where, X; € R"™¢
be local data matrix of parallel worker, i = 1,...,p,
where n > d, and, n = pn. Let, X; = Q;R; be con-
structed via local HOUSEHOLDER-QR (see Algorithm 1)
for each i = 1,...,p, in parallel. Then, X = QR for
the complete data matrix can be constructed exactly, such
that Q = diag(Q1,...,Qp)Qnm, and R = Ry, where
Rgstack = QprrRas via another HOUSEHOLDER-QR on
Rtack = (RT|...|RT)T gathered from all workers. The
above DISTRIBUTED HOUSEHOLDER-QR has a compu-
tational time complexity of O(%dQ), with a communicated

d(d+1
(2 ))

data volume of ( elements by each worker:

Proof. See full proof in the supplementary material. [

Relation to TSQR and BLOCK-QR. The construction of
DISTRIBUTED HOUSEHOLDER-QR (Dass et al., 2018) is
inspired from the parallel Tall-Skinny QR (TSQR) algorithm
(Demmel et al., 2012). Unlike the binary reduction tree in
TSQR, (Dass et al., 2018) use a simple two-level organi-
sation where the first level involves local HOUSEHOLDER-
QR on each participating worker in parallel (Step 2 in Al-
gorithm 3), followed by a second level which computes
HOUSEHOLDER-QR at the master (Step 7 in Algorithm 3).
Since the communication overhead is negligible as demon-
strated in Figure 2, the choice of implementation of the
DISTRIBUTED HOUSEHOLDER-QR is justified. Moreover,
designing such a framework supports decentralized machine
learning applications with workers (users) on the edge of
distributed network. Here, every worker has same and direct
access to the master compared to the neighbors in TSQR’s
binary reduction scheme. Finally, we would like to high-
light that established packages such as ScaLAPACK and
Elemental (Poulson et al., 2013) use different matrix block-
ing and collectives for performing Householder QR on mul-

tiple worker nodes via All-reduction scheme. In contrast,
DISTRIBUTED HOUSEHOLDER-QR employs a reduction
scheme similar to TSQR (Demmel et al., 2012) where the
global R resides on only one node (master) rather than being
shared across all the workers. Due to relatively lower syn-
chronisation cost, DISTRIBUTED HOUSEHOLDER-QR sim-
ilar to TSQR (Demmel et al., 2012) obtains a performance
benefit over ScaLAPACK (Ballard et al., 2014). BLOCK-
QR (Mathias & Stewart, 1993) performs vertical partitions
of the columns (features) into blocks, generates Household-
ers and uses WY block representation (Bischof & Van Loan,
1987) and finally performs Level 3 BLAS update before
moving to next block. Instead, Algorithm 3 horizontally
partitions the rows (samples) for decentralized setup and
performs Householder (DGEQRF) operation locally on data
partition at each worker in parallel and once globally.

Corollary 3.1.1 (Distributed Multiply-Qc). Let ¢ =
(cf]...|eD)T € R™, where, ¢; € R"™ be some local vector
at parallel worker with local data matrix X;, 1 =1,...,p,
where 1. > d, and, n = pn. Let orthogonal matri-
ces Qnr, and Q;, © = 1,...,p be constructed via DIS-
TRIBUTED HOUSEHOLDER-QR as per Theorem 3.1 such
that Q = diag(Q1,-..,Qp)Qn. Then, the reflected vec-
tor, Q¢ (or Qc) can be constructed exactly by making
(p + 1) calls to MULTIPLY-QC (see Step 2 in Algorithm 1)
such that

Qe = Q@ e)"].. 1(Qpen))"

Qc=diag(Q1,..., QP)QM(CITL .. \c;";)T

The above DISTRIBUTED MULTIPLY-QC has a computa-
tional time complexity of O(%d + pd?), with a communi-
cated data volume of (d) elements by each worker.

Proof. See full proof in the supplementary material. O

Privacy. From Theorem 3.1, and Corollary 3.1.1, it can be
observed that the DISTRIBUTED LMS-QR in Algorithm
3 can locally compute (R;, Q7y;) for each worker without
the need to share its original data X; to a centralized node
or any of the neighbors. By maintaining ); privately, the
algorithm avoids any other worker (or master) to reconstruct
X; accurately. In our experiments, master is designated via
Message Passing Interface protocol. We acknowledge that
future work could explore strong theoretically supported
privacy-preserving Householder computations.

4. Experiments

In this section we perform extensive empirical analysis for
the LMS-QR (Algorithm 2). Recall, HOUSEHOLDER-
SKETCH (Algorithm 1) on the input data (X,y) gener-
ates memory-efficient (R, Q7y) to accurately solve, and
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Figure 1. Sequential training time {RIDGE, LASSO, ELASTIC} (a)-(c): vs data size, n with feature dimension, d = {3, 5, 7}, (d)-(f):
vs d with n = 24 M, (g)-(i): vs n with hyper-parameter size |A|, (j): LINREG vs n, (k): vs |A| for 3D Road Network, (1): vs |A| for
Household Power Consumption. Cross validation folds, |m|= 3 for synthetic datasets (a)-(j) and |m|= 2 for real datasets (k)-(1)

accelerate common LMS solvers in scikit-learn library. as Linear Regression, Ridge, LASSO, and Elastic-Net in
To implement Algorithm 1, we use LAPACK.dgeqrf (),  scikit-learn library (Pedregosa et al., 2011). We used Google
and LAPACK.dormgr () subroutines for HOUSEHOLDER-  Colab to run our experiments with the above LMS-QR al-
QR, and MULTIPLY-QC, respectively. We present detailed gorithms via Python3 Google Compute Engine running on
experimental setup, and extensive discussion of our results.  Intel Xeon CPU @ 2.20GHz and 25 GB RAM. We used
following datasets for evaluation, and fair comparison of
LMS-QR performance with the default LMS solvers (with
cross validation), and with Fast Caratheodory coreset based

(i) Experimental Setup. We evaluated the perfor-
mance of LMS-QR algorithm on regression models such
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Figure 3. Comparing scalability of various algorithms to solve RIDGE problem on synthetic datasets of size n X d
(a)-(c): Various n = {500K,1M,2M},d = 100, (d)-(f): DISTRIBUTED RIDGE-QR with d = {5, 10, 25, 50, 100}

LMS-BoosT (Maalouf et al., 2019).

(i) Synthetic data (X, y) comprising uniform random en-
tries in [0, 100) for sequential experiments.

(i) 3D Road network(Kaul et al., 2013) dataset with n =
434,874 data samples. We selected d = 2 feature
attributes (longitude, latitude) as per (Maalouf et al.,
2019) to predict height (in metres).

(iii) Individual household electric power consumption (He-
brail & Berard, 2012) dataset with n = 2,075,259
data samples. We selected d = 8 attributes as per
(Maalouf et al., 2019) to predict the house price.

For distributed experiments, we used the Anaconda Python
distribution and MPI for Python (mpidpy) package on the
Texas A&M University HPRC Ada computing cluster of
Intel Xeon CPU @ 2.5GHz. We used synthetic dataset with
uniform random entries in (—100, 100) with zero-centering

for evaluating the distributed performance of RIDGE-QR
as our case study on a cluster of p = {2,4,8,16} work-
ers (computing cores). However, it is to be noted that
DISTRIBUTED LMS-QR technique is easily applicable
to other solvers. Linear algebra was handled by LA-
PACK/BLAS, through the Intel Math Kernel Library. We
ensure that each worker (core) was assigned from a different
node in the cluster to ensure distributed memory with MKL
threads per core limited to 1. Each test was performed 20
times, and the best result was chosen.

(ii) Sequential Training Time. LMS-QR
works with memory-efficient (R, Q7y) with just d rows
in R compared to LMS with n rows in X of the original
data (X, y), and (d? + 1) rows in the reduced matrix from
the Fast Caratheodory coresets in LMS-B0OOST (Maalouf
et al., 2019). Construction of R via Householder trans-
formation in LMS-QR, and the reduced matrix via Fast
Caratheodory set for LMS-BOOST take time that is linear
in n, and quadratic in d. Figure 1 (a)-(i) depicts the sequen-
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tial training computation time on synthetic dataset for the
LMS-QR, and compares them with respective LMSCV
(Pedregosa et al., 2011), and LMS-B0OOST (Maalouf et al.,
2019), where, LMS={RIDGE, LASSO, ELASTIC}. From
Figure 1 (a)-(c), we observe that for various feature dimen-
sions d = {3,5, 7} and data sizes n = {240K,...,24M },
LMS-QR accelerates the running time of default LMSCV
by 100x for both LASSO, and ELASTIC, and by 400x for
RIDGE. In comparison with LMS-B0O0OST, RIDGE-QR out-
performs RIDGE-BOOST by 10x for d = 7 and various n
in Figure 1(a). Moreover, LASSO/ELASTIC/LINREG-QR
runs upto 100x faster when n < 2.4M and upto 10x faster
when n > 2.4M than LASSO/ELASTIC/LINREG-BOOST
for d = 7 in Figure 1 (b)(c)(j). In Figure 1 (d)-(f), we
demonstrate the running time of LMS-QR for n = 24M
and various d = {3,5, 7,10, 25,50}. We observe that LM-
SCV, and LMS-B0o0sT (Maalouf et al., 2019) with run-
ning time O(nd? + logn x d®), run out of memory for
d = {25, 50} while LMS-QR could handle growing feature
dimension as shown. Hence, we demonstrate that LMS-
QR can easily handle big datasets with increasing data
size n and feature dimension d while enjoying the fastest
running times compared to LMSCV and LMS-BOOST.
For various size of hyper-parameter set for cross validation,
|A|= {50, 100, 200, 300}, for cross validation, Figure 1 (g)-
(i) depict LMS-QR to be consistently faster than LMS-CV
and LMS-B0OST. We observe similar trend for the real
datasets in Figure 1 (k)-(1).

(iii) Distributed Training Time. We eval-
uate the performance of DISTRIBUTED RIDGE-QR as a
case study to demonstrate the effectiveness of the dis-
tributed implementation. From Algorithm 3, DISTRIBUTED
RIDGE-QR can be split into two main stages: (Stage 1)
DISTRIBUTED HOUSEHOLDER-QR, and (Stage 2) Dis-
TRIBUTED MULTIPLY-QC, followed by solving the Ridge
regression. Figure 2 (a)-(b) demonstrate the above two
stages on a 10/ x 10 synthetic dataset. Stage 1 running
time can be further broken into three main components:

local HOUSEHOLDER-QR time, master HOUSEHOLDER-
QR time, and communication (gather) time as illustrated
in Figure 2 (a). Since each worker performs its local
HOUSEHOLDER-QR on partitioned data of size % x d
(Theorem 3.1), we observe it to be empirically more com-
putationally dominant than the master HOUSEHOLDER-
QR that works on gathered matrices of size pd x d.
We show that on doubling the number of parallel work-
ers, i.e. p = {2,4,8,16} workers, the time to calcu-
late the local HOUSEHOLDER-QR is reduced by half,
i.e. {1.1734,0.5405,0.2508, 0.1233} seconds respectively
demonstrating it is fully parallelized. In comparison, mas-
ter HOUSEHOLDER-QR computation time, and communica-
tion time to gather merely d(d + 1)/2 elements is nearly
negligible as depicted in Figure 2 (a).

Next, in Figure 2(b), we observe the timings for Stage 2 in
DISTRIBUTED RIDGE-QR. The running time of this stage
can be split into following main components: DISTRIBUTED
MULTIPLY-QC time to compute @7y, and time to solve
the ridge regression via popular RIDGE solver (Pedregosa
etal., 2011). We observe in Figure 2(b) that DISTRIBUTED
MULTIPLY-QC time is computationally dominant as ex-
pected from Corollary 3.1.1, and can be fully parallelized
with reported timings of {0.2782,0.1232,0.06012,0.0277}
seconds on p = {2,4, 8,16} workers, respectively. Rela-
tively, we also observe that solving RIDGE regression with
RRT € R%*4_ is nearly negligible in computation time
across various choices of p. Moreover, the communication
required in this stage involves a gather of QTy; € R? at
the master, and broadcasting w to all workers, which is
negligible as well.

Finally, in Figure 2 (c) we depict the percentage of total
running time for DISTRIBUTED RIDGE-QR that is spent
on computation and communication components of Stage
1, and Stage 2 for various choices of p. We observe the
communication overhead to be nearly negligible, and lo-
cal HOUSEHOLDER-QR to be the most computationally
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dominant component. The latter can be parallelized sig-
nificantly across multiple workers. We also observe that
for any given dataset size and choice of p, as long as the
parallelizable components, namely, local HOUSEHOLDER-
QR, and DISTRIBUTED MULTIPLY-QC remain as the most
computationally dominant components, the algorithm will
continue to scale as per Amdahl’s Law (Amdahl, 1967). So
for big datasets, we expect good scalability on large number
of p workers as discussed next.

(iv) Scalability. We discuss parallel speedup un-
der strong scaling scenario wherein the overall problem size
stays fixed but the number of parallel workers p is doubled.
Parallel speedup is defined as the ratio of the running time
for the sequential algorithm to that of the corresponding par-
allel algorithm on p workers. When speedup of any parallel
algorithm is p, it exhibits ideal speedup with linear scala-
bility. Figure 3 (a)-(c) demonstrates the parallel speedup
of DISTRIBUTED RIDGE-QR, and compares it with popu-
lar distributed technique ADMM (Boyd et al., 2011), here,
RIDGE-ADMM that uses original data (X, y) on RIDGE
(Pedregosa et al., 2011), for w— update step. In Figure
3 (a)-(c), we observe that with larger data sample sizes
n = {500K,1M,2M}, DISTRIBUTED RIDGE-QR along
with its dual equivalent DISTRIBUTED KERNELRIDGE-QR
(linear kernel) exhibit almost linear scalability across p
by approaching the ideal speedup. This is attributed to its
negligible communication overhead, and almost fully par-
allelizable computational components as discussed earlier.
It is also worth noticing from Figure 3 (d)-(f) that as the
feature dimension increases from d = 5 to d = 10 in each
plot, DISTRIBUTED RIDGE-QR speedup tends to be more
linear for high p, thereby capable of showing high scalabil-
ity for datasets with large feature size on large number of
parallel workers. In Figure 4 (a) we observe that solving
RIDGE regression problem with linear kernel in dual form
using KERNELRIDGE-QR has the same computation time
as that of solving the primal form using RIDGE-QR for var-
ious sequential and distributed settings, p = {1,2, 4,8, 16}.
Moreover, Householder-Sketch based sequential (p = 1)
and distributed (p = {2,4,8,16}) algorithms run much
faster than the corresponding implementation of iterative
RIDGE-ADMM algorithms on the original data.

(v) Numerical Stability. Figure4 (b) shows that
DISTRIBUTED RIDGE-QR is numerically stable to rounding
errors with increasing number of workers p, while ADMM
being an iterative learning algorithm is more susceptible.
For the sequential implementation on linear regression prob-
lem, (Maalouf et al., 2019) had demonstrated much bet-
ter numerical stability of LINREG-BOOST compared to
(XT X)~1. Here, Figure 4 (c) presents the numerical stabil-
ity of LINREG-QR with scaled factor of 10~*! to demon-
strate similar trend to that of LINREG-BOOST (Maalouf
etal., 2019).

5. Conclusions and Future Work

We demonstrate that Householder transformation gener-
ates a theoretically accurate sketch that is relatively more
memory-efficient and computationally faster than the LMS-
BoOST algorithm in (Maalouf et al., 2019) to accurately
solve LMS problems. In principle, Householder sketch ac-
celerates common LMS solvers in scikit-learn library up
to 100x-400x, and outperforms the strong baseline LMS-
B0OST by 10x-100x with similar numerical stability. The
distributed implementation achieves linear scalability with
negligible communication overhead for large sample size
and dimension across multiple worker nodes. We believe
that the above results are valuable for the community to
realize not to disregard classical techniques so quickly, re-
think how some comparisons are done, identify common
misconceptions, and reassess what the most appropriate al-
gorithms for certain problems are. We have open-sourced
our codes here. Future work includes experimenting with
streaming data batches and incorporating fault tolerance and
strong theoretical guarantees for privacy to ensure secured
multi-party decentralized training.
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