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Abstract
We study stochastic gradient descent (SGD) with
local iterations in the presence of Byzantine
clients, motivated by the federated learning. The
clients, instead of communicating with the server
in every iteration, maintain their local models,
which they update by taking several SGD itera-
tions based on their own datasets and then com-
municate the net update with the server, thereby
achieving communication-efficiency. Further-
more, only a subset of clients communicates with
the server at synchronization times. The Byzan-
tine clients may collude and send arbitrary vectors
to the server to disrupt the learning process. To
combat the adversary, we employ an efficient high-
dimensional robust mean estimation algorithm at
the server to filter-out corrupt vectors; and to an-
alyze the outlier-filtering procedure, we develop
a novel matrix concentration result that may be
of independent interest. We provide convergence
analyses for both strongly-convex and non-convex
smooth objectives in the heterogeneous data set-
ting. We believe that ours is the first Byzantine-
resilient local SGD algorithm and analysis with
non-trivial guarantees. We corroborate our theo-
retical results with preliminary experiments for
neural network training.

1. Introduction
In the federated learning (FL) paradigm (Konecný, 2017;
Konecný et al., 2016; McMahan et al., 2017; Mohri et al.,
2019), several clients (e.g., mobiles devices, organizations,
etc.) collaboratively learn a machine learning model, where
the training process is facilitated by the data held by the par-
ticipating clients (without data centralization) and is coordi-
nated by a central server (e.g., the service provider). Due to
its many advantages over the traditional centralized learning
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(Dean et al., 2012) (e.g., training a machine learning model
without collecting the clients’ data, which, in addition to
reducing the communication load on the network, provides
a basic level of privacy to clients’ data), FL has emerged as
an active area of research recently; see (Kairouz et al., 2019)
for a detailed survey. Stochastic gradient descent (SGD)
has become a de facto standard in optimization for train-
ing machine learning models at such a large scale (Bottou,
2010; Kairouz et al., 2019; McMahan et al., 2017), where
clients iteratively communicate the gradient updates with
the central server, which aggregates the gradients, updates
the learning model, and sends the aggregated gradient back
to the clients. The promise of FL comes with its own set of
challenges (Kairouz et al., 2019): (i) optimizing with hetero-

geneous data at different clients – the local datasets at clients
may be “non-i.i.d.”, i.e., can be thought of as being gener-
ated from different underlying distributions; (ii) slow and
unreliable network connections between server and clients,
so communication in every iteration may not be feasible;
(iii) availability of only a subset of clients for training at a
given time (maybe due to low connectivity, as clients may
be in different geographic locations); and (iv) robustness
against malicious/Byzantine clients who may send incorrect
gradient updates to the server to disrupt the training process.
In this paper, we propose and analyze an SGD algorithm
that simultaneously addresses all these challenges. First we
setup the problem, put our work in context with the related
work, and then summarize our contributions.

We consider an empirical risk minimization problem, where
data is stored at R clients, each having a different dataset
(with no probabilistic assumption on data generation); client
r 2 [R] has dataset Dr. Let Fr : Rd ! R denote the
local loss function associated with the dataset Dr, which
is defined as Fr(x) , Ei2U [nr][Fr,i(x)], where nr = |Dr|,
i is uniformly distributed over [nr] , {1, 2, . . . , nr}, and
Fr,i(x) is the loss associated with the i’th data point at
client r with respect to (w.r.t.) x. Our goal is to solve the
following minimization problem:

argmin
x2C

⇣
F (x) , 1

R

RX

r=1

Ei2U [nr][Fr,i(x)]
⌘
, (1)

where C ✓ Rd denotes the parameter space that is either
equal to Rd or a compact and convex set.
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In the absence of the above-mentioned FL challenges, we
can minimize (1) using distributed vanilla SGD, where in
any iteration, server broadcasts the current model parame-
ters to all clients, each of them then samples a stochastic
gradient from its local dataset and sends it back to the server,
who aggregates the received gradients and updates the global
model. However, this simple solution does not satisfy the
FL challenges, as every client communicates with the server
(i.e., no sampling of clients) in every SGD iteration (i.e., no
local iterations), and furthermore, this solution breaks down
even with a single malicious client (Blanchard et al., 2017).

Related work. Recent work have proposed variants of the
above-described vanilla SGD that address some of the FL
challenges. The algorithms in (Basu et al., 2019; Haddad-
pour & Mahdavi, 2019; Haddadpour et al., 2019; Karim-
ireddy et al., 2020; Khaled et al., 2020; Li et al., 2020; Sahu
et al., 2020; Yu et al., 2019b) work under different hetero-
geneity assumptions but do not provide any robustness to
malicious clients. On the other hand, (Alistarh et al., 2018;
Blanchard et al., 2017; Chen et al., 2017; Data & Diggavi,
2020b; Su & Xu, 2019; Xie et al., 2019b; Yin et al., 2018;
2019) provide robustness, but with no local iterations or
sampling of clients; furthermore, they assume homogeneous
(either same or i.i.d.) data across all clients. A different line
of work (Chen et al., 2018; Data & Diggavi, 2019; 2020a;
Data et al., 2019; 2021; Ghosh et al., 2019; Li et al., 2019a;
Rajput et al., 2019) provide robustness with heterogeneous
data, but without local iterations or sampling of clients:
Chen et al. (2018), Rajput et al. (2019), Data et al. (2019;
2021) use coding across datasets, which is hard to imple-
ment in FL; Li et al. (2019a) change the objective function
and adds a regularizer term to combat the adversary; Ghosh
et al. (2019) effectively reduce the heterogeneous problem
to a homogeneous problem by clustering, and then learning
happens within each cluster having homogeneous data; and
Data & Diggavi (2020a) studied SGD with heterogeneous
data under the same assumptions as ours, but without local
iterations or client sampling. Incorporating local iterations
with Byzantine adversaries makes it significantly more chal-
lenging as it requires deriving a new matrix concentration
bound (see Theorem 2) and different convergence analyses.

Xie et al. (2019a) also analyzed SGD in the FL setting, but
the approximation error (even in the Byzantine-free setting)
of their solution could be as large as O(D2 +G

2), where G
is the gradient bound and D is the diameter of the parameter
space that contains the optimal parameters x⇤ and all the
local parameters xt

r
ever emerged at any client r 2 [R] in

any iteration t 2 [T ]; this, in our opinion, makes their bound
vacuous. In optimization, one would ideally like to have
convergence rates depend on D with a factor that decays
with the number of iterations, e.g., with 1

T
or 1

p
T

, as also in
Theorem 1. In Section 4, we also empirically demonstrate
the poor learning performance of their algorithm.

Our contributions. In this paper, we tackle heterogeneity
assuming that the gradient dissimilarity among local datasets
is bounded (see (6)), and propose and analyze a Byzantine-
resilient SGD algorithm (Algorithm 1) with local iterations
and client sampling under the bounded variance assumption
for SGD (see (2)). We provide convergence analyses for
strongly-convex and non-convex smooth objectives.

For strongly-convex objectives, our algorithm can find ap-
proximate optimal parameters exponentially (in T

H
) fast, and

for non-convex objectives, it can reach to an approximate
stationary point with a speed of 1

T/H
. See Theorem 1 for

convergence results. The approximation error in the opti-
mization solution comprises of two terms, one is because
to the stochasticity in gradients (due to SGD) and is equal
to zero if we work with full-batch gradients, and the other
term arises because of heterogeneity in local datasets. See
a detailed discussion in Section 2.2 on the approximation
error analysis and the convergence rates, and also for the
reason behind obtaining rates that are off by a factor of H
when compared to vanilla SGD – looking ahead, the reason
is working with weak assumptions.

To tackle the malicious behavior of Byzantine clients, we
borrow tools from recent advances in high-dimensional ro-
bust statistics (Diakonikolas & Kane, 2019; Diakonikolas
et al., 2019; Lai et al., 2016; Steinhardt et al., 2018); in par-
ticular, we use the polynomial-time outlier-filtering proce-
dure from (Diakonikolas et al., 2019), which was developed
for robust mean estimation in high dimensions. In order to
use their algorithm (described in Algorithm 2) in our setting
that combines Byzantine resilience with local iterations, we
develop a novel matrix concentration result (see Theorem 2),
which may be of independent interest. As far as we know,
this is the first concentration result for stochastic gradients
with local iterations on heterogeneous data.

We believe that ours is the first work that combines local

iterations with Byzantine-resilience for SGD and achieves
non-trivial results. Not only that, we also analyze our algo-
rithm on heterogeneous data and allow sampling of clients.
Note that the earlier work that provide robustness (without
local iterations or sampling of clients) either assume homo-
geneous data across clients (Alistarh et al., 2018; Blanchard
et al., 2017; Chen et al., 2017; Data & Diggavi, 2020b; Su &
Xu, 2019; Yin et al., 2018; 2019) or require strong assump-
tions, such as the bounded gradient assumption on local
functions (Xie et al., 2019b); more on this on page 3.

Paper organization. We describe our algorithm and state
the convergence results in Section 2. In Section 3, we de-
scribe our main technical tool, a new matrix concentration
result for analyzing the robust accumulated gradient esti-
mation procedure. We provide empirical evaluation of our
method in Section 4. Omitted details/proofs are given in
appendices, provided as part of the supplementary material.
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2. Problem Setup and Our Results
In this section, we state our assumptions, describe the ad-
versary model and our algorithm, and state our convergence
results followed by important remarks about them.
Assumption 1 (Bounded local variances). The stochastic

gradients sampled from any local dataset have uniformly

bounded variance over C for all clients, i.e., there exists a

finite �, such that for all x 2 C, r 2 [R], we have

Ei2U [nr]krFr,i(x)�rFr(x)k2  �
2
. (2)

It will be helpful to formally define mini-batch stochastic
gradients, where instead of computing stochastic gradients
based on just one data point, each client samples b � 1
data points (without replacement) from its local dataset and
computes the average of b gradients. For any x 2 Rd

, r 2
[R], b 2 [nr], consider the following set

F⌦b

r
(x) :=

(
1

b

X

i2Hb

rFr,i(x) : Hb 2
✓
[nr]

b

◆)
. (3)

Note that g
r
(x) 2U F⌦b

r
(x) is a mini-batch stochastic

gradient with batch size b at client r. It is not hard to see the
following, which hold for all x 2 C, r 2 [R]:

E [g
r
(x)] = rFr(x), (4)

E kg
r
(x)�rFr(x)k2  �

2
/b. (5)

Assumption 2 (Bounded gradient dissimilarity). The differ-

ence of the local gradientsrFr(x), r 2 [R] and the global

gradientrF (x) = 1
R

P
R

r=1rFr(x) is uniformly bounded

over Rd
for all clients, i.e., there exists a finite , such that

krFr(x)�rF (x)k2  
2
, 8x 2 C, r 2 [R]. (6)

Assumption 1 has been standard in SGD literature. Assump-
tion 2 has also been used earlier to bound heterogeneity in
datasets; see, for example, (Li et al., 2019b; Yu et al., 2019a),
which study decentralized SGD with momentum (without
adversaries). Note that when clients compute full-batch gra-
dients, we have � = 0 in Assumption 1; similarly, when all
clients have access to the same dataset as in (Alistarh et al.,
2018; Blanchard et al., 2017), we have  = 0 in Assump-
tion 2. Note that (6) can be seen as a deterministic condition
on local datasets, under which we derive our results.

A note on Assumption 2. In the presence of Byzantine
adversaries, since we do not know which ✏R clients are
corrupt, we have to make some structural assumption on the
data that can provide relationships among gradients sampled
at different nodes for reliable decoding, and Assumption 2
is a natural way to achieve that. There are many alternatives
to establish this relationship, e.g., by assuming homoge-
neous (same or i.i.d.) data across clients (Alistarh et al.,

2018; Blanchard et al., 2017; Chen et al., 2017; Data &
Diggavi, 2020b; Su & Xu, 2019; Yin et al., 2018; 2019)
or by explicitly introducing redundancy in the system via
coding-theoretic solutions (Chen et al., 2018; Data et al.,
2021; Rajput et al., 2019); however, these approaches fall
short of in the FL setting.

Assuming bounded gradients of local functions (i.e.,
krFr(x)k  G for some finite G) is a common assump-
tion in literature with heterogeneous data; see, for example,
(Li et al., 2020; Yu et al., 2019b, without adversaries) and
(Xie et al., 2019b, with adversaries). Note that under this
assumption, we can trivially bound the heterogeneity among
local datasets by krFr(x)�rFs(x)k  2G. So, assum-
ing bounded gradients not only simplifies the analysis but
also obscures the effect of heterogeneity on the convergence
bounds, which Assumption 2 clearly brings out.1

Bounds on �
2 and 

2 in the statistical heterogeneous
model. Since all our results (matrix concentration and
convergence) are given in terms of � and , to show the
clear dependence of our results on the dimensionality of
the problem, we bound these quantities in the statistical
heterogeneous data model under different distributional as-
sumptions on local gradients; see Appendix E for more de-
tails, where we prove the following: For the SGD variance
bound, we show that if local gradients have sub-Gaussian
distribution, then � = O(

p
d log(d)). For the gradient

dissimilarity bound, we show that if either the local gra-
dients have sub-exponential distribution and each worker
has at least n = ⌦(d log(nd)) data points or local gradi-
ents have sub-Gaussian distribution and n 2 N is arbitrary,
then   mean + O(

p
d log(nd)/n), where mean denotes

the distance of the expected local gradients from the global
gradient. Note that we make distributional assumptions on
data generation only to derive bounds on �,; otherwise, all
our results hold for arbitrary datasets satisfying (5), (6).

Adversary model. Throughout the paper, we assume that ✏
denotes the fraction of the K communicating clients that are
corrupt, i.e., at most ✏K (out of K) clients that communicate
with the server at synchronization indices may be corrupt,
where K  R is the number of clients chosen at synchro-
nization indices. This translates to, in the worst case, having
✏K

R
fraction (i.e., a total of ✏K) of corrupt nodes in the entire

system, as in the worst-case, all the corrupt nodes can be
selected in a communication round; however, in practice,
due to several constraints, such as the unreliable network
connection (for which the adversary has no control over), we
cannot expect that the server will select all corrupt nodes in
all iterations. The corrupt clients may collude and arbitrarily

1See (Khaled et al., 2020) for a detailed discussion on the inap-
propriateness of making bounded gradient assumption in heteroge-
neous data settings and how it obscures the effect of heterogeneity
on convergence rates (even without robustness).
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Algorithm 1 Byzantine-Resilient SGD with Local Iterations

1: Initialize. Set t := 0, x0
r
:= 0, 8r 2 [R], and x := 0.

Here, x denotes the global model and x0
r

denotes the
local model at client r at time 0. Fix a constant step-size
⌘ and a mini-batch size b.

2: while (t  T ) do
3: Server selects an arbitrary subset K ✓ [R] of |K| =

K clients and sends x to all clients in K.
4: All clients r 2 K do in parallel:
5: Set xt

r
= x.

6: while (true) do
7: Take a mini-batch stochastic gradient g

r
(xt

r
) 2U

F⌦b(xt

r
) and update the local model:

xt+1
r
 xt

r
� ⌘g

r
(xt

r
)); t (t+ 1).

8: if (t 2 IT ) then
9: Let ext

r
= xt

r
, if client r is honest, otherwise can

be an arbitrary vector in Rd.
10: Send ext

r
to the server and break the inner while

loop.
11: end if
12: end while
13: At Server:
14: Receive {exr, r 2 K} from the clients in K.
15: For every r 2 K, let eg

r,accu := (exr � x)/⌘.
16: Apply the decoding algorithm RAGE (see Algo-

rithm 2) on {eg
r,accu, r 2 K}. Let

bgaccu := RAGE(eg
r,accu, r 2 K).

17: Update the global model x ⇧C(x�⌘bgaccu), where
⇧C denotes the projection operator onto the set C.

18: end while

deviate from their pre-specified programs: at synchroniza-
tion indices, instead of sending the true stochastic gradients
(or local models), corrupt clients may send adversarially
chosen vectors to the server.

2.1. Main Results

Let IT = {t1, t2, . . . , tk, . . .}, with t1 = 0, denote the set
of synchronization indices (where maxi�1 |ti+1� ti| = H)
when the server arbitrarily selects a subset of K  R clients
(denoted by K ✓ [R]) and sends the global model (denoted
by x) to them; each client r 2 K updates its local model xr

by taking SGD steps based on its local dataset until the next
synchronization time, when all clients in K send their local
models to the server. Note that some of these clients may
be corrupt and may send arbitrary vectors.2 Server employs

2Note that the only disruption that the corrupt clients can cause
in the training process is during the gradient aggregation at syn-
chronization indices by sending adversarially chosen vectors to
the server, and we give unlimited power to the adversary for that.

a decoding RAGE and update the global model x based
on that. We present our Byzantine-resilient SGD algorithm
with local iterations in Algorithm 1.

Our convergence results are for both strongly-convex and
non-convex smooth objectives, and we state them in the
following theorem. Since our main focus in this paper is
on combining Byzantine resilience with local iterations, to
avoid the technical complications arising due to the projec-
tion operator (in line 17), we prove our results assuming
that the parameter space C is equal to Rd. The analysis
involving the projection can be done using the techniques
in (Yin et al., 2018).
Theorem 1 (Mini-Batch Local Stochastic Gradient De-
scent). Let Kt denote the set of K clients that are active

at any given time t 2 [0 : T ] and ✏ denote the fraction

of corrupt clients in Kt. For a global objective function

F : Rd ! R, let Algorithm 1 generate a sequence of iter-

ates {xt

r
: t 2 [0 : T ], r 2 Kt} when running with a fixed

step-size ⌘ = 1
8HL

. Fix any constant ✏
0
> 0. If ✏  1

3 � ✏
0
,

then with probability 1� T

H
exp(� ✏

02(1�✏)K
16 ), the sequence

of average iterates {xt = 1
K

P
r2Kt

xt

r
: t 2 [0 : T ]}

satisfy the following convergence guarantees:

• Strongly-convex: If F is L-smooth for L � 0,
3

and

µ-strongly convex for µ > 0,
4

we get:

E
��xT � x⇤

��2 
⇣
1� µ

16HL

⌘T ��x0 � x⇤
��2 + 13

µ2
�.

• Non-convex: If F is L-smooth for L � 0, we get:

1

T

TX

t=0

E
��rF (xt)

��2 
⇥
E[F (x0)]� E[F (x⇤)]

⇤

T/16HL

+
9

2
�.

In both the bounds above, � =
�
3⌥ 2

H
+ 11H�

2

b
+

36H
2
�

with ⌥
2 = O

�
�
2
0(✏+ ✏

0)
�
, where �

2
0 =

25H2
�
2

b✏0

�
1 + 3d

2K

�
+28H2


2
, and expectation is taken over

the sampling of mini-batch stochastic gradients.

We prove the strongly-convex part of Theorem 1 in Ap-
pendix B and the non-convex part in Appendix C. In addi-
tion to other complications arising due to handling Byzan-
tine clients together with local iterations, our proof deviates
from the standard proofs for local SGD: We need to show
two recurrences, which arise because at synchronization
indices, server performs decoding to filter-out the corrupt
clients, while at other indices there is no decoding, as there
is no communication. The proof of the first recurrence is
significantly more involved than that of the other one.

Because of this and for the purpose of analysis, we can assume,
without loss of generality, that in between the synchronization
indices, the corrupt clients sample stochastic gradients and update
their local parameters honestly.

3
F (y)  F (x)+hrF (x),y�xi+ L

2 kx�yk2, 8x,y 2 Rd.
4
F (y) � F (x)+hrF (x),y�xi+ µ

2 kx�yk2, 8x,y 2 Rd.
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2.2. Important Remarks About Theorem 1

Failure probability. The failure probability of our algo-
rithm is at most T

H
exp(� ✏

02(1�✏)K
16 ), which though scales

linearly with T , also goes down exponentially with K. As a
result, in settings such as federated learning, where number
of clients could be large (e.g., in tens/hundreds of millions)
and server samples tens of thousands of them, we can get
a very small probability of error, even if run our algorithm
for a long time.5 Note that the error probability is due to
the stochastic sampling of gradients, and if we want a “zero”
probability of error, we can run full-batch GD (yielding an
error of � = O(H

2)); we analyze that in Appendix D
with a much simplified analysis than that of Theorem 1.

Analysis of the approximation error. In Theorem 1, the
approximation error � essentially consists of two types of
error terms: �1 = O

⇣
H�

2

b✏0

�
1 + 3d

2K

�
(✏+ ✏

0)
⌘

and �2 =

O(H
2), where �1 arises due to stochastic sampling of

gradients and �2 arises due to dissimilarity in the local
datasets. Observe that �1 decreases as we increase the batch
size b of stochastic gradients and becomes zero if we take
full-batch gradients (which implies � = 0), as is the case
in Theorem 4 in Appendix D. Note that even though the
variance (and gradient dissimilarity) of accumulation of H
gradients blows up by a factor of H2, still both �1 and �2

have a linear dependence on the number of local iterations
H . Observe that since we are working with heterogeneous
datasets, the presence of gradient dissimilarity bound 

2

(which captures the heterogeneity) in the approximation
error is inevitable, and will always show up when bounding
the deviation of the true “global” gradient from the decoded
one in the presence of Byzantine clients, even when H = 1.

Convergence rates. In the strongly-convex case, Algo-
rithm 1 approximately finds the optimal parameters x⇤

(within � error) with
�
1� µ

16HL

�T speed. Note that
�
1� µ

16HL

�T  exp�
µ

16L
T

H , which implies an exponen-
tially fast (in T/H) convergence rate. In the non-convex
case, Algorithm 1 reaches to a stationary point (within � er-
ror) with a speed of 1

T/H
. Note that the convergence rates of

vanilla SGD (i.e., without local iterations and in Byzantine-
free settings) are exponential (in T ) and 1

T
for strongly-

convex and non-convex objectives, respectively; whereas,
our convergence rates are affected by the number of local
iterations H . The reason for this is precisely because we

5As a concrete scenario, say the total number of devices is
R = 10 million and the server selects K = 10, 000 of them.
Then, even if we want robustness against one million malicious
clients, the total probability of failure of our algorithm would
still be less than T

H
e
�30, which even if T = 106 and H = 1,

would still be less than 10�7. Note that the bound on probability
of error in Theorem 1 is a worst-case bound, and in practice,
our algorithm succeeds with moderate parameter values; see, for
example, Section 4 for our experimental setup and the results.

need ⌘  1
8HL

to bound the drift in local parameters across
clients; see Lemma 2. Instead, if we had assumed a stronger
bounded gradient assumption (which trivially bound the het-
erogeneity, as explained on page 3), then Lemma 2 would
hold for a constant step-size (e.g., ⌘ = 1

2L would suffice),
which would lead to vanilla SGD like convergence rates.

3. Robust Accumulated Gradient Estimation
In this section, first we discuss the inadequacy of traditional
methods (such as coordinate-wise median and trimmed-
mean) for filtering corrupt gradients in our setting, and then
we motivate and describe the robust accumulated gradient
estimation (RAGE) procedure that we use in Algorithm 1
as a subroutine at every synchronization index. Then we
prove our new matrix concentration result that is required
to establish the performance guarantee of RAGE.

Inadequacy of median and trimmed-mean: Coordinate-
wise median (med) and trimmed-mean (trimmean) are the
two widely used robust estimation procedures that are easy
to describe and implement, and they have been employed
earlier for robust gradient aggregation in distributed opti-
mization; see, for example, (Yin et al., 2018; 2019, i.i.d. data
setting) and (Xie et al., 2019a, FL setting). Below we argue
that these methods give poor performance in FL settings
for learning high-dimensional models; we also validate this
claim through experiments in Section 4.
• For the simple task of robust mean estimation with inputs
coming a unit covariance distribution, med and trimmean
have an error that scales with the dimension as

p
d (Di-

akonikolas et al., 2019; Lai et al., 2016); when we apply
these methods in each SGD iteration, this error translates to
a large sub-optimality gap in the convergence rate.
• The adversary may corrupt samples in a way that they pre-
serve the norm of the original uncorrupted samples, but have
different adversarially chosen directions (these are called
directional attacks); since the performance of these methods
are based on the magnitude of the samples, they cannot
distinguish between the corrupt and uncorrupt samples.
• When taking coordinate-wise median, for estimating each
coordinate, we use only a single sample and discard the rest.
This is not a good idea in large-scale settings with non-i.i.d.
data, such as FL, where there are potentially millions of
clients, and if we somehow are able to use samples from all

(or most of the) honest clients, we could get a significant
reduction in variance of stochastic gradients. In med, we do
not take advantage of this variance reduction, which leads
to a performance degradation, which may be detrimental
for performance due to heterogeneity in data. The same rea-
son also applies to the robust gradient aggregation method
(KRUM) adopted in (Blanchard et al., 2017), which also
uses only one of the input gradients and discards the rest,
giving poor performance.
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Robust mean estimation: The above limitations of tradi-
tional methods motivate us to employ modern tools from
high-dimensional robust statistics (Diakonikolas & Kane,
2019; Diakonikolas et al., 2019; Lai et al., 2016). In particu-
lar, we use the polynomial-time outlier-filtering procedure
for high-dimensional robust mean estimation (RME) from
(Diakonikolas et al., 2019) for robust gradient aggregation in
Algorithm 1. For clear exposition of the ideas behind their
algorithm, we use a version of their algorithm as described
in Algorithm 2, which is from (Li, 2019). The crucial obser-
vation in these RME algorithms is that if the empirical mean
of the samples is far from their true mean, then the empirical
covariance matrix has high largest eigenvalue. So, the idea
is to iteratively filter out samples that have large projection
on the principal eigenvector of the empirical covariance
matrix, and keep on doing it until the largest eigenvalue of
the empirical covariance matrix becomes sufficiently small
(line 7). This is done via a soft-removal method, where
we assign weights (confidence score) to the samples and
down-weighting those that have large projection (line 10)
– in each iteration t, at least one sample (whose projection
⌧
(t)
i

is the maximum) gets 0 weight. In the end, take the
weighted average of the surviving samples.6

The RME algorithms overcome most of the above-
mentioned limitations of traditional methods, except for
that their guarantees are not directly applicable to our set-
ting. This is because the error guarantee of RME algorithms
are given in terms of concentration of the good samples
around their sample mean, which is easy to bound if good
samples come from the same distribution. Note that our
setup significantly deviates from this, where not only the
input samples (which are accumulated gradients) come from
different distributions (as clients have heterogeneous data),
but each of them is also a sum of H stochastic gradients (due
to local iterations). Since local iterations cause local param-
eters to drift from each other, bounding the concentration of
good samples requires bounding this drift.

To this end, we develop a novel matrix concentration in-
equality that first shows an existence of a large subset of un-
corrupted accumulated stochastic gradients and then bounds
their concentration around the sample mean; see (7) in The-
orem 2 below. As far as we know, this is the first matrix
concentration result in an FL setting.

First we setup the notation. Let Algorithm 1 generate a
sequence of iterates {xt

r
: t 2 [0 : T ], r 2 Kt} when

6Note that the outlier-filtering procedure described in Algo-
rithm 2 is intuitive and easy to understand. There are better algo-
rithms that are also more efficient and can achieve better guaran-
tees; see, for example, (Dong et al., 2019). All these algorithms
require the same bounded matrix concentration assumption that
we show in Theorem 2, thus making them applicable to use as a
subroutine in Algorithm 1 without requiring any modification in
our analysis.

Algorithm 2 Robust Accumulated Gradient Estimation
(RAGE) (Diakonikolas et al., 2019; Li, 2019)

1: Input: K vectors g1, g2, . . . , gK
2 Rd such

that there is a subset of them S ⇢ [K]
with |S| � 2K

3 having bounded covariance

�max

⇣
1
|S|

P
i2S

(g
i
� g

S
) (g

i
� g

S
)T

⌘
 �

2
0 , where

g
S
= 1

|S|

P
i2S

g
i
.

2: For any w 2 [0, 1]K with kwk1 > 0, define

µ(w) =
KX

i=1

wi

kwk1
g
i

⌃(w) =
KX

i=1

wi

kwk1
(g

i
� µ(w))(g

i
� µ(w))T

3: Let w(0) = [ 1
K
, . . . ,

1
K
] be a length K vector.

4: Let C � 11 be a universal constant.
5: Let ⌃(0) = ⌃(w(0)).
6: Let t = 0.
7: while �max(⌃(w(t))) > C�

2
0 do

8: Let v(t) be the principal eigenvector of ⌃(w(t)).
9: For i 2 [K], define ⌧

(t)
i

=
⌦
v(t)

, g
i
� µ(w(t))

↵2
.

10: For i 2 [K], compute w
(t+1)
i

=

✓
1 � ⌧

(t)
i

⌧
(t)
max

◆
w

(t)
i

,

where ⌧
(t)
max = max

i:w(t)
i

>0
⌧
(t)
i

.
11: t = t+ 1
12: end while
13: return bg =

P
K

i=1
w

(t)
i

kw(t)k1
g
i
.

running with a fixed step-size ⌘  1
8HL

, where Kt denotes
the set of K clients that are active at time t 2 [0 : T ]. Take
any two consecutive synchronization indices tk, tk+1 2 IT .
Note that |tk+1 � tk|  H . For an honest client r 2 Ktk

,
let gtk,tk+1

r,accu :=
P

tk+1�1
t=tk

g
r
(xt

r
) denote the sum of local

mini-batch stochastic gradients sampled by client r between
time tk and tk+1, where g

r
(xt

r
) 2U F⌦b

r
(xt

r
) satisfies (4),

(5). At iteration tk+1, every honest client r 2 Ktk
reports its

local model xtk+1
r to the server, from which server computes

g
tk,tk+1
r,accu (see line 15 of Algorithm 1), whereas, the corrupt

clients may report arbitrary and adversarially chosen vectors
in Rd. Server does not know the identities of the corrupt
clients, and its goal is to produce an estimate bgtk,tk+1

accu of the
average accumulated gradients from honest clients.

Theorem 2 (Matrix concentration). Suppose an ✏ fraction

of K clients that communicate with the server are corrupt.

In the setting described above, suppose we are given K 
R accumulated gradients egtk,tk+1

r,accu , r 2 Ktk
in Rd

, where

egtk,tk+1
r,accu = g

tk,tk+1
r,accu if r’th client is honest, otherwise can

be arbitrary. For any ✏
0
> 0, if (✏ + ✏

0)  1
3 , then with

probability 1� exp(� ✏
02(1�✏)K

16 ), there exists a subset S ✓
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Ktk
of uncorrupted gradients of size (1� (✏+ ✏

0))K s.t.

�max

⇣ 1

|S|
X

i2S

(g
i
� g

S
) (g

i
� g

S
)T

⌘

 25H2
�
2

b✏0

⇣
1 +

3d

2K

⌘
+ 28H2


2
, (7)

where, for i 2 S, g
i
= g

tk,tk+1

i,accu , g
S
= 1

|S|

P
i2S

g
tk,tk+1

i,accu ,

and �max denotes the largest eigenvalue.

Theorem 2 establishes the concentration results required for
the RME algorithm (described in Algorithm 2) that we em-
ploy in Algorithm 1. This RME algorithm takes a collection
of vectors as input, out of which an unknown large subset
(at least a 2

3 -fraction) is promised to be well-concentrated
around its sample mean, and outputs an estimate of the
sample mean. The formal guarantee is given as follows:
Theorem 3 (Outlier-filtering algorithm (Diakonikolas et al.,
2019)). Under the same setting and notation of Theorem 2,

we can find an estimate bg of g
S

in polynomial-time with

probability 1, such that kbg � g
S
k  O

�
�0

p
✏+ ✏0

�
, where

�
2
0 = 25H2

�
2

b✏0

�
1 + 3d

2K

�
+ 28H2


2
.

Note that, instead of the RME algorithm, if we use med or
trimmean, we would get an extra multiplicative factor ofp
d in the upper-bound on kbg � g

S
k above.

3.1. Proof-sketch of Theorem 2 – Matrix Concentration

In order to prove Theorem 2, we use the following result
from (Data & Diggavi, 2020a, Lemma 1):
Lemma 1 ((Data & Diggavi, 2020a, Lemma 1)). Suppose

there are m independent distributions p1, p2, . . . , pm in

Rd
such that Ey⇠pi

[y] = µ
i
, i 2 [m] and each pi has

a bounded variance in all directions, i.e., Ey⇠pi
[hy �

µ
i
,vi2]  �

2
pi
, 8v 2 Rd

, kvk = 1. Take any ✏
0
>

0. Then, given m independent samples y1,y2, . . . ,ym
,

where y
i
⇠ pi, with probability 1 � exp(�✏02m/16),

there is a subset S of (1 � ✏
0)m points such that

�max

�
1
|S|

P
i2S

(y
i
� µ

i
) (y

i
� µ

i
)T

�
 4�2

pmax
✏0

�
1 +

d

(1�✏0)m

�
, where �

2
pmax

= maxi2[m] �
2
pi

.

Lemma 1 shows that if we have m independent distributions
each having bounded variance, and we take one sample from
each of them, then there exists a large subset of these sam-
ples that has bounded variance as well. The important thing
to note here is that the m samples come from different distri-
butions, which makes it distinct from existing results, such
as (Charikar et al., 2017, Proposition B.1), which shows
concentration of i.i.d. samples.

Now we give a proof-sketch of Theorem 2 with the help of
Lemma 1. A complete proof is provided in Appendix A.

Let tk, tk+1 2 IT be any two consecutive synchronization
indices. For i 2 Ktk

corresponding to an honest client, let

Y
tk

i
, Y

tk+1
i

, . . . , Y
tk+1�1
i

be a sequence of (tk+1 � tk) 
H (dependent) random variables, where for any t 2 [tk :
tk+1 � 1], the random variable Y

t

i
is distributed as

Y
t

i
⇠ Unif

⇣
F⌦b

i

�
xt

i

�
xtk

i
, Y

tk

i
, . . . , Y

t�1
i

��⌘
. (8)

Here, Y t

i
corresponds to the mini-batch stochastic gradi-

ent sampled from the set F⌦b

i

�
xt

i

�
xtk

i
, Y

tk

i
, . . . , Y

t�1
i

��
,

which itself depends on the local parameters xtk

i
(which is

a deterministic quantity) at the last synchronization index
and the past realizations of Y tk

i
, . . . , Y

t�1
i

. This is because
the evolution of local parameters xt

i
depends on xtk

i
and the

choice of gradients in between time indices tk and t � 1.
Now define Yi :=

P
tk+1�1
t=tk

Y
t

i
. Let pi be the distribution

of Yi, which we will take when using Lemma 1.

It is not hard to show that for any honest client i 2 Ktk
,

we have EkYi � E[Yi]k2  H
2
�
2

b
. It is also easy to see

that the hypothesis of Lemma 1 is satisfied with µ
i
=

E[Yi],�2
pi

= H
2
�
2

b
for all honest clients i 2 Ktk

, i.e., we
have Ey

i
⇠pi

[hy
i
�E[y

i
],vi2]  H

2
�
2

b
, 8v 2 Rd

, kvk = 1.

We are given K different accumulated gradients (each is a
summation of H gradients), out of which at least (1� ✏)K
are according to the correct distribution. By considering
only the uncorrupted gradients (i.e., taking m = (1� ✏)K),
we have from Lemma 1 that there exists a subset S ✓ Ktk

of size (1 � ✏
0)(1 � ✏)K � (1 � (✏ + ✏

0))K � 2K
3 that

satisfies (in the following, ey
i
= y

i
� E[y

i
])

�max

⇣ 1

|S|
X

i2S

ey
i
eyT

i

⌘
 b�2

0 :=
4H2

�
2

b✏0

⇣
1 +

3d

2K

⌘
. (9)

Note that (9) bounds the deviation of the points in S from
their respective means E[y

i
]. However, in (7), we need to

bound the deviation of the points in S from their sample
mean 1

|S|

P
i2S

y
i
. As it turns out, due to heterogeneity

in data and our use of local iterations, this extension is
non-trivial and requires some technical work, given next.

From the alternate definition of the largest eigenvalue of
symmetric matrices A 2 Rd⇥d, we have �max(A) =
supv2Rd,kvk=1 v

TAv. With this, (9) is equivalent to

sup
v2Rd:kvk=1

1

|S|
X

i2S

hy
i
� E[y

i
],vi2  b�2

0 . (10)

Define y
S
:= 1

|S|

P
i2S

y
i

to be the sample mean of points
in S. Take an arbitrary unit vector v 2 Rd. Using some
algebraic manipulations provided in Appendix A, we get

1

|S|
X

i2S

hy
i
� y

S
,vi2  6b�2

0+

4

|S|
X

i2S

1

|S|
X

j2S

��E[y
j
]� E[y

i
]
��2 (11)
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Using the gradient dissimilarity bound and the L-
smoothness of F , we can show that for honest
clients r, s 2 Ktk

, we have kE[y
r
]� E[y

s
]k2 

H
P

tk+1�1
t=tk

�
62 + 3L2Ekxt

r
� xt

s
k2
�
. Using this bound

in (11) together with some algebraic manipulations, we get

1

|S|
X

i2S

hy
i
� y

S
,vi2  6b�2

0 + 24H2

2

+
12HL

2

|S|
X

i2S

1

|S|
X

j2S

tk+1�1X

t=tk

Ekxt

r
� xt

s
k2 (12)

Now we bound the last term of (12), which is the drift in
local parameters at different clients in between any two
synchronization indices.

Lemma 2. If ⌘  1
8HL

, we have

P
tk+1�1
t=tk

E kxt

r
� xt

s
k2  7H3

⌘
2
⇣

�
2

b
+ 32

⌘
.

Substituting this in (12) together with some algebraic ma-
nipulations provided in Appendix A, we get

1

|S|
X

i2S

hy
i
� y

S
,vi2  25H2

�
2

b✏0

⇣
1 +

3d

2K

⌘
+ 28H2


2
.

Note that this bound holds for all unit vectors v 2 Rd. Now
substituting g

tk,tk+1

i,accu = y
i
, g

tk,tk+1

S,accu = y
S

and using the
alternate definition of largest eigenvalue proves Theorem 2.

4. Experiments
In this section, we present preliminary numerical results on
a non-convex objective. Additional implementation details
can be found in Appendix F in the supplementary material.

Setup: We train a single layer neural network for image
classification on the MNIST handwritten digit (from 0-9)
dataset. The hidden layer has 25 nodes with ReLU acti-
vation function and the output has softmax function. The
dimension of the model parameter vector is 19, 885.7 All
clients compute stochastic gradients on a batch-size of 128
in each iteration and communicate the local parameter vec-
tors with the server after taking H = 7 local iterations.
For all the defense mechanisms, we start with a step-size
⌘ = 0.08 and decrease its learning rate by a factor of 0.96
when the difference in the corresponding test accuracies in
the last 2 consecutive epochs is less than 0.001.

Heterogeneous datasets: The MNIST dataset has 60, 000
training images (with 6000 images of each label) and
10, 000 test images (each having 28 ⇥ 28 = 784 pixels),

7784⇥ 25 = 19, 600 weights between the input and the first
layer, 25 bias terms (one for each node in the hidden layer), 25⇥
10 = 250 weights between the first layer and the output layer, and
10 bias terms (one for each node in the output layer).

and is distributed among the 200 clients in the following
heterogeneous manner: Each client takes a random permuta-
tion of the probability vector [0.8, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0].
Suppose it obtains a vector p such that pi = 0.8, pj =
0.1, pk = 0.1 for some distinct i, j, k 2 [0 : 9] and pl = 0
for the rest of the indices, then it selects uniformly at random

800, 100, 100 training images with label i, j, k, respectively.

Adversarial attacks: We have 12.5% adversarial clients,
i.e., 25 out of 200 clients are corrupt, and the corrupt set
of clients may change in every iteration. We implement
six adversarial attacks: (i) the ‘random gradient attack’,
where local gradients at clients are replaced by indepen-
dent Gaussian random vectors having the same norm8 as
the corresponding gradients; (ii) the ‘reverse average gradi-
ent attack’, where corrupt clients send -ve of their average
local gradients; (iii) the ‘gradient shift attack’, where lo-
cal gradients of corrupt clients are shifted by a scaled (by
factor of 50) Gaussian random vector (same for all); (iv)

the ‘all ones attack’, where gradients of the corrupt clients
are replaced by the all ones vector; (v) the ‘Baruch attack’,
which was designed in (Baruch et al., 2019) specifically
for coordinate-wise trimmed mean (trimmean) (Yin et al.,
2018), Krum (Blanchard et al., 2017), and Bulyan (Mhamdi
et al., 2018) defenses; and (vi) the ‘reverse scaled average
gradient attack’, where corrupt clients compute the -ve of
their average local gradients, scale it by the factor of 50, and
then send it.

Performance: We train our neural network under all
the above-described adversarial attacks, and demonstrate
in Figure 1 the performance of our method (red color)
against four other methods for robust gradient aggregation,
namely, coordinate-wise trimmed-mean (black color) and
coordinate-wise median (green color), which were used in
(Xie et al., 2019a; Yin et al., 2018; 2019), Krum (magenta
color), which was proposed in (Blanchard et al., 2017), and
Bulyan (cyan color), which was proposed in (Mhamdi et al.,
2018). For reference, we also plot (in blue color) the per-
formance of Algorithm 1 with the same setup as above but
without adversaries and with no decoding. For each attack,
we plot two curves, one for training loss vs. number of
epochs and the other for test accuracy vs. number of epochs.

It can be seen from the comparison in Figure 1 that our
method consistently outperforms all these methods in all the
attacks that we have implemented.9 In particular, for attacks

8Note that changing the direction while keeping the norm same
is among the worst attacks as the corrupt gradients cannot be
filtered out just based on their norms.

9We found out that the Bulyan defense mechanism is signif-
icantly slower than all other mechanisms. Due to this, we only
implemented this for the Baruch-attack, which was specifically
designed against Krum/Bulyan algorithms. Since a basic building
block of Bulyan is Krum, and Krum performs the worst among all
the mechanisms that we implemented, we do not expect Bulyan
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(a) Training loss vs. no. of epochs under
the ‘random gradient attack’

(b) Test accuracy vs. no. of epochs under
the ‘random gradient attack’

(c) Training loss vs. no. of epochs under
the ‘reverse average gradient attack’

(d) Test accuracy vs. no. of epochs under
the ‘reverse average gradient attack’

(e) Training loss vs. no. of epochs under
the ‘gradient shift attack’

(f) Test accuracy vs. no. of epochs under
the ‘gradient shift attack’

(g) Training loss vs. no. of epochs under
the ‘all ones attack’

(h) Test accuracy vs. no. of epochs under
the ‘all ones attack’

(i) Training loss vs. no. of epochs under
the ‘Baruch attack’

(j) Test accuracy vs. no. of epochs under
the ‘Baruch attack’

(k) Training loss vs. no. of epochs under
‘reverse scaled average gradient attack’

(l) Test accuracy vs. no. of epochs under
‘reverse scaled average gradient attack’

Figure 1. We compare the performance of our method (red) against four methods for robust gradient aggregation, namely, coordinate-wise
trimmed-mean (black), coordinate-wise median (green), Krum (magenta), and Bulyan (cyan) under several adversarial attacks, and plot
training loss and test accuracy against number of epochs. The plot in blue corresponds to running Algorithm 1 with no adversaries and no
decoding. In the legends, 7L denotes that we are taking H = 7 local iterations. See also Footnotes 9, 10.

(i), (iii), (iv), (vi), our method (with adversaries) achieves
similar performance for both training loss and test accuracy
as that of running SGD with local iterations but without any
adversaries and defense mechanism at the server; and for
attacks (ii), (v), the performance difference (test accuracy)
is around 0.1 at epoch 40, which is still significantly better
than all other methods.10 This conforms to the inadequacy
of using these methods in our setting, as described in Sec-
tion 3. Note that the experiments presented in (Xie et al.,
2019a; Yin et al., 2018) only implemented a benign ‘label-
flipping’ attack, which is a data poisoning attack. This is
not a dynamic attack as, unlike gradient attacks, it does not
adapt to the learning process over iterations. In contrast, in

to perform significantly better than Krum in other attacks as well –
note that both Krum and Bulyan are the worst performing defense
mechanisms against the Baruch-attack.

10We plot the Krum performance in the training loss vs. number
of epochs figures only for the attacks (ii), (v); because in all other
attacks, the Krum training loss became very high (above 100)
even before epoch 40 and would have prevented observing other
methods’ performance if we had plotted it.

all our attacks, corrupt clients send adversarial gradients in
every iteration, making them significantly more malicious
than just flipping the labels. As we have mentioned in the
related work (on page 2), and we want to emphasize again,
that though (Xie et al., 2019a) also studied the same prob-
lem as ours, but employed ‘coordinate-wise trimmed mean’
for robust gradient aggregation, their convergence bound,
in our opinion, are vacuous, as the sub-optimality gap in
their bounds always scales linearly with the diameter of
the parameter space. As far as we know, ours is the first
theoretical result that combines Byzantine-resilience with
local iterations for high-dimensional distributed training on
heterogeneous datasets with good empirical performance.
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