Catformer: Designing Stable Transformers via Sensitivity Analysis

A. Related Work

Activation and Gradient Variance Much previous work that has addressed the training stability of deep neural networks
has focused on controlling the magnitude of intermediate computations in the forward and backward pass—in other words,
the activation and gradient variance. The problem of controlling gradient variance is also called the “exploding/vanishing
gradient problem” and has been studied in many contexts.

Theoretically, several works have characterized information propagation for various settings. Poole et al. (2016); Raghu
et al. (2017); Schoenholz et al. (2016) use various notions of expressivity to characterize the dynamics of deep, wide,
randomly initialized feedforward networks with various activation functions, as a function of initialization statistics and
other hyperparameters.

Pennington et al. (2017; 2018) focus more specifically on a notion of “dynamical isometry”, which characterizes a worst-case
setting of requiring information propagation for any input—essentially requiring the model as a whole to be well-conditioned,
i.e. have singular values close to 1.

This mean field theory analysis has been extended to randomly initialized networks of many different architectures
(including CNNs, RNNs, residual networks, etc.), characterizing when they exhibit stable forward and backward dynamics
and providing recommendations for initializations (Yang & Schoenholz, 2017; Chen et al., 2018a; Xiao et al., 2018; Yang
etal., 2019).

A parallel line of work (Hanin, 2018; Hanin & Rolnick, 2018) treat the case of deep ReLU nets (either feedforward or
residual) in more depth and precisely analyze the finite-width setting, characterizing the initialization and network widths
necessary to avoid the exploding/vanishing gradient problem.

Empirical Solutions in Deep Neural Networks Empirically, these theoretical insights have been realized in several ways.
First, many initialization schemes have been proposed to control activation and gradient variances at initialization. These
include simple “local” heuristics such as Xavier and He initialization (Glorot & Bengio, 2010; He et al., 2015b) for single
weight matrices in isolation, as well as a range of more sophisticated “global” recommendations for an entire network such
as those recommended above (Hanin & Rolnick, 2018; Xiao et al., 2018) and more (Zhang et al., 2019).

Second, imposing constraints for worst-case propagation, namely orthogonality on the weight matrices (even beyond
initialization), has been explored extensively in both the RNN setting (Arjovsky et al., 2016) as well as for deep networks,
particularly in settings sensitive to instability such as GANs (Miyato et al., 2018).

Finally, many architectural solutions have been proposed such as the classical highway and residual connections (Srivastava
et al., 2015; He et al., 2015a; 2016). Architectural solutions to the exploding/vanishing gradient problem have been
extensively studied in the RNN setting due to very long potential computation graphs, and some of the most popular
solutions (Hochreiter & Schmidhuber, 1997; Chung et al., 2014) have been adopted for the deep network case, particularly
for very unstable models such as Transformers (Parisotto et al., 2020; Xu et al., 2020). Our proposed architecture for
Transformers is closely related to the DenseNet convolutional network (Huang et al., 2017), which is usually viewed
as a distinct architecture involving extra skip connections, but can also be seen as an instance of a general architecture
framework (Section 2.1) using concatenation operations. Although initially proposed as a heuristic to induce “strengthen
feature propagation and encourage feature reuse”, our insights shed additional light on why these models may have been so
effective.

Amplification effect A drawback of the previous approaches is that they analyze statistics locally per layer, instead of the
output of the entire model as a whole. Liu et al. (2020) consider the question of how a model’s output will change after
small parameter perturbations, which they call an “amplification effect”. They introduce the following quantity:

Var [F(zg, W) — F(zo, W*)] (6)

where F is a model depending on an input x and parameter W, and W* is a perturbed parameter. They argue that this
quantity scales differently in depth for a pre-norm vs. post-norm placement, which explains the stability of pre-norm
transformers over post-norm transformers.

This notion of amplification (Liu et al., 2020) can be seen as an informal and special case of our sensitivity framework. In
this sense, sensitivity can be viewed as an operator S taking in a function (e.g. a network F) and distribution over its inputs
(e.g. parameters W), and returning a scalar that measures the amount of “amplification” the network has.
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We contrast the technical differences in the definitions in more detail below. Equation (6) is not formally defined in several
ways: First, the Var function is not defined, and it is not obvious what it means on a vector input since (6) is supposed to
describe a scalar. Second, the source of randomness is not clear — even if W is randomly initialized, what is the distribution
for which results hold? Finally and most importantly, what is the distribution of the noise W* — W and how is it normalized
appropriately (otherwise, Eq. (6) depends on the noise magnitude)?

Sensitivity (Definition 1) formalizes these issues. First, the variance term more accurately measures the variance of scalar
activations, or the expected squared length of the whole activation vector (normalized appropriately). Second, sensitivity
must be a function of the initialization distribution as well as the function, as in Definition 1. Making this dependence
explicit allows statements such as Theorem 2 which depends on the initialization distribution. The formal derivations of
even the special cases considered in Liu et al. (2020) also require appropriate assumptions on the initialization distribution
(Appendix C).

Finally, Definition 1 says that the distribution for the perturbation must be proportional to the initialization distribution.
We remark that the obvious alternative, to have the perturbation be i.i.d. (e.g., N/ (0, 1) for each parameter), has several
drawbacks and our main results (Propositions 2 to 4 and Theorem 1) would not hold. For example, it can be shown from
a modification of Proposition 5 that Eq. (6) simply reduces to ||V F||?, so that “amplification” is essentially just the
gradient norm. Additionally, this alternative loses the desired composition and invariance properties. As two examples:
(1) for a feedforward linear network, the sensitivity is simply the depth, but equation (6) is the sum of hidden layer sizes,
which depends on architecture details (ii) the modified sensitivity depends heavily on the exact initialization distribution
(since the perturbation is absolutely instead of relative to the distribution), and for example loses the invariance property in
Proposition 3.

B. Sensitivity Proofs

This section proves all results from Section 3 of the main body. For completeness, we restate and prove all results here.

Definition 2 (Sensitivity). Define V,,[f(6)] to be the second moment %Eg..,¢)[||f(0)||3] normalized by the dimension d of
f(0).

Let f(u,v) be a d-dimensional function of some (vector) inputs and p(u, v) be a distribution over these inputs such that
each (scalar) input is independent.

The sensitivity of f with respect to w and p, denoted S,, ,,[f], is

1 1 1
77hm7]Euv~ u,v u+5ﬁ7v — U, V 2
dV,[f(u,v)] 6-0 §2 ( )ﬂ)NpZZ’EL)) ) [Hf( ) — f( )HQ}

Proposition 5 (Gradient characterization).

Supf (u,0)] = Vp[f(u, v)] 7 va(uk)vp(vukf) (7

where the sum is over individual (scalar) parameters 0, € 6.
Proof. Let f(u,v),u,v have dimensions m, n, p respectively. We ignore the factor of % appearing in Definition 2, since
they cancel in equation (7).

We begin by writing out the expression from the definition of sensitivity:

Suplf ()] - Vil f (u,0)] = lim —

lim 5B )p(u0) [ (u+08,0) = flu,0)[5]

arep(u)
Moving the limit inside, the term inside the expectation becomes a directional derivative
2
2

flu+doa,v) — f(u,v)
)

= E(uv)~op(ue) = Euw,a [lim

d~p(u) 5—0

= Eu,v,ﬁ H(vuf) : aH2
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Here we denote V,, f = 8—5 to be the Jacobian (dimension m x n) of the partial derivative of f with respect to its first
argument, evaluated at u, v. Slmplfying further,

=Eu,v,a [07 (Vu )" (Vuf)i]

=E, v atr [a" <v f )T (Vuf)al

=Eyv,atr (Vo f)T (Vo f)aa"]

=trEy 0 [(Vu f Vuf)ua']

=trEy, [(Vuf)" (Vuf)] Eq [ad"]

Because u is drawn from the same distribution as u and by the assumption that the distribution is independent over every
parameter, E; [ﬂﬂT] is diagonal, and this simplifies to the sum

Z Eu[ui]Eu,v [||Vukf||2}

UL €U

UpEU

To sanity check, here uy, has dimension 1 and V,,, f has dimension m.

O
The above proof used the following more general trick:
Lemma 1. If f and g are independent w.r.t. p(-), then V[f* g] = tr (E[f fT|E[gg”]) .
Proof.
V[fTgl =Elf gll
=Etr (799" /)
=Etr (ff"g9")
= tr (E[ff"]E[gg"])
O

Proposition 6 (Composition rules). Sensitivity satisfies several local composition rules, including:

o Identity S[u] =

* Sum Given u ~ p, suppose V f (u) and V g(u) are uncorrelated. Then S[f(u) + g(u)] = wa}’_{_g] + Sgw}’j_g].

e Product For disjoint sets of parameters u,v, if f(u) is uncorrelated and constant variance given S[f(u)g(v)] =

S[f(w)] + Sg(v)].
¢ Chain rule S[f o g] = S[f]S[g].

Proof. We prove each composition rule in turn.

* Identity First, note that V,[u] = E|u||3 = > u, Y[ug]. Second, note that for any uy, V., u is a basis vector (in
particular, has norm 1). By Proposition 5,

Vplu] - Suplu] = ZV[uk] V[V, ul

=V, [u].
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Sum By Proposition 1 and the assumption that V f, Vg are uncorrelated,

Vp[f(U,U) +g(u,v)] 'Su,p[f(u U +g U, U ZV Uk Vukf-i—Vukg]

= Vplf ()] - Suplf(u, v)] + Vplg(w)] - Suplg(u, v)]
Product We simplify using Proposition 5.

ZVUk Y (£9)] +ZVvk Voo ()] (8)

Let us consider just the first term for now. This can be simplified since g is a not a function of u. By the assumption
that g is uncorrelated and constant variance, E[gg?] = oI for some o.

;V[uk_}. Vo, (£9)] ZVuk (Vu £
k S V]t (BI(Var £ (Vo )] Elga)
= 5" Viug] - tr (E[(Va, /)T (Vo )] - 021)
=3 Vi - %t B[V /)T (Var £)])
=Y " V[w] - 0*V[Vy, f]

Also by the previous Lemma,

Vifgl = tr (E[f" fIE[gg"])
= o%tr (E )
— a2V[f].

Therefore

S Vi ‘EVa, (f9)] X, Viu] - 02V[V,, f
Vi7g] B N
i
V(]

= S[f]-

Note that this is the first term of (8) after dividing both sides by V[fg]. An analogous calculation can be made for the
second term by symmetry. Adding these terms up, we have

S[fg] = S[f] + S[g]

as desired.

Chain rule We show a simplified case for clarity. Write Proposition 1 in vectorized form as V[f] - S[f] = V[u|V[V,f].
Applying this to f o g,
VIf(g()] - S[f(g(w)] = VIu] - V[Vu(f(g(u)))]
= V[u] - V(V)(g(w)) - (Vg)(u)
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_ Vig)]V(V£)(g(w)) - V[u)(Vg)(u)
Vig(u)]
S[f] - VIfIS[g]Vg]
Vlg]

Dividing through gives S[f o g] = S[f] - S[g]-

Proposition 7 (Invariance rules). Sensitivity is invariant to the following transformations:

* Normalization If y = norm(z) then Sy = S.

* Reparameterization Consider the function g(6') = f(c8') with distribution q(8') = p(£0'). Then Spr 49(0') =

Se,pf(e)'

Proof. The invariance rules follow straightforwardly from the definition and alternate characterization.
* Normalization Note that norm is dividing by a constant, which scales the left and right sides of Definition 2 equally
through the variance terms, so does not change the sensitivity.

* Reparameterization We use Proposition 5, and show that each individual term in the sum is invariant to reparameteri-
zation. Let z = cy, define g(y) = f(z) = f(cy) so these functions are equal. Then f'(z) = f(cy) = Lcf'(cy) =
19/'(y) and 22(V f(2))? = y2(Vg(y))?, as desired.

O

Proposition 8 (Layer decomposition). Suppose that x ® y = a;x + B,y is any weighted residual function where o, B; are
independent of x, y (but can depend on depth i). Also suppose that the module y; = F;(Z;,0;) satisfies Sz, F; = 1. Then

S[a;] = ij, pi = wg[Fi] )

Lq

Proof. By the definition of Z; and normalization, &; = T By the assumption about the combination &, we can write
T

N N Bi
T; = YTi—1 + —F——=V; 10
Vi1 Vel Y (10)

for some 7.
Take the variance of both sides of (10) to get

V(2] = ¥*V[E;_1] + 3 Viyi]

V]
9 2
1= —Vy].
Y Vi [:]
Take the sensitivity of both sides of (10) to get
2 Vi
N T P Ve ¥ Wil o

2

— 78léia] + VISl
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B; i B
= (1= 377Vl Sléscal + VIl
5

Viz]

= S[&_1] + Viyi] (Slyil = S[&i])

Finally, by the chain rule for sensitivities we have
So,,0-:Ys] = Se,,0-;[Fi(Z:,0:)] = (S, F3) - Se_,; 2 + (S, Fi) - S, 0;.
By the assumption that Sz, F; = 1, we have S[y;] — S[#;_1] = SF;. Therefore

B?V[yi]
Vlzi]

S[#:] = S[#;-1] + S[Fi],

which immediately gives the result. O

Theorem 2. For any architecture that preserves activation variance through the depth of the network, the gradient variance
at depth i is proportional to Sx; — Sx;_1.

Proof. We start from Proposition 5 and decompose the sum into parameters uy, before layer ¢ and vy, in layer k.

Zvuk Vukxl ZV Vm (El]

Let us examine the first term. We can expand the fraction as

V[vuk‘rl] V[kaxiflei71xi]

Viz;] V]
- Ve
=TV ke
Therefore
S[zi] = Sa,_, [ ZV - 5[7;11%1] Uy ZV U] [VV[Z;TZ]
~ S, lailSlaia] + ;vm]%ﬁ T” |
or WLOG let S,, ,[z;] = 1 (e.g., true for a linear or more generally homogenous layer F;). We can also consider the

normalized ;. This yields

S[z;] — S[zi—1] ZVvk [V, &)

Uk

Finally, note that for an activation variance-preserving network, the variance V[vy] is inversely proportional to the fan-in. In
other words, it is inversely proportional to the number of such parameters. Thus the ", and V[uv] cancel, and we are left
with

Vg

V[Vvki‘l] 0.8 S[l‘l] - S[J?i_l].
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C. Sensitivity Derivations
For most of these derivations, we will apply Proposition 8. We make the following assumptions without loss of generality

about the modules:

* the modules satisfy S[F;] = 1.
* the modules are activation variance preserving, i.e. V[y;] = V[#;_1] where y; = F;(&;_1) (equation (2)).
* the modules decorrelate the outputs from inputs, i.e. E[#;_1 o y;] = 0 (where o denotes elementwise product).

are normalized appropriately. For example, these assumptions are satisfied by a linear module. Finally, WLOG also assume
the inputs to the network ¢ are normalized so that V]z,] = 1.

Note that the second assumption immediately implies that V[y;] = 1. By Proposition 8, to calculate the sensitivities it
suffices to calculate

o BV il
pi = Viz]

Therefore the main quantity to track will be the variances of the activations.

C.1. Feedforward

By the assumption that modules are variance preserving, we have V[y;] = V[#;_1] = 1. Since  ® y = y, we have x; = y;
so V[z;] = 1. Therefore p; = 1 and S[Z;] = N.

C.2. Residual

Pre-norm This was analyzed in Section 3.4. The main point is that V[z;] =i+ 1 so p; = z%

Post-norm  The residual connection in this architecture is z; = &;_1 + y;. By the decorrelating assumption, V[z;] = 2 =
2V[y;]. Finally 8; = 1, so we get p; = 1 and S[&;] = &.

No-norm This network is not technically defined in Eqs. (1) to (3), but we analyze it for completeness. This is instead
defined by

yi = Fi(wi_1)

Tp =T+ Y

(which can be viewed as Eqs. (1) to (3), but replacing norm with a no-op). Since F; is variance preserving, we have
Vy; = Vx; 1.
By the decorrelating assumption, V{z;] = 2V]y;]. Finally 5; = 1, so we get p; = % and S[%;] = %

Note that the main difference between the post-norm residual and no-norm residual is that in the former, the variance of x;
is controlled, while in the latter, the variance doubles every layer. However, their sensitivities are the same.

C.3. Weighted Residual

We consider a more general weighted residual of the form x @ y = ax + Sy for constants «, 3.
Pre-norm We have
Vizi] = @®Vizi1] + B°V[y;]

so that V[z;] — % Therefore p; — (1 — a?) and S[#;] = (1 — a?) - N
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Post-norm We have
Vizi] = &®V[2;_1] + 8°V]y;]
_ a2 4 62~

2 R 2

Therefore p; = 375> and S[Z;] = (1267-5-52 -N.

GTrXL The Gated TransformerXL (GTrXL) (Parisotto et al., 2020) replaces the residual by a GRU-style gate. This is
similar to the weighted residual, but where £ is a function of z, y. This makes it difficult to analyze (for example, the two
parts of the sum are not decorrelated so the variance is difficult to track). However, we can get a sense by approximating this
gate with a constant.

For example, Parisotto et al. (2020) increase a bias term inside the gate, which has the effect of setting E[a] = o(2) and
E[S] = o(—2) where o is the sigmoid function. They also use the pre-norm placement. Thus we would expect the sensitivity
to be about (1 — 0(2)?) - N ~ 0.22N.

C.4. RescaleNet
RescaleNet (Shao et al., 2020) defines x @ y = 4/ %x + \/gy This was in fact chosen to be variance-preserving, so that

Viw] = ! _l 1V[i“i—1] + %V[yi] =1

Since 3; = \/; we have p; = % and S[#;] = Hy.
C.5. AdMin
AdMin (Liu et al., 2020) defines « & y = w;x + y where w; is a learnable scalar initialized to V/i. We have

and B; = 1,50 p; = ZJ%I and S[#;] = Hyy1 — 1.

C.6. Catformer

The Catformer does not use an additive combination function, so Proposition 8 does not apply. However, we can still use the
composition rules.
‘We make two observations.

Proposition 9 (Concatenation rule). Let z,y have dimensions m,n respectively. Then

V(f] V(g
VIf]+Vig] VIf]+Vig]

S[concatfz, y]] = S[f] +Slg]

Proof. For shorthand let z = concat[z, y|. Using Proposition 5, we have

S[z] - VIz] = ) V(up)V(Vu,2)

By definition of V (the squared norm of this vector), by definition of concatenation V,,, z = V,,, [z] + V,, [y]. Similarly,
V[z] = V[z] + V[y|. Expanding and using Proposition 5 again,

S[z] - V(2] = ZV(“k)V(Vukz)
=> V() [V(Vu,2) + V(Vu, )]

= S[z] - V[z] + S[y] - V[y.
Dividing by V|[z] = V[z] + V[y] gives the result. O
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C.7. Empirical Confirmation

To confirm the theory, we consider several methods (Table 1) and calculate their sensitivities empirically. This is done by
randomly initializing a network, picking a perturbation with a small § and calculating via Definition 1. Results line up
closely with the theoretical calculations, shown in Fig. 3.
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Figure 3. Empirical sensitivities: S[Z;] vs. ¢ for ¢ up to N = 32. Error bars are over the randomness in the initialization and the

perturbation.

D. Method Details

D.1. Architecture details: controlling parameters

In this section, we describe the method used to control the number of parameters of the Catformer.

We use the following terminology:

d : embedding dimension (output dimension of each module F;)

e : expansion factor for FF inner layer relative to attention inner layer (n)
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a : expansion factor for attn inner layer
D : total depth of network

i : current layer number (indexed from 0,..., D — 1)

One “layer” of a Transformer block is described as a MHA module and then a FF module. Thus, layer ¢ has initial dimension
d + 2id (after concatenation). The MHA module brings it to dimension d + (2¢ 4+ 1)d, and the FF module brings it to
d+2(i+1)d

* Attention layers: QKV each project dim (d + 2id) — ad, final projection matrix brings ad — d

total parameters of attention in layer i: ad?(6i + 4)

* FF layers: initial projection (d + (2¢ + 1)d) — ed, non-linearity, second projection ed — d
total parameters of feedforward in layer i: d?(2i + 3)e

; _ D-1
* Average layer depth i = =—

* Average attention parameters per layer: d* - a(3D + 1)
* Average feedforward parameters per layer: d* - e(D + 2)

* Average total parameters per layer: d° - (3aD + eD + a + 2¢)

We use a = 2, e = 4 for all experiments in Sections 5.1 and 5.2. Note that a stanford Transformer block with a FF expansion
factor of 4 (e.g. embedding dimension 512, inner dimension 2048 in the MLP) uses 12n? parameters per layer, where n
is the Transformer embedding dimension. For a given model size, the Catformer dimension d can be set appropriately to
match this.

E. Experiment Details
E.1. Synthetic Language Modeling

Methods All baseline transformer variants used an embedding dimension of size 512 with an inner dimension in the MLP
(equation (5)) of size 2048. The Catformer used approximately equal parameters for each depth using the method described
in Appendix D with expansion factors e, = 2, ey = 4 (note that this expansion factor for the FF layer matches that of the
baselines). This equates to dimensions d = 320, 248, 208 for depths N = 2, 4, 6 respectively.

Training Models were trained with the Adam optimizer (Kingma & Ba, 2015) with learning rate 8¢ — 4. Batch size 16
was used, and new data was randomly generated according to Section 5.1 for every minibatch. Models were trained for
20000 steps, and the numbers reported in Tables Tables 2 to 4 are the perplexity on fresh “validation” data of size 200. All
experiments used 3 seeds for each model; the training data was tied to the seed so that each model was trained on the exact
same data for every minibatch.

E.2. DMLab30

We train the transformer agents using a distributed reinforcement learning framework based on R2D2. For distributed
training, we leverage 256 actors, a batch size of 64, a replay period of 40, and a min replay size of 5000 and max of 10000.
Our transformer agents have torso MLP sizes of 256, 5 heads, and 2 transformer blocks. The memory size is 50 and the
transformer value size for Catformer is 32 (scaled to match for TrXL and GTrXL). For each seed, we ran distributed training
using 16 TPU v2 chips. We trained each model for 300M steps. We did not tune any of the hyper-parameters specific to
R2D2, nor did we tune the dimensions of the transformer torso extensively. We did sweep over gradient norm clipping
values, experimenting with values of 40, 100, and no clipping. We ran the same sweeps for all models to ensure a maximally
fair comparison.
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Figure 4. Ilustration of the Catformer architecture connections (bottom) vs. other standard pre-norm and post-norm residual architectures.
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