
Catformer: Designing Stable Transformers via Sensitivity Analysis

Jared Quincy Davis * 1 2 Albert Gu * 1 Krzysztof Choromanski 3 4 Tri Dao 1 Christopher Re 1 Chelsea Finn 1 3

Percy Liang 1

Abstract
Transformer architectures are widely used, but
training them is non-trivial, requiring custom
learning rate schedules, scaling terms, residual
connections, careful placement of submodules
such as normalization, and so on. In this paper,
we improve upon recent analysis of Transformers
and formalize a notion of sensitivity to capture
the difficulty of training. Sensitivity character-
izes how the variance of activation and gradient
norms change in expectation when parameters
are randomly perturbed. We analyze the sensi-
tivity of previous Transformer architectures and
design a new architecture, the Catformer, which
replaces residual connections or RNN-based gat-
ing mechanisms with concatenation. We prove
that Catformers are less sensitive than other Trans-
former variants and demonstrate that this leads
to more stable training. On DMLab30, a suite of
high-dimension reinforcement tasks, Catformer
outperforms other transformers, including Gated
Transformer-XL—the state-of-the-art architecture
designed to address stability—by 13%.

1. Introduction
Transformer architectures (Vaswani et al., 2017; Choroman-
ski et al., 2020b) are widely used in natural language pro-
cessing (Luo et al., 2020; Chen et al., 2018b), vision (Doso-
vitskiy et al., 2020) and bioinformatics (Rives et al., 2019;
Madani et al., 2020; Li, 2019). This success is due to their
ability to effectively model long-range dependencies as well
as scale effectively with data and compute (Kaplan et al.,
2020).

However, Transformers are hard to train, limiting their effec-
tiveness in challenging and noisy domains such as reinforce-
ment learning (RL). Even in the supervised learning setting,

*Equal contribution 1Stanford University 2DeepMind 3Google
Brain Robotics 4Columbia University. Correspondence to: Jared
Davis <jaredquincydavis@gmail.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

to ameliorate these challenges, they require a combination
of techniques such as complex optimizers and learning rate
schedules (Dai et al., 2019), special weight initialization
(Radford et al., 2019), and careful ordering of components
such as normalization blocks (Parisotto et al., 2020). Archi-
tecturally, recent Transformer variants designed for stabil-
ity have emerged, introducing new components (Liu et al.,
2020) or replacing the residual connection with RNN-style
gates (Xu et al., 2020; Parisotto et al., 2020). Only with
these recent changes have transformers made progress in
reinforcement learning.

These modifications are not specific to Transformers per
se, but rather refine the general architecture wiring—such
as residual connections and normalization layers—which
can be shown to improve training stability in deep mod-
els at large. More broadly, these improvements are guided
by general principles in deep learning that aim to control
standard measures of stability: conventionally, the activa-
tion and gradient variance (i.e., preventing the oft-studied
vanishing/exploding gradient problem (Hochreiter, 1991)).
However, these measures can be too coarse to capture the
true source of instability. For example, controlling activa-
tion variance at initialization does not preclude instability as
the model’s weights change during training (Choromanski
et al., 2020a; Likhosherstov et al., 2020),. Standard tools of
capturing how the output might change–such as measuring
gradient norms and Lipschitzness–are too pessimistic and
can be difficult to analyze.

This paper makes two main contributions. The first is intro-
ducing the concept of sensitivity, a measure of average-case
instability that captures a notion of how sensitive a function
is to random perturbations of its inputs. Our second main
contribution is a new Transformer architecture inspired by
the sensitivity analysis which empirically reduces instability.

First, we formalize and generalize ideas in Liu et al. (2020)
to introduce an improved measure of stability called sen-
sitivity, a function of architecture that measures the effect
of random parameter perturbations on the output variance.
Sensitivity can be applied to analyze a broad class of ar-
chitectures composed of repeated building blocks of nor-
malization layers, generalized residual connections, and
black-box computation modules such as the self-attention

Catformer: Designing Stable Transformers via Sensitivity Analysis

in Transformers. Our theory develops a set of properties
and composition rules for sensitivity, which allows us to
analyze the sensitivity of many variants of Transformers.
We show that sensitivity perfectly predicts the ability of
various architectures to solve a synthetic language modeling
task as network depth grows.

Motivated by this new metric, we propose and analyze the
Catformer, a new Transformer architecture based on con-
catenation instead of residual additions. Within the fam-
ily of low sensitivity models, this architecture is the only
one where the gradient variance scales proportionally to
the weight variance, closely matching the regime where
sensitivity analysis applies. We conjecture that this addi-
tional property endows the Catformer with increased stabil-
ity properties. Empirically, we confirm that compared to
Transformer baselines, the Catformer is more robust to the
choice of optimizer and to noisy gradients of the sort often
found in reinforcement learning.

Finally, we apply the Catformer on visual-navigation tasks
from DeepMind Lab (Beattie et al., 2016), a suite of chal-
lenging RL tasks with high-dimensional observations, com-
plex action spaces, and partial observability. We show that
Catformers consistently obtain mean scores greater than 10
percent above those of state of the art architectures designed
for stability (Parisotto et al., 2020).

2. Background and Preliminaries
We introduce notation for defining deep neural networks
such as the Transformer (Section 2.1), and review existing
methods of capturing the instability of training (Section
2.2).

2.1. Architectures

We consider deep neural networks defined by repeating
equations (1), (2), and (3).

x̂i−1 = norm(xi−1) (Normalization) (1)
yi = Fi(x̂i−1) (Module) (2)

xi =

{
xi−1 ⊕ yi (Combination, pre-norm)
x̂i−1 ⊕ yi (Combination, post-norm)

(3)

A network of depth N repeats this block and outputs x̂N .
Let d denote the dimension of module outputs, i.e. yi ∈ Rd.

A specific model can be instantiated by making three choices
(Figure 1):

1. the black-box computation module Fi
2. the normalization placement (Eq. (3))
3. a combination function ⊕ that processes the inputs and
outputs of the module (for example, often chosen to be a
“residual connection” x⊕ y = x+ y)

By varying the components in Eqs. (1) to (3), a variety of
DNN models have been proposed, as described next.

We remark that since our analysis primarily focuses on the
surrounding architecture and not the module, for the sake
of clarity it is useful to think of Fi(x) = Wix as a simple
linear layer.1

Special Case: Transformers They are an instantiation
of this general architecture wherein the modules alternate
between two types of layers Fi(x) = MHA(x) and Fi(x) =
FF(x). Multihead self-attention (MHA) is the characteristic
component of Transformers, defined as

MHA(x) = softmax((xWQ
i)(xWK

i)>)(xWV
i)WP

i (4)

These are interleaved with positionwise feed-forward (FF)
layers using a nonlinear activation function such as σ =
ReLU

FF(x) = σ(xWF1
i)WF2

i . (5)

Additionally, the standard transformer chooses the residual
function x ⊕ y = x + y with either post- (Vaswani et al.,
2017) or pre- (Radford et al., 2019) normalization.

Other Instantiations We note that outside of transform-
ers, neural networks of this form have been frequently used
with other modules Fi – most notably CNNs which use a
convolution module. To improve convolution network scal-
ing, recent works such as Huang et al. (2017) have proposed
replacing the residual combination function with “dense”
connections between layers, which connects the output of
every module to the input of every subsequent module. This
can in fact still be represented by Eqs. (1) to (3) with a
concatenation operation ⊕. These works have demonstrated
that convolutional neural networks can be scaled and trained
more effectively if they contain shorter pathways between
early layers close to the input and deeper layers closer to
the output (Srivastava et al., 2015; He et al., 2015a; 2016).

Such ideas can be directly transferred to the transformer
setting. Recent work on GTrXL (Parisotto et al., 2020)
and Transformers with Depth-wise LSTMs (Xu et al., 2020)
replaced the standard transformer residual combination func-
tion x ⊕ y = x + y with RNN-based gating mechanisms
which function as learned weighted combination functions.

2.2. Theoretical metrics for stability

We summarize here several theoretical lenses via which
to view network stability. The main source of instability
in training neural networks comes from excessively large
function values or gradients. To capture this instability, espe-
cially at model initialization, one can measure the magnitude

1For brevity and clarity, all linear layers are described without
an explicit bias term; adding one does not affect the analysis.

Catformer: Designing Stable Transformers via Sensitivity Analysis

Normalization

Module

Normalization

Module

Combination Function

Residual

Weight

Rescale

Concat

! + #

(1 − c)! +)#
!"#
! ! +

#
! #

cat !, #

Figure 1. We analyze architectures of repeated blocks, composed of a choice of normalization layer placement (Left: post-norm, Middle:
pre-norm), black-box module, and combination function ⊕.

of the activations or gradients, averaged over random inputs,
weights, or perturbations. This motivates three classes of
metrics: activation variance, gradient variance, and output
change.

Activation variance The most direct measure of insta-
bility is activation variance, the variance of the interme-
diate outputs yi of the model, which can be defined as
Var(‖yi‖22/d). If this variance is high, then the magni-
tude of the activations (i.e., elements of yi) can vary widely,
leading to unstable model outputs.

A well-established guideline in neural network design is
keeping this activation variance controlled through the depth
of a network, commonly achieved through careful initializa-
tion (He et al., 2015b; Glorot & Bengio, 2010). For example,
a fundamental result is that any weight matrix W ∈ Rm×n
W projecting dimension m→ n should be initialized with
i.i.d. entries of variance proportional to 1

n , so that if input
x has variance 1 then (Wx)i =

∑
jWijxj has variance

O(1) (where the constant may change depending on the sub-
sequent non-linear activation function) (Glorot & Bengio,
2010).

A second common theme in deep learning theory and archi-
tecture design is handling the fact that residual connections
increase the activation variance: Var(x+F (x)) ≈ 2Var(x)
if F (x) is variance-preserving and decorrelates the output
from input. The role of normalization layers (such as Batch-
Norm (Ioffe & Szegedy, 2015) or LayerNorm (Ba et al.,
2016)) is largely to control this issue, and other architec-
tures that do not involve normalization are motivated chiefly
by controlling activation variance. For example, the recently
proposed RescaleNet (Shao et al., 2020) addresses this by

weighting the residual function from x+y to
√

i−1
i x+

√
1
i y

in order to keep the activation variance constant after the
residual. Note that such a re-weighting of the residual func-
tion falls under our framework, as it can be viewed as a
different instantiation of the ⊕ combination function.

Intuitively, controlling activation variance is particularly
important for Transformer models, because the recurring
self-attention layer (4) involves the softmax function which
is highly sensitive to the input “temperature” or vari-
ance (Vaswani et al., 2017).

Gradient variance While controlling activation variance
most directly affects stability by ensuring the magnitude of
intermediate activations are controlled in the forward pass,
one can also ensure that the magnitude of the gradients is
controlled during the backward pass. More precisely, the

gradient variance is Var
∥∥∥∂f(θ)∂θi

∥∥∥2
2
, where θi is the set of

parameters of the i-th layer. This variance should not grow
or shrink exponentially with the depth i, since the former
causes instability and the latter prevents effective training
with gradient descent. Failure to control this quantity is of-
ten referred to as the “exploding/vanishing gradients” (EVG)
problem (Hochreiter, 1991), which can occur in long com-
putation graphs for recurrent or deep networks. Ensuring
that a proposed model does not suffer from EVG tradition-
ally requires analyzing by hand the backward pass of the
model, a problem which can be alleviated by our sensitivity
framework (Theorem 1).

Output change Although activation and gradient vari-
ance are the primary measures of the stability of a randomly
initialized network, some works have noticed that it can be
helpful to directly control for the amount that a network’s
output changes in response to a change in the input. For ex-
ample, (Zhang et al., 2019) design an initialization scheme
so that the overall model’s output changes by O(1) after a
step of gradient descent.

The notion of amplification that (Liu et al., 2020) investi-
gate is another type of output change: loosely speaking,
this idea is about how much a small (random) perturba-
tion to the weights is increased through the network. They
heuristically and empirically show that a pre-norm residual

Catformer: Designing Stable Transformers via Sensitivity Analysis

Transformer “amplifies” perturbations by a smaller factor
than a post-norm one, and argue that this helps explain the
greater stability of pre-norm architectures. Our definition
of sensitivity is based upon this idea, and we discuss the
relation to amplification in depth in Appendix A.

3. Sensitivity
We define our core notion of the sensitivity of a model in
Section 3.1. Section 3.3 fleshes out theoretical properties
of sensitivity, including composition rules that allow it to
be easily computed. Section 3.4 illustrates an example of
how to use these properties to calculate the sensitivity of
the most common architecture, the pre-norm residual net-
work. Section 3.5 provides results showing the calculated
sensitivities of several established architectures. Finally,
Section 3.6 discusses the deeper consequences of sensitiv-
ity, especially how it ties together the stability metrics of
activation variance, gradient variance, and output change.

3.1. Sensitivity

Sensitivity is motivated by the observation that even when
a model has controlled activation variance at initialization,
it might become unstable as model parameters change dur-
ing training. Sensitivity captures this rate of change in an
average sense. Informally, sensitivity is the variance of the
change in output when randomly initialized parameters are
perturbed a small amount in a random direction.

Sensitivity is formally defined in Definition 1. We also de-
fine Vp[f(θ)] to be the second moment Eθ∼p(θ)[‖f(θ)‖22].2

Definition 1 (Sensitivity). Let f(u, v) be a function of some
(vector) inputs and p(u, v) be a distribution over these inputs
such that each (scalar) input is independent.

The sensitivity of f with respect to u and p, denoted Su,p[f],
is

1

Vp[f(u, v)]
lim
δ→0

1

δ2
E(u,v)∼p(u,v)

ũ∼p(u)

[
‖f(u+ δũ, v)− f(u, v)‖22

]
When p(θ) or W are understood from context, they can be
omitted from the subscript.

To illustrate Definition 1, suppose we have a model f(θ;x)
of parameters θ and inputs x, along with a canonical dis-
tribution over each (e.g. x sampled from i.i.d. Gaussian
and θ chosen so that the model is variance-preserving at
every layer). The idea behind sensitivity is to measure the
following process: (1) initialize the parameters θ randomly
and pass in random inputs x (2) perturb the parameters θ

2We use Var to denote variance and V for this second moment;
note that they coincide for 0-mean random variables, which is
usually the case in our setting (i.e., for intermediate computations
of neural network architectures).

by an independent amount from the same distribution, and
(3) measure the difference in output before and after the
perturbation. Normalizing appropriately, this quantity is
described exactly by Sθf(θ;x). For example, Sxi,Sx̂i,Syi
are the sensitivities of the intermediate outputs of an archi-
tecture defined by Eqs. (1) to (3) in this sense.

3.2. Discussion

3.3. Properties of Sensitivity

We first show an alternate characterization of sensitivity as a
type of expected gradient (Proposition 1), which is useful for
proving modularity properties of sensitivity (Propositions 2
and 3). For simplicity and clarity, these properties are stated
for the case when the sensitivity is taken with respect to all
inputs of a function (i.e., W = θ in Definition 1). In the
case of a neural network, this can be thought of as when
both the weights θ and the inputs x are perturbed.
Proposition 1.

Sp[f(θ)] = Vp[f(θ)]−1
∑
θk

Vp(θk)Vp(∇θkf)

where the sum is over individual (scalar) parameters θk ∈ θ.
Proposition 2 (Composition rules). Sensitivity satisfies sev-
eral local composition rules, including:

• Identity S[θ] = 1.

• Sum If∇f(θ) and∇g(θ) are uncorrelated given θ ∼
p, then S[f(θ) + g(θ)] = Sf Vf

Vf+Vg + Sg Vg
Vf+Vg .

• Product For disjoint sets of parameters θ1, θ2,
S[f(θ1)g(θ2)] = S[f(θ1)] + S[g(θ2)].

• Chain rule S[f ◦ g] = S[f]S[g].

Proposition 3 (Invariance rules). Sensitivity is invariant to
the following transformations:

• Normalization If y = norm(x) then Sy = Sx.

• Reparameterization Consider the function g(θ′) =
f(cθ′) with distribution q(θ′) = p(1cθ

′). Then
Sθ′,qg(θ′) = Sθ,pf(θ).

To understand the Reparameterization rule, note that al-
though the distributions of g and f are identical, some quan-
tities such as the gradients to the parameters become scaled.
However, the sensitivity is invariant. Beyond a global scalar
c, this rule applies more generally if each individual param-
eter θk ∈ θ is rescaled by a separate ck.

Finally, there is an alternative method to the composition
rules that can be used to calculate sensitivities in special
cases, in particular for any architecture that uses (weighted)
residual connections. An informal version of this property
for two cases was discussed in (Liu et al., 2020).

Catformer: Designing Stable Transformers via Sensitivity Analysis

Proposition 4 (Layer decomposition). Suppose that x⊕y =
αix + βiy is any weighted residual function where αi, βi
are independent of x, y (but can depend on depth i). Then

S[x̂i] =
∑
j≤i

ρj , ρi =
β2
i Vyi
Vxi

S[Fi]

Note that ρi is a local quantity about layer i. Thus, Propo-
sition 4 shows that sensitivity can be calculated for some
architectures by calculating ρi locally, which is sometimes
easier than following the composition rules.

3.4. Example: pre-norm residual network

We present a simple example of how to use the properties of
sensitivity to calculate the sensitivity of the most ubiquitous
deep neural network architecture. The pre-norm residual
network (He et al., 2016; Radford et al., 2019) is defined by
equations Eqs. (1) to (3). Let the input be denoted x0 = x̂0
with unit variance. For simplicity, let the module be a linear
layer Fi(x) =Wix with no bias, where the parameters Wi

are initialized to be variance-preserving (i.e., i.i.d. entries
with variance 1/d)3. We will calculate the sensitivities of
this architecture with respect to the parameters Wi.

Method 1 First, we calculate the variances:

• Vx̂i−1 = 1 (definition of normalization)
• Vyi = 1 (variance-preserving module)
• Vxi = Vxi−1 + Vyi = i+ 1

Next, we calculate the sensitivities using the rules in Propo-
sitions 2 and 3. Vx̂0 = 0 since perturbing the parameters
does not change the input, and inductively4:

• Sxi−1 = Hi − 1 (inductive hypothesis)
• Sx̂i−1 = Hi − 1 (Normalization)
• Syi = SWi + Sx̂i−1 (Product) = Hi (Identity)
• Sxi = (Hi − 1) i

i+1 +Hi
1
i+1 = Hi+1 − 1 (Sum)

Method 2 Because ⊕ uses an addition here, we can use
Proposition 4 as a shortcut. By the previous variance cal-
culations, we know ρi =

1
i+1 , and summing over 1, . . . , i

gives Sx̂i = Hi+1 − 1.

3.5. Sensitivity Results for Established Architectures

By applying the properties of sensitivity in Section 3.3, we
derive sensitivities for an assortment of previously consid-
ered architectures by varying the norm position and combi-
nation function ⊕. These results are summarized in Table 1.
Appendix C contains derivations of these results and empir-
ical plots confirming the scaling with depth.

3Also note that this ensures that inputs and outputs to the mod-
ule are decorrelated.

4Let Hn = 1 + · · ·+ 1/n denote the n-th harmonic number.

We observe that these sensitivities fall in two categories,
that scale either linearly or logarithmically in depth. Empir-
ically, Liu et al. (2020) suggested that the higher scaling of
post-norm residual Transformers explains its more unstable
training compared to the pre-norm variant. In Section 5,
we find that this trend holds tightly across these two cate-
gories of models, where models with logarithmic sensitivity
can solve synthetic tasks that those with linear sensitivity
cannot.

3.6. Sensitivity and Stability

We now show that our notion of sensitivity is actually related
to the existing notions of instability. Recall that three goals
of stability are (1) controlling activation variance to ensure
that output magnitudes remain stable through the model,
(2) calculating the scaling of gradient variance through
depth to ensure that gradients do not vanish or explode,
and (3) analyzing output change to understand when the
model is stable under parameter perturbations. Surprisingly,
sensitivity connects these three notions of stability:

Theorem 1. For any architecture that preserves activation
variance through the depth of the network, the gradient
variance at depth i is proportional to Sxi − Sxi−1.

Theorem 1 says that sensitivity, a measure of output change,
reveals the exact gradient variance scaling in depth, when
activation variance is controlled. Thus all three measures
can be tightly linked through the lens of sensitivity analysis.

We further note that Theorem 1 can be combined with Propo-
sition 4 to show that the gradients to layer i are proportional
to ρi, which is a completely local quantity that is often
easy to calculate (e.g. Section 3.4). In contrast, the tradi-
tional approach of calculating gradient variance by hand
can be difficult to analyze through normalization layers and
complicated combination functions. For example, Liu et al.
(2020) devote analysis to showing that gradient norms in a
pre-norm residual network do not vanish through depth. By
contrast, our Theorem 1 immediately reveals that they in
fact increase slightly through depth at the exact rate of 1/i.

4. The Catformer
Our modular definition of sensitivity (Section 3) motivates
the search for new architectures with low sensitivity. One
key component is the combination function, which tradition-
ally is addition. In this section, we explore an alternative:
concatenation, which more naturally preserves information
across the layers. In particular, we propose the Catformer
architecture that replaces the addition combination x + y
with the concatenation concat[x, y].

Catformer: Designing Stable Transformers via Sensitivity Analysis

Table 1. Stability metrics for several architectures: (i) Weight variance needed for stable activation variance (ii) Gradient variance to layer
i (iii) Sensitivity

Name x⊕ y Norm Weight var. Layer i Sensitivity
position for stable gradient var. S[f(θ)]

activation var.

Feedforward y any O(1) O(1) N
Residual x+ y no-norm 0 O(1) N/2
Vaswani et al. (2017) post-norm O(1) O(1) N/2
He et al. (2016); Radford et al. (2019) pre-norm O(1) O(1/i) log(N)

Weighted residual (1− g)x+ gy post-norm O(1) O(1) N · g2

g2+(1−g)2

pre-norm O(1) O(1) N · 1− (1− g)2

GTrXL (Parisotto et al., 2020) (1− σ(·))x+ σ(·)y pre-norm O(1) O(1) ≈ 0.22N

RescaleNet (Shao et al., 2020)
√

1− 1
i
x+

√
1
i
y any O(1) O(1/i) log(N)

AdMin (Liu et al., 2020) wix+ y post-norm O(1) O(1/i) log(N)

Catformer (ours) concat[x, y] any O(1/i) O(1/i) log(N)

4.1. Motivation: The Concatenation Combination

The composition rules of sensitivity (Section 3.3) allow us to
derive sensitivities for architectures other than the addition-
based combination functions previously considered. In
particular, we derive the sensitivity of the concatenation
combination function. As Table 1 shows, this model is also
in the family of low sensitivity architectures.

However, this model is distinguished from the other low
sensitivity architectures by the property that its dimension
increases through depth. This turns out to have concrete im-
plications for its stability. In particular, its gradient variance
scales proportionally to the weight variance, as a function
of depth: Var[∇θif] ∝ Var[θi]. In other words, the 4th and
5th column in Table 1 are proportional.

This property connects sensitivity to the optimization dy-
namics of the model. In the context of training with gradient
descent, the model parameter θ is perturbed by an amount
proportional to its gradient: θ(k+1) ← θ(k)−η∇θf . If each
layer has gradient variance proportional the weight variance,
then this perturbation of θ matches the perturbation in the
definition of sensitivity (recall that in Definition 1, W is
perturbed by δW ′ with W ′ coming from the same distri-
bution as W). This is the regime where sensitivity analysis
(Section 3) applies. We conjecture that models with low
sensitivity and whose gradient variance scales proportion-
ally to the weight variance will thus see increased stability
benefits during optimization.

Note that the gradient variance can be immediately cal-
culated from the sensitivities by Theorem 1. The weight
variance is also easy to calculate, as it must be inversely
proportional to the fan-in dimension to control activation
variance (Section 2.2). These quantities are reported in
Table 1 along with the sensitivities.

The connection between gradient variance, weight variance,
and gradient descent suggests that using the concatenation

combination function ⊕, the only low-sensitivity model
with this additional property, may be more stable than other
low-sensitivity architectures on real optimization problems.

4.2. The Catformer

Based on the previous observation, we propose a new Trans-
former variant following the architecture structure of Sec-
tion 2.1 and simply using x⊕ y = concat[x, y]. We call the
resulting architecture model the Catformer. Because the
Catformer has the property that the dimension of the state
passed between the modules (Fig. 1) grows with depth, we
now discuss controlling the network size and the initializa-
tion.

Network size As concatenation increases the activation size,
in order to fairly compare to other Transformer architectures,
we control the number of parameters by adjusting the fea-
ture size and intermediate dimensions in the FF and MHA
modules. We keep the dimension of yi (equation (2)) to a
constant m for all layers, so the size of the outputs xi are
i ·m. Thus the FF and MHA modules must project the input
from dimension i ·m→ m. We set a feedforward expansion
factor ef so that the weight matrices in Eq. (5) have dimen-
sions WF1

i ∈ Rim×efm and WF2
i ∈ Refm×m. Similarly,

we set an attention expansion factor ea so that the matrices
in Eq. (4) have dimensions WQ

i ,W
K
i ,W

V
i ∈ Rim×eam

and WP
i ∈ Ream×m.

Appendix D discusses how to set the factors ea, ef and the
dimension m to match the parameter count of Catformer
with standard Transformer variants.

Initialization Because these matrices in the FF and MHA
modules are non-square, popular initialization schemes may
have different behavior. We use Kaiming init. (He et al.,
2015b) so that a linear layer of dimension d1 → d2 has
variance 1

d1
to control activation variance, instead of Xavier

Catformer: Designing Stable Transformers via Sensitivity Analysis

init. (Glorot & Bengio, 2010) that sets variance 2
d1+d2

.

5. Experiments
We validate our theory of sensitivity and our proposed Cat-
former architecture in three ways:

1. We train a variety of transformer architectures varying
the normalization and combination function (Table 1),
and find that sensitivity strongly predicts a model’s abil-
ity to solve a standard synthetic task testing memory
(Sec. 5.1).

2. We investigate regimes with noise , which more directly
model the perturbation interpretation of sensitivity, and
find that Catformer is considerably more robust than the
other low sensitivity methods (Section 5.2).

3. We train models with deep RL, a noisy setting where
vanilla transformers are notoriously difficult to train, and
validate that Catformer successfully mitigates the sta-
bility challenge and outperforms the previous state-of-
the-art architecture, GTrXL (Parisotto et al., 2020) (Sec-
tion 5.3).

5.1. Synthetic Language Modeling

Task We use a standard synthetic memorization task pop-
ular for benchmarking the ability of sequence models to han-
dle complex long-range dependencies. Following (Kitaev
et al., 2020), the input is a sequence of the form WZWZ,
where W ∈ {1, . . . , V − 1}+ is a sequence of symbols of
length uniformly random in [1, L2 − 1] and Z ∈ {0}+ pads
the sequence to the target sequence length L. Models are
trained with a language modeling objective, where the goal
is to autoregressively predict the second half of symbols.
We use V = 64 and L = 512 in our experiments.

Because we are in particular interested in the effect of depth
on Transformer training instability, we increase the difficulty
of this task in a way that biases models to prefer being
deeper. We fix a permutation π, chosen to be the bit reversal
permutation, which can be represented by a sorting circuit
of depth log(N) (Dao et al., 2019). Thus, this permutation
can be learned by a model of depth O(log(N)), where each
layer needs only to learn a simple structured permutation.

Models We use N = 2, 4, and 6 layer Transformer archi-
tectures. All models use pre-LayerNorm unless otherwise
specified. For all baselines with constant dimension size in
their layers (i.e. all models except Catformer), we use the
standard Transformer architecture with d = 512 and inner
dimension 4d = 2048 in the inner layer of the feed-forward
module. The Catformer model is parameter controlled with
the technique described in Appendix D with ea = 2, ef = 4.
Models are trained with the Adam optimizer.

Table 2. Perplexity on synthetic language modeling. (Top): meth-
ods with O(N) sensitivity are unable to solve the task. (Bottom):
methods with log(N) sensitivity are able to solve the task, and
improve with depth.
Layers N 2 4 6

Feedforward 20.0± 7.1 29.2± 2.9 29.2± 2.9
Residual (no-norm) 1.14± 0.1 21.7± 3.9 Diverged
Residual (post-norm) 19.6± 4.6 26.9± 5.9 28.9± 2.7
Weighted g = .5 1.79± 0.9 7.46± 4.7 14.7± 0.8
GTrXL 1.14± 0.0 15.7± 0.9 17.2± 2.2

Residual (pre-norm) 1.29± 0.13 1.01± 0.02 1.01± 0.1
RescaleNet 1.16± 0.09 1.03± 0.03 1.02± 0.00
Catformer (no-norm) 1.17± 0.01 1.06± 0.01 1.03± 0.00
Catformer 1.23± 0.0 1.04± 0.02 1.03± 0.02

Table 3. Models trained with stochastic gradient descent instead
of Adam (val. perplexity). (Top): Catformer, (Bottom): Trans-
former

LR N = 2 4 6

0.1 4.69± 0.21 3.93± 2.14 6.30± 0.91
0.2 3.72± 1.01 1.19± 0.07 1.33± 0.17
0.4 1.57± 0.39 1.10± 0.07 1.04± 0.01

0.1 6.65± 1.51 7.96± 0.51 8.82± 0.56
0.2 4.19± 0.68 6.84± 1.84 5.58± 1.34
0.4 2.42± 0.34 6.79± 5.19 3.53± 1.01

Results Table 2 shows final validation losses for several
models from Table 1. We find a sharp divide between the
methods with high sensitivity S = O(N) and those with
low sensitivity S = log(N).

The high sensitivity methods are generally unable to come
close to solving the task, and notably become worse with
depth. On the other hand, the low sensitivity methods are
all able to achieve near 0 loss, and display improved perfor-
mance with depth.

5.2. Gradient Noise and Alternative Optimizers

Next, we analyze the differences between the low sensitivity
models. Sensitivity measures a model’s tolerance to parame-
ter change, and as discussed in Section 4.1, the magnitude of
parameter change used by gradient descent is better aligned
with the sensitivity framework for models that satisfy an
additional property. Since Catformer is the only low sensi-
tivity model with this additional property, we expect it to be
more tolerant to the choice of optimizer. Additionally, we
expect it to be more robust to injected gradient noise of the
form used in the definition in sensitivity (Definition 1).

Table 3 and Table 4 confirm these hypotheses by comparing
Catformer against the standard residual (pre-norm) Trans-
former; other low-sensitivity models other than the Cat-
former performed similarly to this Transformer.

Catformer: Designing Stable Transformers via Sensitivity Analysis

Models TrXL GTrXL Catformer
(Dai et al., 2019) (Parisotto et al., 2020) (ours)

Seek avoid 21.6± 16.9 24.5± 0.9 37.7± 1.0
Rooms watermaze 10.3± 8.5 28.2± 1.5 45.9± 3.5
Rooms select non-matching 0.9± 0.8 32.7± 1.5 62.2± 2.8
Explore rewards many 2.7± 0.5 45.3± 2.1 52.3± 4.1
Explore rewards few 2.1± 0.3 29.2± 2.6 37.5± 1.4
Rat exploration 16.2± 20.6 51.2± 0.9 57.9± 0.6

Figure 2. Mean episode reward TransformerXL (TrXL), GTrXL, and Catformer on the vision-based tasks from DeepMind Lab. These
architectures served the function of the RNN actor component of an R2D2-based distributed RL system. We controlled for parameters and
ran all methods with equivalent R2D2 hyper-parameters. We found that GTrXL often failed to learn without gradient clipping, so its
scores are reported as the max across a sweep of no gradient clipping vs. gradient clipping of varying magnitudes. Catformer’s scores are
reported with no gradient clipping. Scores reported across 3 seeds per sweep.

Table 4. Models trained with gradient noise injection (val. perplex-
ity). (Top): Catformer, (Bottom): Transformer

Noise std. N = 2 4 6

0.0005 2.54± 0.48 1.13± 0.11 1.02± 0.02
0.001 3.42± 0.38 10.1± 9.77 1.51± 0.24
0.002 5.61± 0.60 13.6± 4.24 5.74± 1.78

0.0005 5.56± 7.00 1.29± 0.35 12.2± 9.18
0.001 Diverged Diverged Diverged
0.002 179.± 155. Diverged Diverged

Table 3 reports models trained with stochastic gradient de-
scent (SGD) instead of Adam. We note that while SGD
is the optimization algorithm of choice in many areas of
deep learning, where it is superior to alternatives when ap-
plicable (Wilson et al., 2018), it is notoriously difficult for
Transformer architectures to train with.

Table 4 trains models with Adam, as in Table 2, but in-
jects gradient noise on every optimization step. While Cat-
former’s performance degrades, it is still stable. On the
other hand, the Transformer is extremely sensitive to noise,
especially as the noise magnitude or depth grows.

5.3. Deep Reinforcement Learning

Setting As a large scale demonstration, we evaluate Cat-
formers on challenging RL 3D visual navigation tasks from
the DeepMind Lab benchmark suite (Beattie et al., 2016).
In these tasks, created using the Quake III Arena Engine, the
environment provides scalar rewards and rich pixel-based
observations to the agent. The agent action space spans
movement in three dimensions and camera orientation about
two aces. The tasks span four distinct groups: object gather-
ing and obstacle avoidance within a static map, navigation
to a goal state within a fixed maze given a random starting

point per episode, goal navigation within a dynamic envi-
ronment procedurally-generated at the start of each episode,
and laser-tag levels demanding that an agent tag NPC bots
reminiscent of standard Quake III Arena gameplay. All of
these tasks are inherently partially observable, necessitating
advanced memory-based representation capabilities.

Results We leverage R2D2 (Kapturowski et al., 2018),
a method for training memory-based RL agents from dis-
tributed prioritized experience replay. We compare canoni-
cal TransformerXL(TrXL) agents and GRU-based GTrXL
agents trained via this regime with Catformer agents and
report results. Catformer-based agents outperform GTrXL-
based agents with an equivalent number of parameters by
more than 13% (Fig. 2). Additionally, we found that GTrXL
agents struggled to learn effectively without the use of gradi-
ent clipping, but Catformer was robust without this addition.
Vanilla TrXL agents struggled to learn, as also observed in
(Parisotto et al., 2020).

6. Conclusion
We propose a new metric, sensitivity, to measure architec-
ture instability. We analyze its theoretical properties, pro-
vide tools for calculating this measure for a large class of
architectures, and show how it ties together existing notions
of activation variance, gradient variance, and output change.
Sensitivity provides a new lens via which to analyze and
design models, yielding a new architecture (Catformer) that
outperforms previous state-of-the-art architectures on a suite
of high-dimensional RL tasks. We anticipate that the study
of this core problem will be broadly useful in understanding
model instability in deep learning. We are excited about con-
tinuing to improve powerful models such as Transformers
for noisy, challenging real-world applications.

Catformer: Designing Stable Transformers via Sensitivity Analysis

References
Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution

recurrent neural networks. In International Conference
on Machine Learning, pp. 1120–1128. PMLR, 2016.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Chen, M., Pennington, J., and Schoenholz, S. Dynamical
isometry and a mean field theory of rnns: Gating enables
signal propagation in recurrent neural networks. In Inter-
national Conference on Machine Learning, pp. 873–882.
PMLR, 2018a.

Chen, M. X., Firat, O., Bapna, A., Johnson, M., Macherey,
W., Foster, G. F., Jones, L., Schuster, M., Shazeer, N.,
Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Chen,
Z., Wu, Y., and Hughes, M. The best of both worlds:
Combining recent advances in neural machine transla-
tion. In Gurevych, I. and Miyao, Y. (eds.), Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics, ACL 2018, Melbourne,
Australia, July 15-20, 2018, Volume 1: Long Papers,
pp. 76–86. Association for Computational Linguistics,
2018b. doi: 10.18653/v1/P18-1008. URL https:
//www.aclweb.org/anthology/P18-1008/.

Choromanski, K., Davis, J. Q., Likhosherstov, V., Song, X.,
Slotine, J. E., Varley, J., Lee, H., Weller, A., and Sind-
hwani, V. An ode to an ODE. CoRR, abs/2006.11421,
2020a. URL https://arxiv.org/abs/2006.
11421.

Choromanski, K., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mo-
hiuddin, A., Kaiser, L., Belanger, D., Colwell, L., and
Weller, A. Rethinking attention with Performers. CoRR,
arXiv:2009.14794, 2020b. URL https://arxiv.
org/abs/2009.14794.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context, 2019.

Dao, T., Gu, A., Eichhorn, M., Rudra, A., and Ré, C. Learn-
ing fast algorithms for linear transforms using butterfly
factorizations. In International Conference on Machine
Learning, pp. 1517–1527. PMLR, 2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929, 2020. URL
https://arxiv.org/abs/2010.11929.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Hanin, B. Which neural net architectures give rise to
exploding and vanishing gradients? arXiv preprint
arXiv:1801.03744, 2018.

Hanin, B. and Rolnick, D. How to start training: The
effect of initialization and architecture. arXiv preprint
arXiv:1803.01719, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition, 2015a.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification, 2015b.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks, 2016.

Hochreiter, S. Untersuchungen zu dynamischen neuronalen
netzen. Diploma, Technische Universität München, 91
(1), 1991.

Hochreiter, S. and Schmidhuber, J. Long short-term
memory. Neural Comput., 9(8):1735–1780, Novem-
ber 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.
9.8.1735. URL http://dx.doi.org/10.1162/
neco.1997.9.8.1735.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
2015.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International conference on
learning representations, 2018.

Catformer: Designing Stable Transformers via Sensitivity Analysis

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer:
The efficient transformer. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?
id=rkgNKkHtvB.

Li, J. Universal transforming geometric network. CoRR,
abs/1908.00723, 2019. URL http://arxiv.org/
abs/1908.00723.

Likhosherstov, V., Davis, J., Choromanski, K., and Weller,
A. CWY parametrization for scalable learning of orthog-
onal and stiefel matrices. CoRR, abs/2004.08675, 2020.
URL https://arxiv.org/abs/2004.08675.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. Understand-
ing the difficulty of training transformers, 2020.

Luo, H., Zhang, S., Lei, M., and Xie, L. Simplified self-
attention for transformer-based end-to-end speech recog-
nition. CoRR, abs/2005.10463, 2020. URL https:
//arxiv.org/abs/2005.10463.

Madani, A., McCann, B., Naik, N., Keskar, N. S., Anand,
N., Eguchi, R. R., Huang, P., and Socher, R. Pro-
gen: Language modeling for protein generation. CoRR,
abs/2004.03497, 2020. URL https://arxiv.org/
abs/2004.03497.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957, 2018.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C.,
Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,
Noury, S., et al. Stabilizing transformers for reinforce-
ment learning. In International Conference on Machine
Learning, pp. 7487–7498. PMLR, 2020.

Pennington, J., Schoenholz, S. S., and Ganguli, S. Res-
urrecting the sigmoid in deep learning through dynam-
ical isometry: theory and practice. arXiv preprint
arXiv:1711.04735, 2017.

Pennington, J., Schoenholz, S., and Ganguli, S. The emer-
gence of spectral universality in deep networks. In Inter-
national Conference on Artificial Intelligence and Statis-
tics, pp. 1924–1932. PMLR, 2018.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and
Ganguli, S. Exponential expressivity in deep neu-
ral networks through transient chaos. arXiv preprint
arXiv:1606.05340, 2016.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI blog, 1(8):9, 2019.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-
Dickstein, J. On the expressive power of deep neural
networks. In international conference on machine learn-
ing, pp. 2847–2854. PMLR, 2017.

Rives, A., Goyal, S., Meier, J., Guo, D., Ott, M., Zitnick, C.,
Ma, J., and Fergus, R. Biological structure and function
emerge from scaling unsupervised learning to 250 million
protein sequences. bioArxiv, 04 2019. doi: 10.1101/
622803.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-
Dickstein, J. Deep information propagation. arXiv
preprint arXiv:1611.01232, 2016.

Shao, J., Hu, K., Wang, C., Xue, X., and Raj, B. Is normal-
ization indispensable for training deep neural network?
Advances in Neural Information Processing Systems, 33,
2020.

Srivastava, R. K., Greff, K., and Schmidhuber, J. Highway
networks, 2015.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems 30, pp. 5998–6008. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht,
B. The marginal value of adaptive gradient methods in
machine learning, 2018.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on
Machine Learning, pp. 5393–5402. PMLR, 2018.

Xu, H., Liu, Q., Xiong, D., and van Genabith, J. Transformer
with depth-wise lstm, 2020.

Yang, G. and Schoenholz, S. S. Mean field residual
networks: On the edge of chaos. arXiv preprint
arXiv:1712.08969, 2017.

Catformer: Designing Stable Transformers via Sensitivity Analysis

Yang, G., Pennington, J., Rao, V., Sohl-Dickstein, J., and
Schoenholz, S. S. A mean field theory of batch normal-
ization. arXiv preprint arXiv:1902.08129, 2019.

Zhang, H., Dauphin, Y. N., and Ma, T. Fixup initialization:
Residual learning without normalization, 2019.

