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A Proofs

A.1 Proof of Proposition 1

Both the two claims are straightforward to show by using the definition. First, we have

Es`rc(y, z) = 1� EI(y = ⇣(z)) = 1� Ps(⇣(Z) = y).

So minimizing the loss is equivalent to the MLE, which is equivalent to the rumor center in infinite regular trees.

Secondly, notice that that both y and ⇣(Z) are n dimensional binary vectors. So

ky � ⇣(Z)k22 =
X

i

I(yi 6= ⇣(Z)i)

which is the symmetric difference between the set {i : yi = 1} and {i : ⇣(Z)i = 1}.

A.2 Proof of Theorem 1

Define q↵T,s⇤ = inft{t : Ps⇤(Ts⇤(⇣(Z)) � t)  ↵}. Notice that q↵T,s⇤ can be seen as one generalized definition for the right
quantile of the distribution of the random variable Ts⇤(Ỹ ), where Ỹ := ⇣(Z) is a random infection status of the network
generated by the diffusion process starting from s⇤.

Now assume Y is a random infection status from the diffusion process from s⇤. According to the definition of the p-value,
we have

Ps⇤ (s
⇤ 2 S(Y )) = Ps⇤ ( s⇤(Y ) > ↵)

= Ps⇤

⇣
Ps⇤

⇣
Ts⇤(Ỹ ) � Ts⇤(Y )

⌘
> ↵

⌘

� Ps⇤
�
Ts⇤(Y ) < q↵T,s⇤

�

= 1� Ps⇤
�
Ts⇤(Y ) � q↵T,s⇤

�
.

Note that since s⇤ is the true source node, Ts⇤(Y ) and Ts⇤(Ỹ ) are following exactly the same distribution, thus

Ps⇤ (s
⇤ 2 S(Y )) � 1� Ps⇤

�
Ts⇤(Y ) � q↵T,s⇤

�
� 1� ↵.

A.3 Proof of Theorem 2

Given a path generated by the diffusion process starting from v0 containing u, denoted by

z = {v0, s1, s2, · · · , sK�1, u, sK+1, · · · , sT },

we match it to the path fu(Z) defined as

fu(z) = {u, v0, s1, · · · , sK�1, sK+1, · · · , sT }.

We start from the probability mass of z starting from v0. By using the Markov property, we have

p(z|v0) =P(s1|v0)P(s2|v0, s1) · · ·P(sK�1|v0, s1, · · · , sK�2)

⇥ P(sK+1|v0, · · · , u) · · ·P(sT |v0, · · · , sT�1) (12)
⇥ P(u|v0, s1, · · · , sK�1)
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In contrast, for the path fu(z), we have

P(fu(z)|u) =P(v0|u)P(s1|u, v0)P(s2|u, v0, s1) · · ·P(sK�1|u, v0, s1, · · · , sK�2)

⇥ P(sK+1|u, v0, · · · , sK�1) · · ·P(sT |u, v0, · · · , sT�1)

=P(s1|u, v0)P(s2|u, v0, s1) · · ·P(sK�1|u, v0, s1, · · · , sK�2)

⇥ P(sK+1|u, v0, · · · , sK�1) · · ·P(sT |u, v0, · · · , sT�1). (13)

Notice that the conditional probability P(sk+1|v0, · · · , u, sK+1, · · · sk), k > K only depends on the infection status before
the kth infection and is invariant to the infection order. This property indicates that all terms after the K+1th (in the second
rows) of (12) and (13) are equal.

Next, we compare the terms in the first line in each of (12) and (13). Notice that for each k < K, the term
P(sk|v0, s1, · · · , sk�1) is identical for each available connections given the infected nodes v0, s1, · · · , sk�1 while the
term P(sk|u, v0, s1, · · · , sk�1) is identical on all available edges given the infected nodes u, v0, s1, · · · , sk�1. The only
difference in the two infected sets is on u. Since u has only one connection to v0, at each point, the number of available
infecting edges is one more in the former case. Therefore, we have

P(sk|u, v0, s1, · · · , sk�1) =
1

1� P(sk|v0, s1, · · · , sk�1)
P(sk|v0, s1, · · · , sk�1), k < K.

In addition, notice that in the third line of (12), there is one extra term that does not appear in (13). Combining the
aforementioned three relations, we final obtain probability mass factor to be

P(fu(⇡)|S0 = u)

P(⇡|S0 = v0)
=

1

(1� P(s1|v0))(1� P(s2|v0, s1)) · · · (1� P(sK�1|v0, s1, · · · , sK�2))P(u|v0, s1, · · · , sK�1)
(14)

Moreover, if z does not contain u, we set the ratio to be 0.

A.4 Proof of Theorem 3

Since Zi’s are a random sample from p1, under the current assumption, by the strong law of large numbers, we have

P
✓
⌘̂ ! E1[

g(�(Z))

|��1(�(Z))|
p2(�(Z))

p1(Z)
]

◆
= 1.
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Notice that � is a surjection. Therefore, the term E1[
g(�(Z))

|��1(�(Z))|
p2(�(Z))
p1(Z) ] can be rewritten as

E1[
g(�(Z))

|��1(�(Z))|
p2(�(Z))

p1(Z)
] =

X

z2C1

g(�(z))

|��1(�(z))|
p2(�(z))

p1(z)
p1(z)

=
X

z2C1

g(�(z))

|��1(�(z))|p2(�(z))

=
X

z2C0
1

g(�(z))

|��1(�(z))|p2(�(z)) +
X

z2C1/C0
1

g(�(z))

|��1(�(z))|p2(�(z))

=
X

z2C0
1

g(�(z))

|��1(�(z))|p2(�(z))

=
X

z̃2C2

X

z:�(z)=z̃

g(�(z))

|��1(�(z))|p2(�(z))

=
X

z̃2C2

X

z:�(z)=z̃

g(z̃)

|��1(z̃)|p2(z̃)

=
X

z̃2C2

X

z2��1(z̃)

g(z̃)

|��1(z̃)|p2(z̃)

=
X

z̃2C2

|��1(z̃)| g(z̃)

|��1(z̃)|p2(z̃)

=
X

z̃2C2

g(z̃)p2(z̃)

= E2[g(Z)].

A.5 Proof of Corollary 1

We will use fu(z) in place of � to apply Theorem 3. The only remaining step is to find |fu(f�1
u (z))|. By the definition of

fu in Theorem 3, it is easy to see that the other T � 1 nodes (except u and v0) and their order uniquely determine to the
mapped path. Therefore, |fu(f�1

u (z))| would always be T in this situation.

A.6 Proof of Theorem 4

Notice that, given T , the probability mass function of a diffusion path only depends on the network A and the source node.
Condition 1 of Definition 4 indicates that Z⇡ starts from v. Condition 2 and condition 3 of Definition 4 together indicate
that Z⇡ is also a valid diffusion path. Condition 3, in particular, indicates that

pu(Z) = pv(Z⇡).

Now define can define ⇡�1 to be the inverse of ⇡. For any Z̃ from v, for the same reason, Z̃⇡�1 is also a valid diffusion
path starting from u. In particular, we have Z = (Z⇡)⇡�1 . Therefore, Z⇡ has the same sample space and probability mass
function as the random diffusion path from v.

B Details for Isomorphism Identification in Section 4.2

Based on the properties in Proposition 2, Algorithm 2 finds all isomorphic pairs and the permutations in the network. Next,
we provide a proof of Proposition 2.

Proof of Proposition 2. du = dv because ⇡ gives a 1-1 mapping from N1(u) to N1(v). Furthermore, we have ⇡(N1(u)) =
N1(v). By condition 3 of Definition 4, we also have D1(u) = D1(v).

For the last one, we can prove by contradiction. Suppose there exists a node w, such that w 2 N2(u) but w /2 N2(v).
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Algorithm 2 Identification of First-Order Isomorphic Pairs

Input: Graph G = (V,E)
Initialize L = ; to store the list of isomorphic node pairs
for every node u 2 V do

Compute N1�4(u) as the set of all neighbors of u within 4 hops
// N1�4(u) includes all nodes that are possible to be isomorphic to u

for v 2 N1�4(u) do

if dv == du then

Compute D1(u) = {du0 : u0 2 N1(u)}, the multi-set of degrees of nodes in N1(u)
Similarly, compute D1(v), the multi-set of degrees of all one-hop neighbors of v
if D1(u) == D1(v) then

Compute Ñ2(u) = N2(u)�N1(u)�N1(v)� {u, v}
// Ñ2(u) contains all (exactly) two-hop neighbors of u, but with all

(exactly) one-hop neighbors of u, v removed

Compute Ñ2(v) = N2(v)�N1(u)�N1(v)� {u, v}
if Ñ2(u) == Ñ2(v) then

Do exhaustive search to check whether u, v are isomorphic by enumerating all possible matchings of their
neighbors under the constraints of Ñ2(u) and the matching D1(u), D1(v), and if so, add (u, v) to list L

// Usually, not many pairs need to go through this step

end if

end if

end if

end for

end for

Since ⇡(N1(u)) = N1(v) while ⇡(w) = w, so after applying the permutation to the network, we have ⇡(w) disconnected
from ⇡(N1(w)). This contradicts condition 3 of Definition 4.

C Loss Function Computation Acceleration for Surjective Importance Sampling

The calculation strategy for canonical discrepancy functions can also be further generalized to the weighted averaging
scenario used for the single-degree nodes in Section 4.1. Specifically, there we need to calculate terms like

1

m

2mX

i=m+1

` (y, fu(zi))
P (fu(zi)|u)
P (zi|v0)

1

T
= � 1

m

2mX

i=m+1

X

v:yv=1

I(v 2 fu(zi))h(tfu(zi)(v))
P (fu(zi)|u)
P (zi|v0)

1

T

= � 1

m

X

v:yv=1

2mX

i=m+1

I(v 2 fu(zi))h(tfu(zi)(v))
P (fu(zi)|u)
P (zi|v0)

1

T

= � 1

m

X

v:yv=1

2mX

i=m+1

I(v 2 fu(zi))[
TX

k=1

I(tfu(zi)(v) = k)h(k)]
P (fu(zi)|u)
P (zi|v0)

1

T

= � 1

m

X

v:yv=1

2mX

i=m+1

TX

k=1

I(v 2 fu(zi))I(tfu(zi)(v) = k)h(k)
P (fu(zi)|u)
P (zi|v0)

1

T

= � 1

m

X

v:yv=1

TX

k=1

h(k)[
2mX

i=m+1

I(tfu(zi)(v) = k)
P (fu(zi)|u)
P (zi|v0)

1

T
].
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Therefore, to use this strategy in Section 4.1, when general MC samples from v0, in addition to caching M , we also want
to cache the matrix adjusted by the factor

M (v0!u)
v,k =

2mX

i=m+1

I(tfu(zi)(v) = k)
P (fu(zi)|u)
P (zi|v0)

1

T
.

D Parallel Algorithm for Confidence Set Construction

As discussed in Section 3.3, our confidence set construction algorithm can be implemented in parallel, further boosting its
speed. In the main paper, we only include the details and timing for the sequential version. The parallelized algorithm is
described in Algorithm 3.

Algorithm 3 Parallel Confidence Set Construction
1: Input: MC sample number m, confidence level ↵, Network G, data y, discrepancy function `
2: Compute S = {g1, g2, · · · , gM}, the isomorphic groups for infected nodes with degree at least 2.
3: for each g 2 S do

4: Extend g by including all of its single-degree neighbor.
5: end for

6: for each infected isomorphic group g 2 S in parallel do

7: Select any s 2 g with degree at least 2
8: Generate 2m samples zi 2 Z, i = 1, · · · , 2m from the T -step diffusion process from source s.
9: Calculate the p-value for s following (6), (7), and (8)

10: for each v 2 g that is isomorphic to s do

11: Calculate  ̂v(y) according to Theorem 4.
12: end for

13: for each single-degree node v 2 g do

14: Calculate the p-value  ̂v(y) according to the surjective importance sampling in Section 4.1.
15: end for

16: end for

17: return the level 1� ↵ confidence set:

C↵(y) = {s 2 VI :  ̂s(y) > ↵}.

As can be seen, Algorithm 3 needs MC sampling for only one node in each group, and the calculations for other nodes
can be done using pooled MC methods. When additional cores are available, the for-loops in the algorithm can be further
parallelized.

E Evaluation on 381 real-world networks

The data set from Ghasemian et al. (2020) contains 550 networks. We focus on 381 networks with more than 200 nodes
for stable evaluation. The removed ones are either too small or have certain pathological structures to stable computation.
The 381 networks are from six domains (71 biological, 110 economic, 9 informational, 105 social, 56 technological, and
30 transportation networks).

Though there are no real diffusion labels observed on these networks, we can generate a synthetic diffusion process based
on our model. We generate a diffusion process with T = min(0.2N, 150). By doing this, we can evaluate the confidence
set properties on these networks and the timing. The average coverage probability of the 90% confidence set and the relative
size of |C|/T are shown in Table 5. The results match what we observed previously on the simulated networks, and the
ADiT is more effective than the Euclidean loss, indicating the valid method on the real-world network. More importantly,
we also evaluate the timing improvement based on the pooled MC methods. We calculate the improvement percentage of
the pooled MC strategies (over the vanilla MC) on each network. The results are summarized in Figure 4. As can be seen,
the pooled MC is very effective on economic networks and social networks, resulting in an average improvement of 40%. It
is moderately effective on biological and informational networks with 10%-20% improvement. The technological networks
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and transportation networks are suitable structures for the strategy. The economic, social, and biological networks are the
three largest domains in the data set. These results demonstrate the pooled MC’s potential as a general computational
strategy.
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Figure 4: The timing improvement proportion by the pooled MC over the vanilla MC on 381 real-world networks.

Table 5: The average coverage rate of the 90% confidence sets and the relative size |C|/T on the 381 real-world networks.
BIOLOGICAL ECONOMIC INFORMATIONAL SOCIAL TECHNOLOGICAL TRANSPORTATION

EUCLIDEAN-90% 90.0% 90.1% 88.9% 89.8% 89.1% 90.9%
|C|/T 0.60 0.41 0.66 0.44 0.57 0.38
ADiT-90% 90.2% 89.9% 87.6% 89.3% 89.3% 90.1%
|C|/T 0.55 0.36 0.61 0.40 0.52 0.35
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