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Abstract

Diffusion source identification on networks is a
problem of fundamental importance in a broad
class of applications, including rumor controlling
and virus identification. Though this problem has
received significant recent attention, most studies
have focused only on very restrictive settings and
lack theoretical guarantees for more realistic net-
works. We introduce a statistical framework for
the study of diffusion source identification and
develop a confidence set inference approach in-
spired by hypothesis testing. Our method effi-
ciently produces a small subset of nodes, which
provably covers the source node with any pre-
specified confidence level without restrictive as-
sumptions on network structures. Moreover, we
propose multiple Monte Carlo strategies for the
inference procedure based on network topology
and the probabilistic properties that significantly
improve the scalability. To our knowledge, this
is the first diffusion source identification method
with a practically useful theoretical guarantee
on general networks. We demonstrate our ap-
proach via extensive synthetic experiments on
well-known random network models, a large data
set of hundreds of real-world networks, as well as
a mobility network between cities concerning the
COVID-19 spreading.

1 Introduction

One pressing problem today is the spreading of misinfor-
mation or malicious attacks/virus in various cyberspaces.
For example, rumors and fake news on social networks may
result in many serious political, economic, and social issues
(Vosoughi et al., 2018). Viruses that spread via emails and
computer communication may cause severe privacy and
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leakage problems (Newman et al., 2002; Halperin & Al-
mogy, 2002; Xu & Ren, 2016). The negative impacts stem
from a few source users/locations and then spread over the
social networks via a diffusion process in such events. One
crucial step to reduce the loss from such an event is to
quickly identify the sources so that counter-measures can
be taken in a timely fashion.

Though early practices have been done for this important
problem with motivations from various domains, system-
atic research on this problem only began very recently, ar-
guably starting from the seminal work of (Shah & Zaman,
2011), which proposed a rumor center estimator that can
be located by an efficient message-passing algorithm with
linear time complexity. Despite the significant interest and
progress on this problem in recent years (Shah & Zaman,
2012; Dong et al., 2013; Khim & Loh, 2016; Bubeck et al.,
2017; Yu et al., 2018; Crane & Xu, 2020), many challenges
remain unaddressed. First, the theoretical understanding of
these methods is currently only available under very restric-
tive and somewhat unrealistic structural assumptions of the
networks such as regular trees. This is perhaps partially ex-
plained by the well-known computational hardness about
the probabilistic inference of diffusion process in general
graphs (Shapiro & Delgado-Eckert, 2012). Therefore, in-
tuitive approximations have been used for general networks
(Nguyen et al., 2016; Kazemitabar & Amini, 2020). How-
ever, such methods lack theoretical guarantees. Second,
even for regular trees, the available performance guarantee
is far from being useful in practice. Even in the most ide-
alized situation of infinite regular trees, the correct proba-
bility of the rumor center is almost always below 0.3 (Shah
& Zaman, 2011; Dong et al., 2013; Yu et al., 2018). For
general graphs, as we show later, the correct rate of such a
single-point estimation method only becomes too low to be
practical.

To guarantee higher success probability, a typical approach,
as in both machine learning theory (Valiant, 1984) and
data-driven applied models (LeCun et al., 2015), is perhaps
to obtain more data. However, a fundamental challenge
in diffusion source identification (DSI) is that the problem
by nature has only one snapshot of the network informa-
tion, i.e., the earliest observation about the infection status
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of the network.1 Therefore, compared to classic learning
tasks, DSI poses a fundamentally different challenge for
inference.It is the above crucial understanding that moti-
vates our adoption of a different statistical inference tech-
nique, the confidence set. Previously systematic statisti-
cal studies adopt the confidence set approach for DSI on
trees (Bubeck et al., 2017; Khim & Loh, 2016; Crane &
Xu, 2020). Though they enjoy good theoretical properties,
the methods are applicable only on infinite trees.

This paper aims to bridge the gap between practically use-
ful algorithms and theoretical guarantees for the DSI prob-
lem. We introduce a new statistical inference framework
which provably includes many previous methods (Shah &
Zaman, 2011; Nguyen et al., 2016) as special cases. Our
new framework not only highlights the drawback of the
previous methods but, more importantly, also leads to the
design of our confidence set inference approach with finite-
sample theoretical guarantee on any network structures.

As a demonstration, consider the example of the COVID-
19 spreading procedure in early 2020. Figure 1 shows a
travel mobility network between 49 major cities in China,
constructed from the two-week travel volume (Lab, 2020;
Hu et al., 2020) before the virus caught wide attention. The
square nodes (21 out of 49) are all cities with at least five
confirmed cases of the virus on Jan 24, 2020. The DSI
problem is: given only knowledge about the mobility net-
work and which cities have detected a notable amount of
confirmed cases (in this case, at least 5) , can we identify in
which city the virus was first detected?

Figure 1: The mobility network and the COVID-19 infection sta-
tus of major Chinese cities on Jan 24, 2020. Colored square nodes
are cities with at least five confirmed cases.

This problem turns out to be too difficult for precise iden-
tification. None of the single-point source identification
methods under evaluation can successfully identify Wuhan

1Since infected nodes are usually indistinguishable and
equally infectious, any additional information in later observa-
tions only tells us which new or additional nodes are infected and
is not helpful for us to infer the source node.

due to its relatively non-central position from the network
(details in Section 5). Nevertheless, both of our 80% and
90% confidence sets cover Wuhan correctly, giving recom-
mendations of 6 nodes and 11 nodes (out of 49 cities), re-
spectively. In fact, the evaluation on all the whole week
after the lockdown of Wuhan reveals that both confidence
sets correctly cover Wuhan in all the seven days, while the
single-point estimation methods are rarely effective. Such a
result evidently shows the necessity of adopting confidence
set approach and the effectiveness of our solution.Our con-
tributions in this paper can be summarized in three-folds.

1. We introduce an innovative statistical framework for
the DSI problem. It includes several previous meth-
ods as special cases, but has the potential for more
effective inference.

2. Under our framework, we propose a general way to
construct the source node confidence set, whose va-
lidity can be guaranteed for finite sample size and any
network structures. It is the first DSI method with
a theoretical performance guarantee on general net-
works, to the best of our knowledge.

3. We propose techniques that dramatically improve the
computational efficiency of our inference algorithm.
En route, we develop a generalized importance sam-
pling method, which may be of independent interest.

A high-level message in the paper is that the confidence set
approach, which did not receive adequate attention in the
machine learning literature, can be an important tool for
inference tasks, especially for challenging problems with
limited available data.

2 Preliminaries

We start by formalizing the Diffusion Source Identification
(DSI) problem, introduced in the seminal work of Shah
& Zaman (2011). Consider a network G with node set
V = {1, · · · , n} and edge set E. For ease of presenta-
tion, we focus on unweighted and undirected networks but
it is straightforward to generalize the model and our frame-
work to weighted networks. We write (u, v) 2 E if node
u and v are connected. The network can be equivalently
represented by its n⇥ n binary adjacency matrix A, where
Auv = Avu = 1 if and only if (u, v) 2 E.

There is a source node s⇤ 2 V on the network G ini-
tiating a diffusion of a certain effect (rumor, fake news
or some virus) over the network G. We embed our
inference of the diffusion procedure under the widely-
adopted “Susceptible-Infected” (SI) model (Anderson &
May, 1992; Shah & Zaman, 2011), though our approach
can be easily tailored to other diffusion procedure as well.
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In the SI model, the source node s⇤ is the only “infected”
node initially. The infection diffuses as follows: given the
set of currently infected nodes after t � 1 infections, the
next infection happens by sampling uniformly at random
one of the edges connecting an infected node and a sus-
ceptible node. Consequently, a full diffusion path with T
infections can be represented by a sequence of T +1 nodes
in the infection order. We define the diffusion path space to
be

ZT = {v = {s⇤ = v0, v1, · · · , vT } : vt 2 V, vt1 6= vt2
if t1 6= t2, and (vt, vt0) 2 E for some t < t0 }

However, in practice, when the occurrence of the infec-
tion is noticed, we have already lost the information about
the diffusion path. Instead, the available data only con-
tain the snapshot of the current infection status on the net-
work without the infection order. Formally, the data can
be represented as an n-dimensional binary vector y with
yi = I(i is infected) 2 {0, 1}, where I is the standard in-
dicator function. Therefore, the sample space of the DSI
problem can be defined as

YT = {y 2 {0, 1}n : kyk1 = T, such that {i : yi = 1}
induces a connected subgraph of G}.

Equivalently, we will also think of any y 2 YT as the a
infected subset of nodes VI ⇢ V with size T . The DSI
problem can then be defined as follows.

Definition 1 (Diffusion Source Identification). Given one
sample y 2 YT , identify the source node s⇤ of the diffusion
process that generates y.

Challenges. The challenge of DSI intrinsically arises from
the loss of information in the observed data. Specifically,
by definition, we have a many-to-one mapping ⇣ : ZT !
YT , such that ⇣(·) maps a diffusion path to the correspond-
ing infection snapshot of the network. Information about
the infection order has been lost upon the observation of
data y. Nevertheless, the DSI problem looks to identify
the first node in the infection order, with access to only
one snapshot of the infection status. Note that obtaining
multiple snapshots over time does not reduce the difficulty
of DSI. This is because, given the current snapshot, later
observed data carry no additional information about the
source node due to the Markov property of the SI model.

3 A General Statistical Framework for DSI

with Confidence Guarantees

3.1 DSI as Parameter Estimation

We start by formulating DSI under a systematic statistical
framework, which will help in our design of better infer-

ence methods later on. Treating the network G as fixed and
s⇤ as the model parameter, the probability of generating
data y 2 YT can be represented by Ps⇤(Y = y) = p(y|s⇤).
where random variable Y denotes the observed data. The
identification of s⇤ can then be treated as a parameter es-
timation problem. Specifically, we consider the following
general parameter estimation framework. Given any dis-
crepancy function ` : YT ⇥ ZT ! [0,1), we want to
find an estimator of s⇤ based on the following optimization
problem:

minimizes Es`(y, Z) (1)
in which Z 2 ZT is the random diffusion path following
the SI model starting from parameter s and Es denotes the
expectation over Z. That is, we look to select the s that the
diffusion path Z it generates has the minimum expected
discrepancy from our observed data y.
Remark 1. An important design here is that the discrep-
ancy function ` is defined on YT ⇥ ZT , not on YT ⇥ YT .
That is, y will be compared with the random diffusion path
while not merely the snapshot induced by the path. This is
because Z contains richer information about the diffusion
process. As we show later, this turns out to be very crucial
for designing effective discrepancy functions.

Notice that our framework include a few previous methods
as special cases. Due to space limit, all formal proofs in
this paper have been deferred to the Appendix. Instead,
intuition and explanations are provided as needed.
Proposition 1. 1. If `rc(y, z) = 1 � I(y = ⇣(z)), when

the network is an infinite regular tree, procedure (1)
gives the rumor center of Shah & Zaman (2011).

2. If `se(y, z) = ky � ⇣(z)k22, the squared Euclidean
distance between y and ⇣(z), the discrepancy is equiv-
alent to the symmetric difference in (Nguyen et al.,
2016)2.

Proposition 1 also reveals some key drawbacks of the ru-
mor center method and its variants. First, the discrepancy
function `rc only takes two values, and it treats all config-
urations z with ⇣(z) 6= y equally. Therefore, such a func-
tion may not be sufficiently sensitive for general networks.
From this perspective, `se is potentially better. Second, and
importantly, both of the above discrepancy functions only
depend on ⇣(z), failing to leverage the diffusion order of
the z. Ignoring such information may also undermine the
performance. To overcome these drawbacks, we propose
the following family of discrepancy functions as a better
alternative. We call this family the canonical family of dis-
crepancy functions.
Definition 2 (Canonical Discrepancy Functions). Consider
a class of discrepancy functions ` that can be written in the

2However, different from our framework, (Nguyen et al.,
2016) used an approximation metric to this discrepancy for DSI.
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following form

`(y, z) = �
X

v:yv=1

I(v 2 z)h(tz(v)), (2)

in which tz(v) is the infection order of node v in path z
and h is a non-increasing weight function. When v /2 z,
we define tz(v) = 1.

The canonical form (2) is essentially a negative similar-
ity function. It incorporates both the infection status and
the infection order of z. The weight function h incorpo-
rates the diffusion order such that if z deviates from y at
an early stage, the deviation is treated as a stronger signal
for their discrepancy, compared with the case when they
only deviates at a later stage of the diffusion. Conceptually,
this canonical family is general enough to incorporate the
needed information for the diffusion process. In addition,
as shown in Section 3.4, it admits fundamental properties
that make the computation very efficient. As a special case,
we demonstrate that `se is equivalent to a discrepancy func-
tion with h(tz(v)) ⌘ 2, as follows

ky � ⇣(z)k22 =
nX

i=1

I(yi 6= ⇣(z)i) = 2T � 2
X

v:yv=1

I(v 2 z).

Therefore L2 is equivalent to Eq. (2) with f(tz(v)) ⌘ 2.

In this paper, we are particularly interested in the following
natural configuration as the discrepancy function, which
we call the “Averaged Deviation - inverse Time” (ADiT),
which takes the canonical family form (2) with the inverse
time weights:

h(tz(v)) =
1

tz(v)
. (3)

In Table 1 of Section 5, we show the simulation perfor-
mance of the single-point estimation by our framework
compared to other methods. Though our methods demon-
strate improvements, the accuracy is universally low in all
situations for all methods. Such an observation indicates
that it is generally impossible to recover the source node by
a single estimator with high accuracy. Indeed, as shown in
Shah & Zaman (2011); Dong et al. (2013); Yu et al. (2018),
even in the ideal infinite regular tree for which the rumor
center is proved to be optimal in the MLE sense, the proba-
bility of correct source node identification turns out to still
be low ( 0.3). Such a low accuracy is far from useful in
real-world applications, suggesting the necessity of devel-
oping alternative forms of inference, which is we embark
on in the next section.

3.2 Confidence Set

As mentioned previously, single point estimators suffer
from low success rates, rendering them unsatisfactory in

real-world applications. To identify the source node with a
nontrivial performance guarantee, we propose constructing
a small subset of nodes that provably contains the source
nodes with any pre-defined confidence. This insight moti-
vates our use of the confidence set as the DSI method.

Definition 3. Let Y be the random infection status of the
stochastic diffusion process starting from s⇤. A level 1� ↵
confidence set of the source node is a random set S(Y ) ⇢
V depending on Y for which

P(s⇤ 2 S(Y )) � 1� ↵.

Surprisingly, the idea of using confidence set to infer the
diffusion source – though arguably a natural one in statis-
tics – has not been explored much in the context of DSI.
The most relevant to ours are probably Bubeck et al.
(2017); Khim & Loh (2016) and Crane & Xu (2020).
Bubeck et al. (2017) considered identifying the first node
of a growing tree but not a diffusion process. Khim & Loh
(2016) extended the idea to the SI model but only for infi-
nite regular tree and asymptotic setting. Despite its theoret-
ical merits, this method is not practical. For example, even
consider the situation of an infinite 4-regular tree as the net-
work structure, applying the method of Khim & Loh (2016)
would indicate a confidence set of size 411 ⇡ 5 ⇥ 106, re-
gardless of the infected size T . This is far too large for
almost any applications, let alone the fact that infinite reg-
ular tree itself is unrealistic. Crane & Xu (2020) makes the
inference more effective, but still rely on the tree-structure
assumption.

We instead take a completely different yet natural approach
based on our statistical framework for the problem. To en-
sure the validity of the inference for any network structures,
we will rely on the general statistical inference strategy for
the confidence set construction. We first introduce a test-
ing procedure for the hypothesis H0 : s⇤ = s against the
alternative hypothesis H1 : s⇤ 6= s. Given a discrepancy
function `, data y and the node s under evaluation, define
the testing statistic to be our loss Ts(y) = Es`(y, Z) for
any data y. Then the p-value of the test is defined to be

 s = Ps(Ts(⇣(Z)) � Ts(y)). (4)

where the probability Ps is over the randomness of the path
Z generated from the random diffusion process starting
from s. The p-value is the central concept in statistical hy-
pothesis testing, and it gives a probabilistic characterization
of how extreme the observed y deviates from the expected
range for random paths that are truly from s (Lehmann &
Romano, 2006). For a level 1� ↵ confidence set, we com-
pute  s for all nodes s and construct the confidence set by

S(y) = {s :  s(y) > ↵}. (5)
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The following result guarantees the validity of the confi-
dence set constructed above.
Theorem 1. The confidence set constructed by (5) is a
valid 1� ↵ confidence set.

Notice that Theorem 1 is a general result, independent of
the network structure or the specific test statistic we use.
However, the validity of the confidence set only gives one
aspect of the inference. We would like to have small confi-
dence sets in practice since such a small set would narrow
down our investigation more effectively. The confidence
set size would depend on the network structure and the cor-
responding effectiveness of the discrepancy function (the
test statistic). We will use the proposed ADiT to define
our test statistic. As shown in our empirical study, it gives
excellent and robust performance across various settings.

3.3 Algorithmic Construction of Confidence Sets

The exact evaluation of the statistic Ts(y) and p-value  s

is infeasible for general graphs since the probability mass
function of the SI model is intractable. To overcome this
barrier, we resort to the Monte Carlo (MC) method for ap-
proximate calculation, with details in Algorithm 1. This
vanilla version turns out to be computationally inefficient.
However, we will introduce techniques to significantly im-
prove its computation efficiency afterwards.
Remark 2 (Monte Carlo setup). Note that we have two
layers of Monte Carlo evaluations. The first layer is the
loss function calculation in (6) and (7), while the second
layer is the p-value evaluation (8). The first layer shares
the same m samples. This is different from the classical
Monte Carlo, but would not break the validity for p-value
calculation. The properties of p-value calculation by Monte
Carlo method have been studied in detail by (Jockel, 1986;
Besag & Clifford, 1989).

Remark 3 (Choice of the sample number m). In theory,
the computation in Algorithm 1 is exact when m ! 1. In
practice, simple guidance about the choice of m can be de-
rived as follows. The critical step in Algorithm 1 is Step 7
for the p-value calculation since the MC errors from previ-
ous steps are usually in a lower order. For the correctness,
we only need to worry about the evaluation at node s⇤ when
the true p-value is close to ↵. Step 7 averages over m in-
dicators. By the central limit theorem, the MC estimate at
most misses the true p-value by roughly 2

p
↵(1� ↵)/m.

For example, if we are aiming for a 90% confidence set
where ↵ = 0.1, setting m = 10000 would indicate that
the MC at most misses the targeting confidence level by
0.006%, which is usually good enough in most applica-
tions. In our experiments, we use this m = 10000 and
it has been sufficient in all situations. Notice that this rec-
ommendation is more conservative than the ones used in
classical statistical inference problems (Jockel, 1986). In

Algorithm 1 Vanilla MC for Confidence Set Construc-
tion

1: Input: MC sample number m, confidence level ↵
2: Input: Network G, data y, discrepancy function `
3: for each infected node s 2 y do

4: Generate 2m samples zi 2 Z, i = 1, · · · , 2m from
the T -round diffusion process with source s on G.

5: Estimate expected loss Ts(y) of data y as

T̂s(y) =
1

m

2mX

i=m+1

`s(y, zi). (6)

6: For path zj , j = 1, · · · ,m, estimate Ts(⇣(zj)) as

T̂s(⇣(zj)) =
1

m

2mX

i=m+1

`(⇣(zj), zi). (7)

7: Estimate the p-value  s(y) as

 ̂s(y) =
1

m

mX

j=1

I(T̂s(⇣(zj)) � T̂s(y)). (8)

8: end for

9: return level 1� ↵ confidence set:

C↵(y) = {s 2 VI :  ̂s(y) > ↵}.

our experience, it might still be acceptable to use a smaller
m.

Remark 4 (Time complexity of the vanilla MC, and its

trivial parallelization). The time complexity of a standard
sequential implementation of Algorithm 1 is Õ(mT 2 +
m2T 2):3 (1) the first term is due to the MC sampling
(Bringmann & Panagiotou, 2017); (2) the second term is
from the statistic calculation (7) given the MC samples.
However, our algorithm can be trivially parallelized. In
particular, the for-loop in Step 3 can be distributed across
different s 2 Vi with any communication. This leads to a
parallel time complexity Õ(mT +m2T ). It is worthwhile
to compare this time cost with the rumor center of (Shah
& Zaman, 2011) which has Õ(dT ) linear complexity and
d is the maximum node degree. But the algorithm has to
be sequential (thus non-parallelizable). In summary, Al-
gorithm 1 has a better dependence on the network density
captured by d but has an additional quadratic dependence
on the number of samples m.

3As a convention, the Õ notation omits logrithmic terms.
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3.4 Fast Loss Estimation for the Canonical Family

A major computational bottleneck of Algorithm 1 is the
O(m2T ) time for estimating Es(`(y, Z)) in Equation (7)
for every j since we have to compute  ̂ for m samples, and
each  ̂ is the average over another m samples. Fortunately,
it turns out that, for canonical discrepancy family, this step
can be done in O(mT ) time, highlighting another advan-
tage of our proposed family of cost functions.

Instead of computing T̂s in Equation (7) by summing over
the sample i = m + 1, · · · , 2m, we can compute T̂s di-
rectly using only the “summary information” of these sam-
ples that can be computed and cached in advance. This
insight is possible due to the following alternative repre-
sentation of the T̂s(y) function in Equation (7):

T̂s(y) = � 1

m

X

v:yv=1

2mX

i=m+1

TX

k=1

h(k)I(tzi(v) = k)

= � 1

m

X

v:yv=1

TX

k=1

Mv,kh(k) (9)

where Mv,k counts the total number of samples in
zm+1, · · · , z2m in which node v is the k’th infected node
in the infection path. Let M 2 Rn⇥T be the matrix con-
taining the entries Mv,k. Note that, there are at most mT
nonzero entries in M since each sample only has T nodes.
These entries can be computed in O(mT ) time simply by
updating the corresponding Mv,k entries during sampling.
With these non-zero Mv,k entries, we can then compute
ĥ(v) =

PT
k=1 Mv,kh(k) for all the v that showed up in

our samples in O(mT ) time. Finally, given the previ-
ous ĥ(v), we can compute any T̂s(y) in O(T ) time where
y = ⇣(z1), · · · , ⇣(zm), which thus in total takes an addi-
tional O(mT ) time. This overall takes O(mT ) time.

4 Monte Carlo Acceleration via Pooled

Sampling

In subsection 3.4, we reduced the computation time for es-
timating a single p-value to Õ(mT ), which is arguably the
minimum possible in our framework since even sampling
m samples already takes Õ(mT ). In this section, we will
introduce efficient strategies to reduce another major com-
putational cost in our algorithm – the MC sampling. Our
techniques will “borrow” MC samples of one node for the
inference task of another node by leveraging the network
structure and properties of the SI model. Consequently, we
only need to generate MC samples for a subset of the in-
fected nodes, which may effectively reduce the computa-
tional cost.

4.1 Surjective Importance Sampling for

Single-Degree Nodes

A node with only one connection in the network is called
a single-degree node. Suppose node u 2 VI is a single
degree node with the only neighbor v0 that is also infected.
Since any diffusion process starting from u must pass v0,
we can then use the distribution of paths from v0 to infer
the distribution of paths from u. However, the converse is
not true — a diffusion path from v0 may not pass u, and
even if it passes u, this may not occur as the first infection.
Therefore, certain mapping is needed to connect the two
diffusion processes. The following theorem formulates this
intuition.

Theorem 2. Let u be a single-degree node in the graph G
with the only neighbor node v0. If a path z 2 ZT starting
from v0 contains u

z = {v0, s1, s2, · · · , sK�1, u, sK+1, · · · , sT },

define z’s matching path from u as

fu(z) = {u, v0, s1, · · · , sK�1, sK+1, · · · , sT }. (10)

In this case, the likelihood ratio between z and fu(z) is

p (fu(z)|u)
p (z|v0)

=
1

P (u|v0, s1 · · · sK�1)

⇥ 1
QK�1

k=1 (1� P (sk|v0, s1 · · · sk�1))
(11)

If the path z from v0 that does not contain u, we define the
ratio p (fu(z)|u)/p (z|v0) to be 0.

Notice that all terms on the right-hand side of (11) are avail-
able when we sample a path from the diffusion process
starting at v0, thus given a sampled path z, computing the
likelihood ratio only introduces negligible computational
cost. Intuitively, according to Theorem 2, when the MC
samples of v0 are available, they can be used to compute
the p-value for node u based on a similar idea to impor-
tance sampling (L’Ecuyer & Owen, 2009). However, the
regular importance sampling cannot be directly applied be-
cause the likelihood ratio is only available between z and
fu(z) under the mapping of fu. Therefore, we need a gen-
eralized version of the importance sampling. We name this
procedure the surjective importance sampling and give its
property in the following theorem. We believe that this the-
orem could be of general interest beyond our context.

Theorem 3 (Surjective Importance Sampling). Suppose p1
and p2 are two probability mass functions for discrete ran-
dom vector Z defined on C1 and C2. Let E1 and E2 de-
note the expectation with respect to p1 and p2, respectively.
Given surjection � : C0

1 ! C2, defined on a subset C0
1 ⇢ C1,

we define the inverse mapping by ��1(z̃) = {z 2 C0
1 :
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�(z) = z̃} for any z̃ 2 C2. For a given bounded real func-
tion of interest, g, define

⌘ = E2[g(Z)] and ⌘̂ =
1

m

mX

i=1

g(�(Zi))

|��1(�(Zi))|
p2(�(Zi))

p1(Zi)

where Z1, Z2, · · · , Zm is a size-m i.i.d. sample from dis-
tribution p1, and if Zi 62 C0

1, we define p2(�(Zi)) = 0. We
have

lim
m!1

⌘̂ = ⌘ a.s.

Notice that the standard importance sampling is a special
case of Theorem 3 when � is the identity mapping. Theo-
rem 2 and 3 toghether would serve as a cornerstone for our
use of the MC samples from v0 to make inference of u.

Corollary 1. For a single degree node u and its neighbor
v0, let zi, i = 1, · · · ,m be the m i.i.d. paths generated
from the diffusion process with source v0. For any bounded
function g, we have

lim
m!1

1

m

mX

i=1

g (fu(zi))
P (fu(zi)|u)
P (zi|v0)

1

T
= Eu[g(Z)] a.s.

in which fu(zi) and the likelihood ratio is given by Theo-
rem 2.

Based on Corollary 1, when g(z) = `(y, z) or g(z) =
I(Tu(⇣(z)) � Tu(y)), E[g] corresponds to the test statis-
tic Tu(y) or the p-value  u(y). Consequently, the MC
sampling for u can be avoided. Instead, to find the p-
value for u, Equation (7) in Algorithm 1 can be replaced
by T̂u (⇣ (fu (zj))) equalling the following

1

m

2mX

i=m+1

` (⇣ (fu (zj)) , fu(zi))
P (fu(zi)|u)
P (zi|v0)

1

T

and Equation (8) can be replaced by  ̂u(y) equalling the
following

1

m

mX

i=1

I
✓
T̂u (⇣ (fu(zj))) � T̂u(y)

◆
P (fu(zi)|u)
P (zi|v0)

1

T
,

where zj , j = 1, · · · , 2m are the MC samples generated
from v0. The same operation can be used for T̂u (y)). The
computational strategy for canonical discrepancy functions
can also be extended in this setting (see Appendix C).

4.2 Permuted Sampling for Isomorphic Nodes

When the network structure is in some sense “symmetric”
for two nodes, the inference properties of the MC samples
from one node can be viewed as stochastically equivalent
to the MC samples from the other node after the symmetric

reflection. We call such a property isomorphism. Denote
the node u’s kth order neighborhood– the set of all nodes
(exactly) k hops away from u– by Nk(u). The following
definition for isomorphism rigorously formulates the afore-
mentioned idea.

Definition 4. Any two nodes u, v in a network are
first-order isomorphic if there exists a permutation ⇡ :
{1, 2, · · · , n} ! {1, 2, · · · , n}, such that: (1) ⇡(u) = v;
(2) ⇡(i) = i, if i /2 {u, v}[N1(u)[N1(v); (3) A = A⇡̃,⇡̃ ,
where A⇡̃,⇡̃ is the resulting matrix by applying permutation
⇡ on the rows and columns of A simultaneously.

For illustration, consider a simplified case of the isomor-
phism where u and v have exactly the same connections.
In this case, ⇡ only swaps u and v and remains the identity
mapping for all other nodes. For this pair of u, v, the diffu-
sion process properties would be the same if we swap the
positions of u and v. Definition 4 is more general than the
above simplified case as it allows permutation to the first-
order neighbors. Under this definition of isomorphism, the
following theorem shows that we can use the MC samples
from one node to make inference of its isomorphic nodes
after applying the permutation.

Theorem 4. If u and v are first-order isomorphic under the
permutation ⇡. If Z = {u, v1, v2, · · · , vT�1} is a random
diffusion path from source u. Define the permuted path

Z⇡ = {⇡(u),⇡(v1), · · · ,⇡(vT�1)}.

Then Z⇡ has the same distribution as a random diffusion
path from source v.

To use the MC samples of one node to its isomorphic nodes
according to Theorem 4, we need an efficient algorithm to
identify all isomorphic pairs and the corresponding permu-
tations. Directly checking Definition 4 is costly. To speed
up the computation, we identify necessary conditions for
isomorphism in Proposition 2.

Proposition 2. If u and v are first-order isomorphic, we
must have du = dv and D1(u) = D1(v) where du and
dv are the degrees of u and v, D1(u) and D2(v) are the
degree sequence (sorted in ascending order) of N1(u) and
N1(v). Furthermore, u and v have the same second-order
neighbor sets. That is, N2(u) = N2(v).

Based on Proposition 2 we can efficiently identify isomor-
phism using pre-screening steps. This turns out to signifi-
cantly speed up our computation. Details of the algorithm
are described by Algorithm 2 in Appendix B. With the iso-
morphic relations available, we can partition the nodes into
isomorphic groups. Then MC sampling is only needed for
one node in each group, and the MC samples can be shared
within the group according to Theorem 4. Specifically, sup-
pose Z1, · · ·Z2m are sampled from the diffusion process
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from u. If u and v are isomorphic with permutation ⇡, we
can use (Z1)⇡, (Z2)⇡, · · · , (Z2m)⇡ as the MC samples of
v in Algorithm 1.

Remark 5. Definition 4 can be extended to higher-order
neighborhoods, identifying more isomorphic pairs. How-
ever, the complexity of identifying such pairs increases ex-
ponentially with the order of neighbors, which may over-
whelm the saved time on the MC side. The first-order iso-
morphism turns out to give the most desirable tradeoff in
terms of computational efficiency.

5 Experimental Studies

In this section, we evaluate our proposed methods on well-
studied random network models. We generate networks
from three random network models: random 4-regular
trees, the preferential attachment model (Barabási & Al-
bert, 1999) and the small-world (S-W) network model
(Watts & Strogatz, 1998). In network science, the pref-
erential attachment model is usually used to model the
scale-free property of networks that is conjectured by many
as ubiquity in real-world networks (Barabási, 2013). The
small-world property is believed to be prevalent in social
networks (Watts & Strogatz, 1998). The network size is
N = 1365 (the size of regular tree with degree 4 and
depth 6). The networks are sparse, with an average de-
gree below 4. The Monte Carlo size m is 10000. Source
nodes are randomly sampled, and the reported results are
an averaged across 100 replications. All source code of
this paper can be found in hyperlink https://github.com/lab-
sigma/Diffusion-Source-Identification.

5.1 Confidence validity evaluation

First, we set the infection size T = 150. We start with
evaluating the performance of the single-point source esti-
mation accuracy from the rumor center and distance cen-
ter of (Shah & Zaman, 2011; Khim & Loh, 2016; Bubeck
et al., 2017; Yu et al., 2018), as well as estimator using our
proposed framework with discrepancy functions `se and
ADiT. The result is shown in the Table 1. Though the two
estimators based on our framework are better, the overall
message from the table is not promising. All of the meth-
ods, including ours, give poor accuracy that is too low to be
useful in applications. Such a negative result convincingly
shows that the DSI problem is generally too difficult for the
single-point estimation strategy to work, and exploring the
alternative confidence set inference is necessary.
Table 2 shows the coverage rate of the confidence sets, with
the squared Euclidean distance and the ADiT as the dis-
crepancy functions. Notably, the proposed confidence set
procedure delivers the desired coverage (up to the simula-
tion error). Meanwhile, the size of the confidence set varies
substantially depending on the network structure. For reg-

Table 1: The correct rate of single-point estimation methods
across 200 replications.

REG. TREE PREF. ATT. S-W

RUMOR CENTER 0 0 0.004
DIST. CENTER 0 0 0
EUCLIDEAN (OURS) 0 0 0.099
ADiT (OURS) 0 0 0.128

Table 2: The average coverage rate of the confidence sets across
200 replications. The standard error for the coverage rate is about
3% and 4% for 90% and 80% confidence sets, respectively.

REG. TREE PREF. ATT. S-W

EUCLIDEAN-90% 90.4% 90.8% 90.2%
SIZE 74.9 81.2 14.3
ADiT-90% 86.2% 90.7% 91.5%
SIZE 56.9 64.8 16.2
EUCLIDEAN-80% 84% 82% 81.1%
SIZE 50.0 57.5 10.2
ADiT-80% 77.4% 82.7% 79.9%
SIZE 47.5 51.0 9.2

ular trees and scale-free networks, the ADiT works much
better than the Euclidean distance, indicating that the dif-
fusion order is informative in this type of network struc-
ture. For the small-world networks, the two are very simi-
lar. This may indicate that for well-connected networks, the
diffusion order is less informative. In general, we believe
the adaptivity of the ADiT- based confidence set is always
preferable.
To obtain a comprehensive view of the tradeoff between the
set size and confidence level, we show the relationship be-
tween the confidence set’s average size and the confidence
level in Figure 2. The relation is slightly sup-linear. In
connection with the single-point estimation results, notice
that for small-world networks, the confidence set with a
confidence level 20% has average size of around 1. In con-
trast, the regular tree and preferential attachment network
are more difficult, and to guarantee at 10%, the average size
of the confidence set is already about 5. These observations
verify the results in Table 1 and support our argument that,
in general, inferring the source by a single-point estimator
is hopeless. Figure 3 shows the variation of the size with
respect to T . It can be seen that the size, within the cur-
rent range, follows a roughly linear trend with T . Again,
though the ADiT is slightly worse than the Euclidean loss
in small-world networks, the difference is negligible. In the
other two settings, the improvement of ADiT is significant.

5.2 Computational Improvement by the pooled MC

Finally, we also evaluate the timing improvements achieved
by the pooled MC strategies. The power of the pooled MC
strategies depends on network structures, as expected. The
timing comparison for the pooled MC strategies is included
in Table 3. The timing included is only the sequential ver-

https://github.com/lab-sigma/Diffusion-Source-Identification
https://github.com/lab-sigma/Diffusion-Source-Identification
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Figure 2: The average size of confidence sets for different confidence levels.
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Figure 3: The average size of 90% confidence sets for T values.

Table 3: The timing comparison of the sequential running time
for the proposed pooled MC strategies (in sec.).

REG. TREE PREF. ATT. S-W

VANILLA MC 2606 3129 3209
IMPORT. SAMPL. 1679 1730 3253
ISOMORPHISM 1657 1988 3138
BOTH 1219 1360 3114

sion of our method for a fair comparison with the rumor
center. As can be seen, with both of the pooled MC strate-
gies used, we can reduce the timing by about 60% for tree
structure and the preferential attachment networks, but the
effects on small-world networks are negligible.

Meanwhile, notice that our inference procedure can be par-
allelized. We give a parallel algorithm in the Appendix sec-
tion (see Algorithm 3 in Appendix D). It needs MC sam-
pling for only one node in each group, and the calculations
for other nodes can be done using pooled MC methods.
Table 4 includes the timing results of the parallel version
implementation based on 20 cores in the same settings as
Table 3. With 20 cores, the time needed for a confidence set
construction is around 1 minute for cases when the pooled
MC methods are effective. For reference, the average tim-
ing for finding the rumor center is about 2 seconds. How-
ever, with the extra computational cost, our method pro-
vides confidence sets at all specified levels within one run,
with guaranteed accuracy for any network structures. We
believe it is generally a wise tradeoff.

Table 4: Comparison of the parallel running time for the proposed
pooled MC strategies (in sec.) on 20 cores.

REG. TREE PREF. ATT. S-W

VANILLA MC 150.8 176.0 184.9
IMPORT. SAMPL. 116.7 96.1 185.9
ISOMORPHISM 111.0 130.3 184.3
BOTH 60.4 76.5 183.4

To obtain a better sense of its practical effectiveness,
we also evaluate the timing improvement brought by the
pooled MC on real-world network structures. In particu-
lar, we take 381 network data studied in (Ghasemian et al.,
2020) from 6 domains (biological, economic, informa-
tional, social, technological and transportation networks).
The pooled MC can give more than 40% computational im-
provement on economic and social networks, and deliver
10% to 20% improvement on biological and informational
networks. Details can be found in Appendix E.

6 Summary

We have introduced a statistical inference framework for
diffusion source identification on networks. Compared
with previous methods, our framework is more general and
renders salient insights about the problem. More impor-
tantly, within this framework, we can construct the confi-
dence set for the source node in a more natural and prin-
cipled way such that the success rate can be guaranteed on
any network structure. To our knowledge, our method is
the first DSI method with theoretical guarantees for gen-
eral network structures. We also propose efficient compu-
tational strategies that are potentially useful in other prob-
lems as well.
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