Bayesian Deep Learning via Subnetwork Inference

MNIST Rotation CIFAR10 Corruption
0
psosese
—~1 4
-0.5 L
5 asee-
5 ~1.0 //"
. [
4 A v
:]] -1.5
_5 o
2.0
—6 -
—7 -2.5
- 60 —— 120 —— 180 | _39 4 1 ——3 ——35
=9 = T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
N N

Figure 6. Rotated MNIST (left) and Corrupted CIFAR10 (right) results for deep ensembles (Lakshminarayanan et al., 2017) with large
numbers of ensemble members (i.e. up to 55). Horizontal axis denotes number of ensemble members, and vertical axis denotes
performance in terms of log-likelihood. Straight horizontal lines correspond to the performance of our method, as a reference. Colors
denote different levels of rotation (left) and corruption (right).

A. Additional Image Classification Results

In this appendix, we provide additional experimental results for image classification tasks.

A.1. Comparing the Parameter Efficiency of Subnetwork Linearized Laplace with Deep Ensembles

Despite, the promising results shown by Subnetwork Linearized Laplace in Section 6.3, we note that our method has a
notably larger space complexity than our baselines. We therefore investigate the parameter efficiency of our method.

Our ResNet18 Model has ~11.2M parameters. Our subnetwork’s covariance matrix contains 42,4382 parameters. This
totals ~1,830M parameters. This same amount of memory could be used to store around 163 ensemble elements. In Fig. 6
we compare our subnetwork Linearized Laplace model with increasingly large ensembles on both rotated MNIST and
corrupted CIFAR10. Although the performance of ensembles improves as more networks are added, it plateaus around
15 ensemble elements. This is in agreement with the findings of recent works (Antoran et al., 2020; Ashukha et al., 2020;
Lobacheva et al., 2020). At large rotations and corruptions, the log likelihood obtained by Subnetwork Linearised Laplace
is greater than the asymptotic value obtained by ensembles. This suggests that using a larger number of parameters in a
approximate posterior covariance matrix is a more efficient use of space than saving a large number of ensemble elements.
We also note that inference in a very large ensemble requires performing a forward pass for every ensemble element. On the
other hand, Linearised Laplace requires performing one backward pass for every output dimension and one forward pass.

A.2. Scalability of Subnetwork Linearised Laplace in the number of Weights

The aim of subnetwork inference is to scale existing posterior approximations to large networks. To further validate that this
objective can be achieved, we perform subnetwork inference in ResNet50. We use a similar (slightly smaller) subnetwork
size than we used with ResNet18: our subnetwork contains 39,190 / 23,466,560 (0.167%) parameters. The results obtained
with this model are displayed in Fig. 7. Subnetwork inference in ResNet50 improves upon a simple MAP estimate of the
weights in terms of both log-likelihood and calibration metrics.

A.3. Out-of-Distribution Rejection

In this section we provide additional results on out-of-distribution (OOD) rejection using predictive uncertainty. First, we
train our models on a source dataset. We then evaluate them on the test set from our source dataset and on the test set of
a target (out-of-distribution) dataset. We expect predictions for the target dataset to be more uncertain than those for the
source dataset. Using predictive uncertainty as the discriminative variable we compute the area under ROC for each method
under consideration and display them in Table 1. The CIFAR-SVHN and MNIST-Fashion dataset pairs are chosen following
Nalisnick et al. (2019). On the CIFAR-SVHN task, all methods perform similarly, except for ensembles, which clearly does
best. On MNIST-Fashion, SWAG performs best, followed by Subnetwork Linearised Laplace and ensembles.

Bayesian Deep Learning via Subnetwork Inference

04 o——=

0.8 - ——— Ours

0.6 -

error
LL

0.4

0.2 4

0.0 1

T T
120 150 180 0 120 150 180

=]
(%)
=]

0.6 -

1.0
0.4

ECE
brier score

02 - 057

0.0 - & 0.0 =

=}
W
S

90
rotation (°)

120 150 180 0 90 120

rotation (°)

150 180

Figure 7. MNIST rotation results for ResNet-50, reporting predictive error, log-likelihood (LL), expected calibration error (ECE) and brier
score. We choose a subnetwork containing only 0.167% (39,190 / 23,466,560) of the parameters of the full network.

Table 1. AUC-ROC scores for out-of-distribution detection, using CIFAR10 vs SVHN and MNIST vs FashionMNIST as in- (source) and
out-of-distribution (target) datasets, respectively.

SOURCE TARGET \ OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG
CIFAR10 SVHN 0.85+0.03 0.86-+0.02 0.85+0.01 0.86+0.02 0.91+0.00 0.86+0.02 0.83+0.00
MNIST Fashion | 0.924+0.05 0.75+0.02 0.82+0.12 0.75+0.01 0.90+0.09 0.724+0.03 0.97+0.01

We also simulate a realistic OOD rejection scenario (Filos et al., 2019) by jointly evaluating our models on an in-distribution
and an OOD test set. We allow our methods to reject increasing proportions of the data based on predictive entropy before
classifying the rest. All predictions on OOD samples are treated as incorrect. Following (Nalisnick et al., 2019), we use
CIFAR10 vs SVHN and MNIST vs FashionMNIST as in- and out-of-distribution datasets, respectively. Note that the SVHN
test set is randomly sub-sampled down to a size of 10,000 to match that of CIFAR10. The results are shown in Fig. 8. On
CIFAR-SVHN all methods perform similarly, with exceptions being ensembles, which perform best and SWAG which does
worse. On MNIST-Fashion SWAG performs best, followed by Subnetwork Linearised Laplace. All other methods fail to
distinguish very uncertain in-distribution data from low uncertainty OOD points.

CIFAR10 vs SVHN

MNIST vs Fashion

accuracy

50 75 100 0

25

50

—— Ours

% rejected

—+— Diag-Lap Dropout ~ —--— Ours (Rand)

Figure 8. Rejection-classifi

% rejected

Ensemble MAP ——-

cation plots.

Bayesian Deep Learning via Subnetwork Inference

A 4. Additional Rotation and Corruption Results

We complement our results from Fig. 4 in the main text with results on additional calibration metrics: ECE and Brier Score,
in Fig. 9. Please refer to the appendix of (Antoran et al., 2020) for a description of these.
Rotated MNIST Corrupted CIFAR10

0.8

0.4 -

0.6

0.3 o

error

0.4 -

02+
—— Ours Ensemble

—+— Diag-Lap ---= MAP
"""" Dropout —— SWAG 0.1 -
—=-- Ours (Rand) ——- VOGN

0.0 4

LL

0.7 4

0.5

0.4

ECE

0.2 o

0.1 o

0.0 4

12+

0.8

brier score

0.6 -

0.4

0.2 o

0.0 o

— 1 1 1 1 1 T T 1T 1 T T T T T T T T
0 30 60 90 120 150 180 1 2 3 4 5

rotation (°) corruption

Figure 9. Full MNIST rotation and CIFAR10 corruption results, for ResNet-18, reporting predictive error, log-likelihood (LL), expected
calibration error (ECE) and Brier score, respectively (from top to bottom).

Bayesian Deep Learning via Subnetwork Inference

For reference, we provide our results from Fig. 4 and Fig. 9 in numerical format in the tables below.

Table 2. MNIST — no rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —0.07+0.01 —0.01+0.00 —0.01+x0.00 —0.04+0.03 —0.01+0.00 —0.01+0.00 —0.01+0.00 —0.14+nan

error 0.01+0.00 0.00+0.00 0.00=+0.00 0.01+0.01 0.00+0.00 0.00+0.00 0.00+0.00 0.01+nan

ECE 0.05+0.01 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 0.10+nan

brier score 0.02+0.00 0.01=+0.00 0.01=+0.00 0.02=+0.01 0.01+0.00 0.01=+0.00 0.01=+0.00 0.04+nan
Table 3. MNIST — 15° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —0.14+0.02 —0.05+0.00 —0.05+0.00 —0.11+0.08 —0.04+0.00 —0.05+0.00 —0.04+0.00 —0.19+nan

error 0.02+0.00 0.02+0.00 0.01=+0.00 0.03+0.02 0.01+0.00 0.02+0.00 0.01+0.00 0.02+nan

ECE 0.08+0.01 0.00+0.00 0.00+0.00 0.01+0.01 0.00+0.00 0.00+0.00 0.00+0.00 0.12+nan

brier score 0.05+0.01 0.03=+0.00 0.02=+0.00 0.05=+0.03 0.02+0.00 0.02=+0.00 0.02=+0.00 0.07+nan
Table 4. MNIST — 30° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —0.42+0.04 —0.36+0.01 —0.32+0.02 —0.444+0.06 —0.28+0.02 —0.39+0.01 —0.30+0.00 —0.51+nan

error 0.11+0.01 0.10+0.00 0.09+0.01 0.12+0.01 0.08+0.01 0.10+0.00 0.08+0.00 0.14+nan

ECE 0.10+0.02 0.04+0.01 0.03=+0.00 0.06=+0.01 0.02+0.00 0.05+0.00 0.04+0.00 0.13+nan

brier score 0.19+0.02 0.16+0.00 0.14+0.01 0.18+0.02 0.12+0.01 0.16=+0.00 0.12+0.00 0.23+nan
Table 5. MNIST — 45° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —1.09+0.03 —1.60+0.05 —1.44+0.11 —1.68+0.20 —1.36+0.07 —1.75+0.06 —1.35+0.02 —1.15+nan

error 0.36+0.01 0.35+0.01 0.33+0.01 0.35+0.03 0.31+0.01 0.35+0.01 0.29+0.00 0.40+nan

ECE 0.03+0.01 0.22+0.01 0.19+0.02 0.22+0.02 0.17+0.01 0.23+0.01 0.18+0.00 0.01+nan

brier score 0.49+0.02 0.55+0.02 0.52+0.02 0.55+0.04 0.48+0.02 0.56+0.02 0.46+0.01 0.53+nan
Table 6. MNIST — 60° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —2.10+0.03 —3.85+0.18 —3.54+0.23 —4.11+0.66 —3.60+0.10 —4.294+0.21 —2.95+0.08 —1.92+nan

error 0.63+0.01 0.63+0.01 0.62+0.01 0.62+0.05 0.61+0.01 0.63+0.01 0.53+0.02 0.64+nan

ECE 0.25+0.02 0.46+0.02 0.43+0.02 0.47+0.06 0.4240.01 0.48+0.02 0.36+0.02 0.17+nan

brier score 0.85+0.02 1.04+0.03 1.00+0.03 1.05+0.10 0.98+0.02 1.07+0.03 0.86+0.03 0.80+nan

Bayesian Deep Learning via Subnetwork Inference

Table 7. MNIST — 75° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —3.02+0.07 —5.93+0.28 —5.49+0.38 —6.92+0.32 —5.74+0.15 —6.63+0.33 —4.46+0.18 —2.54+nan

error 0.80+0.02 0.79+0.01 0.79+0.01 0.81+0.00 0.78+0.01 0.79+0.01 0.72+0.02 0.77+nan

ECE 0.41+0.04 0.62+0.03 0.59+0.01 0.65+0.01 0.58+0.01 0.64+0.03 0.51+0.02 0.26+nan

brier score 1.08+0.04 1.34+0.04 1.30=+0.02 1.39+0.01 1.29+0.02 1.37+0.04 1.17+0.04 0.95+nan
Table 8. MNIST — 90° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —3.35+0.13 —6.46+0.15 —6.1840.41 —7.32+0.67 —6.39+0.17 —7.18+022 —5.63+0.12 —2.91+nan

error 0.84+0.02 0.84+0.01 0.84+0.01 0.85+0.01 0.84+0.01 0.84+0.01 0.82+0.02 0.81+nan

ECE 0.43+0.03 0.64+0.04 0.62+0.01 0.66=+0.03 0.62+0.01 0.66+0.04 0.60+0.01 0.29+nan

brier score 1.13+0.03 1.40+0.05 1.37+0.01 1.44+0.04 1.36+0.01 1.43+0.05 1.34+0.02 1.02+nan
Table 9. MNIST — 105° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —3.59+0.05 —7.06+0.45 —6.70+0.52 —7.69+0.99 —7.01+0.17 —7.87+053 —6.28+0.19 —3.10+nan

error 0.85+0.02 0.84+0.02 0.84+0.01 0.85+0.01 0.84+0.01 0.84+0.02 0.81+0.00 0.81+nan

ECE 0.4740.04 0.67+0.05 0.63+0.01 0.67+0.03 0.644+0.01 0.68+0.04 0.61+0.01 0.34+nan

brier score 1.17+0.05 1.44+0.07 1.38+0.02 1.44+0.04 1.40+0.01 1.46+0.07 1.34+0.02 1.07+nan
Table 10. MNIST — 120° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —3.43+0.07 —6.73+0.53 —6.62+0.39 —7.92+0.59 —6.73+0.11 —7.53+0.63 —6.49+036 —3.07+nan

error 0.80+0.02 0.79+0.02 0.78=+0.01 0.81=+0.01 0.78+0.01 0.79+0.02 0.76=+0.02 0.76+nan

ECE 0.40+0.03 0.62+0.05 0.58+0.01 0.65+0.04 0.59+0.01 0.63+0.04 0.58+0.03 0.30+nan

brier score 1.10+0.03 1.35+0.07 1.29+0.02 1.39+0.06 1.30+0.01 1.36+0.07 1.27+0.04 1.04+nan
Table 11. MNIST — 135° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —3.24+0.06 —6.43+0.38 —6.46+028 —7.05+0.88 —6.57+0.10 —7.2440.48 —6.40+0.37 —2.89+nan

error 0.71+0.02 0.71+0.02 0.70=+0.01 0.71+0.01 0.70+0.01 0.71+0.02 0.70+0.02 0.67+nan

ECE 0.32+0.01 0.55+0.03 0.52+0.01 0.56+0.02 0.52+0.01 0.56+0.03 0.53+0.02 0.25+nan

brier score 0.99+0.02 1.21+0.05 1.17+0.02 1.22+0.04 1.17+o0.01 1.23+0.05 1.18+0.04 0.94+nan
Table 12. MNIST — 150° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —3.2540.05 —6.56+0.18 —6.62+0.33 —7.04+0.36 —6.88+0.11 —7.41+025 —6.39+027 —2.69+nan

error 0.63+0.02 0.63+0.01 0.63+0.00 0.65+0.01 0.62+0.01 0.63+0.01 0.63+0.01 0.60+nan

ECE 0.29+0.01 0.50+0.01 0.48+0.01 0.52+0.01 0.48+0.01 0.51+0.01 0.49+0.01 0.23+nan

brier score 0.92+0.02 1.10+0.02 1.07+0.01 1.13+0.02 1.06+0.01 1.11+0.02 1.08+0.02 0.85+nan
Table 13. MNIST — 165° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —3.42+0.12 —7.01+0.15 —7.08+0.39 —7.80+0.12 —7.51+0.11 —7.914+0.18 —6.63+024 —2.67+nan

error 0.58+0.01 0.58+0.01 0.58=+0.01 0.58=+0.00 0.57+0.01 0.58+0.01 0.59+0.00 0.56+nan

ECE 0.32+0.02 0.49+0.01 0.48+0.01 0.49+0.01 0.48+0.00 0.51+0.01 0.48+0.00 0.25+nan

brier score 0.90+0.02 1.05+0.01 1.04+0.01 1.05+0.01 1.03+0.01 1.07+0.02 1.03+0.01 0.82+nan

Bayesian Deep Learning via Subnetwork Inference

Table 14. MNIST — 180° rotation.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —3.32+0.13 —6.63+0.18 —6.87+0.32 —7.10+0.47 —7.16+0.16 —7.43+020 —6.61+022 —2.71+nan

error 0.56+0.01 0.56=+0.01 0.56=+0.00 0.55=+0.01 0.55+0.00 0.56+0.01 0.57+0.00 0.55+nan

ECE 0.29+0.02 0.46+0.01 0.45+0.00 0.46-+0.00 0.46+0.01 0.48+0.01 0.47+0.01 0.25+nan

brier score 0.86+0.02 1.00+0.01 0.99+0.01 0.99+0.01 0.99+0.00 1.01+0.02 1.01+0.01 0.82+nan

Table 15. CIFAR10 — no corruption.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —0.27+0.00 —0.43+0.00 —0.37+0.01 —0.50+0.02 —0.21+0.01 —0.464+0.02 —0.48+0.01 —0.61+nan

error 0.09+0.00 0.08=+0.00 0.08=+0.00 0.09+0.00 0.06+0.00 0.08+0.00 0.11+0.00 0.21+nan

ECE 0.01+o0.00 0.06+0.00 0.04+0.00 0.06+0.00 0.01+o0.00 0.06+0.00 0.07+0.00 0.03+nan

brier score 0.13+0.00 0.14+0.00 0.13=+0.00 0.15=+0.00 0.09+0.00 0.14+0.00 0.17+0.00 0.30+nan
Table 16. CIFAR10 — level 1 corruption.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —0.51+0.01 —0.91+0.01 —0.80+0.02 —1.03+0.02 —0.50+0.02 —0.96+0.02 —0.89+0.02 —0.99+nan

error 0.17+0.01 0.16+0.00 0.16=+0.00 0.17=+0.00 0.13+0.00 0.16+0.00 0.17+0.00 0.32+nan

ECE 0.03+0.00 0.11=+0.00 0.10=+0.00 0.13=+0.00 0.04+0.00 0.12+0.01 0.11=+0.00 0.03+nan

brier score 0.24+0.00 0.27+0.00 0.25+0.00 0.29+0.00 0.19+0.00 0.27+0.01 0.29+0.00 0.44+nan
Table 17. CIFAR10 — level 2 corruption.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —0.73+0.01 —1.2940.06 —1.20+0.02 —1.50+0.12 —0.80+0.01 —1.404+0.03 —1.21+000 —1.31+nan

error 0.2340.00 0.22+0.01 0.22+0.00 0.23+0.01 0.19+0.00 0.22+0.00 0.22+0.00 0.40+nan

ECE 0.06+0.00 0.16+0.01 0.14=+0.00 0.17=+0.01 0.07+0.00 0.16=+0.00 0.15+0.00 0.10+nan

brier score 0.33+0.00 0.37+0.01 0.35+0.01 0.40=+0.02 0.28+0.00 0.37+0.01 0.37+0.00 0.56+nan
Table 18. CIFAR10 — level 3 corruption.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —1.06+0.02 —2.06+0.12 —1.85+0.07 —2.13+0.17 —1.2840.03 —2.1840.08 —1.63+0.03 —1.83+nan

error 0.32+0.01 0.31+0.01 0.31+0.01 0.31+0.01 0.28+0.00 0.31+0.01 0.28+0.00 0.51+nan

ECE 0.11+0.01 0.24+0.01 0.21+0.01 0.24+0.01 0.12+0.00 0.24+0.01 0.20+0.00 0.19+nan

brier score 0.46+0.01 0.54+0.02 0.50+0.02 0.54+0.03 0.42+0.00 0.54+0.02 0.47+0.01 0.72+nan
Table 19. CIFAR10 — level 4 corruption.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —1.25+0.03 —2.43+0.18 —2.2840.10 —2.54+0.18 —1.56+0.05 —2.57+0.15 —1.95+0.04 —1.99+nan

error 0.36+0.01 0.35+0.01 0.35+0.01 0.35+0.01 0.32+0.01 0.35+0.01 0.32+0.00 0.54+nan

ECE 0.13+0.01 0.27+0.01 0.24+0.01 0.27+0.01 0.14+0.01 0.27+0.02 0.23+0.00 0.22+nan

brier score 0.5140.02 0.60+0.03 0.57+0.01 0.61+0.02 0.47+0.01 0.60+0.03 0.53+0.00 0.76+nan
Table 20. CIFARI10 - level 5 corruption.

OURS OURS (RAND) DROPOUT DIAG-LAP ENSEMBLE MAP SWAG VOGN

LL —1.47+0.03 —2.824+0.11 —2.71+0.13 —3.20+0.13 —1.88+0.05 —3.03+0.10 —2.31+0.09 —2.00+nan

error 0.41+0.00 0.40+0.01 0.40+0.01 0.41+0.01 0.37+0.01 0.40+0.00 0.36+0.01 0.54+nan

ECE 0.16+0.01 0.31=+0.01 0.28=+0.01 0.33+0.02 0.17+0.01 0.31+0.01 0.27+0.01 0.19+nan

brier score 0.58+0.00 0.69+0.01 0.65=+0.01 0.72+0.03 0.55+0.01 0.69+0.01 0.61+0.01 0.75+nan

Bayesian Deep Learning via Subnetwork Inference

B. Derivations for the Wasserstein Pruning Objective
B.1. Derivation for (22)

Note that, for our linearized model (described in Section 3), the true posterior p(w|D) is either Gaussian or approximately
Gaussian. Additionally, the approximate posterior gs(w) = ¢(wg) [[, 6(W, — W,.) can be seen as a degenerate Gaussian
in which rows and columns of the covariance matrix are zeroed out. Thus, we consider the squared 2-Wasserstein distance
between two Gaussian distributions N (41, 31) and NV (2, o), which has the following closed-form expression (Givens
etal., 1984):

1/2
Wa (N (11, 51) , N (p2, £2))% = |1 — pad + T (21+22—2(25/2212§“)) . (24)

In this case both distributions have the same mean: g1 = ps = w. The true posterior’s covariance matrix is the inverse

GGN matrix, i.e. ¥; = H™!. For the approximate posterior 3o = Hg}r, which is equal to Hgl (the inverse GGN matrix
of the subnetwork) padded with zeros at the positions corresponding to point estimated weights w,., matching the shape of
H~!. Alternatively, but equivalently, we can define HE}r = Mg ® H™!, where ® is the Hadamard product, and Mg is a
mask matrix with zeros in the rows and columns corresponding to w,., i.e. the rows and columns corresponding to weights
not included in the subnetwork. This gives us:

Wa(p(w|D), gs(w))?
. - 2
=W, (N, H), N (%, Hg)))
. - - S 1/2
= %2+ T (H‘l +Hg! -2 (H;i“H—lH;i/Q))
~ ~ o e 1/2
~Tr (H—1 +Hg -2 (Hsi/QH—lHSi/Q)) .
B.2. Derivation for (23)
For H™! = diag(02, ...,0%), the Wasserstein pruning objective in (22) simplifies to
Wa(p(w|D), gs(w))?
= Tr (F) +Tr (Hg}) - 2Tr (H/2HGY?)

03 + mdaﬁ — Zmdag

03(1 — md) 5

M= T

1Y
Il
-

where my is the d™ diagonal element of Mg, i.e. mg = 1 if wy is included in the subnetwork or 0 otherwise.

C. Updating the prior precision for uncertainty estimation with subnetworks

As described in Section 3, the linearised Laplace method can be understood as approximating our NN with a basis function
linear model, where the jacobian of the NN evaluated at x, J(x) € RO*P represents the feature expansion. When
employing an Isotropic Gaussian prior with precision A and for a given output dimension ¢, this formulation corresponds to
a Gaussian process with kernel

D
§ =AY I®)iad ()i (25)

d=1

ki(x,x") = A1 I (%) J(x))

3This also holds for our case of a degenerate Gaussian with singular covariance matrix (Givens et al., 1984).

Bayesian Deep Learning via Subnetwork Inference

For our subnetwork model, the Jacobian feature expansion is J5(x) € RY*, which is a submatrix of J(x). It follows
that the implied kernel will be computed in the same way as (25), removing D — S terms from the sum. The updated prior
precision Ag = \-S/p aims to maintain the magnitude of the sum, thus making the kernel corresponding to the subnetwork
as similar as possible to that of the full network.

D. Experimental Setup
D.1. Toy Experiments

We train a single, 2 hidden layer network, with 50 hidden ReL U units per layer using MAP inference until convergence.
Specifically, we use SGD with a learning rate of 1 x 10~2, momentum of 0.9 and weight decay of 1 x 10~*. We use a batch
size of 512. The objective we optimise is the Gaussian log-likelihood of our data, where the mean is outputted by the network
and the the variance is a hyperparameter learnt jointly with NN parameters by SGD. This variance parameters is shared
among all datapoints. Once the network is trained, we perform post-hoc inference on it using different approaches. Since
all of these involve the linearized approximation, the mean prediction is the same for all methods. Only their uncertainty
estimates vary.

Note that while for this toy example, we could in principle use the full covariance matrix for the purpose of subnetwork
selection, we still just use its diagonal (as described in Section 5) for consistency. We use GGN Laplace inference over
network weights (not biases) in combination with the linearized predictive distribution in (12). Thus, all approaches
considered share their predictive mean, allowing us to better compare their uncertainty estimates.

All approaches share a single prior precision of A = 3, scaled as Ag = X - 5/p. We choose this prior precision such that the
full covariance approach (optimistic baseline), where Ag = A, presents reasonable results. We first tried a precision of 1 and
found the full covariance approach to produce excessively large errorbars (covering the whole plot). A value of 3 produces
more reasonable results.

Final layer inference is performed by computing the full Laplace covariance matrix and discarding all entries except those
corresponding to the final layer of the NN. Results for random sub-network selection are obtained with a single sample from
a scaled uniform distribution over weight choice.

D.2. UCI Experiments

In this experiment, our fully connected NNs have numbers of hidden layers hy={1,2} and hidden layer widths
wy={50,100}. For a dataset with input dimension 74, the number of weights is given by D=(ig+1)wg+(hq—1)w3.
Our 2 hidden layer, 100 hidden unit models have a weight count of the order 10*. The non-linearity used is ReLU.

We first obtain a MAP estimate of each model’s weights. Specifically, we use SGD with a learning rate of 1 x 1073,
momentum of 0.9 and weight decay of 1 x 10~*. We use a batch size of 512. The objective we optimise is the Gaussian
log-likelihood of our data, where the mean is outputted by the network and the the variance is a hyperparameter learnt jointly
with NN parameters by SGD.

For each dataset split, we set aside 15% of the train data as a validation set. We use these for early stopping training. Training
runs for a maximum of 2000 epochs but early stops with a patience of 500 if validation performance does not increase. For
the larger Protein dataset, these values are 500 and 125. The weight settings which provide best validation performance are
kept.

We then perform full network GGN Laplace inference for each model. We also use our proposed Wassertein rule together
with the diagonal Hessian assumption to prune every network’s weight variances such that the number of variances that
remain matches the size of every smaller network under consideration. The prior precision used for these steps is chosen
such that the resulting predictor’s logliklihood performance on the validation set is maximised. Specifically, we employ
a grid search over the values: A : [0.0001,0.001,0.1,0.5,1,2,5,10,100,1000]. In all cases, we employ the linearized
predictive in (12). Consequently, networks with the same number of weights make the same mean predictions. Increasing
the number of weight variances considered will thus only increase predictive uncertainty.

Bayesian Deep Learning via Subnetwork Inference

D.3. Image Experiments

The results shown in Section 6.3 and App. A are obtained by training ResNet-18 (and ResNet-50) models using SGD with
momentum. For each experiment repetition, we train 7 different models: The first is for: ‘MAP’, ‘Ours’, ‘Ours (Rand)’,
‘SWAG’, ‘Diag-Laplace’ and as the first element of ‘Ensemble’. We train 4 additional ‘Ensemble’ elements, 1 network with
‘Dropout’, and, finally 1 network for “VOGN’. The methods ‘Ours’, ‘Ours (Rand)’, ‘SWAG’, and ‘Diag-Laplace’ are applied
post training.

For all methods except “VOGN’ we use the following training procedure. The (initial) learning rate, momentum, and weight
decay are 0.1, 0.9, and 1 x 10, respectively. For ‘MAP’ we use 4 Nvidia P100 GPUs with a total batch size of 2048. For
the calculation of the Jacobian in the subnetwork selection phase we use a single P100 GPU with a batch size of 4. For
the calculation of the hessian we use a single P100 GPU with a batch size of 2. We train on 1 Nvidia P100 GPU with a
batch size of 256 for all other methods. Each dataset is trained for a different number of epochs, shown in Table 21. We
decay the learning rate by a factor of 10 at scheduled epochs, also shown in Table 21. Otherwise, all methods and datasets
share hyperparameters. These hyperparameter settings are the defaults provided by Py Torch for training on ImageNet. We
found them to perform well across the board. We report results obtained at the final training epoch. We do not use a separate
validation set to determine the best epoch as we found ResNet-18 and ResNet-50 to not overfit with the chosen schedules.

Table 21. Per-dataset training configuration for image experiments.

DATASET ‘ No. EPoCHS LR SCHEDULE

MNIST 90 40, 70
CIFARI10 300 150, 225

For ‘Dropout’, we add dropout to the standard ResNet-50 model (He et al., 2016) in between the 2nd and 3rd convolutions in
the bottleneck blocks. This approach follows Zagoruyko & Komodakis (2016) and Ashukha et al. (2020) who add dropout
in-between the two convolutions of a WideResNet-50’s basic block. Following Antorén et al. (2020), we choose a dropout
probability of 0.1, as they found it to perform better than the value of 0.3 suggested by Ashukha et al. (2020). We use 16
MC samples for predictions. ‘Ensemble’ uses 5 elements for prediction. Ensemble elements differ from each other in their
initialisation, which is sampled from the He initialisation distribution (He et al., 2015). We do not use adversarial training as,
inline with Ashukha et al. (2020), we do not find it to improve results. For ‘VOGN’ we use the same procedure and hyper-
parameters as used by Osawa et al. (2019) in their CIFAR10 experiments, with the exception that we use a learning rate of 1 x
10~ as we we found a value of 1 x 10~% not to result in convergence. We train on a single Nvidia P100 GPU with a batch size
of 256. See the authors’ GitHub for more details: github.com/team—approx-bayes/dl-with-bayes/blob/
master/distributed/classification/configs/cifarl0/resnetl8_vogn_bs256_8gpu. json.

We modify the standard ResNet-50 and ResNet-18 architectures such that the first 7 x 7 convolution is replaced with a 3 x 3
convolution. Additionally, we remove the first max-pooling layer. Following (Goyal et al., 2017), we zero-initialise the last
batch normalisation layer in residual blocks so that they act as identity functions at the start of training.

At test time, we tune the prior precision used for ‘Ours’, ‘Diag-Laplace’ and ‘SWAG’ approximation on a validation set
for each approach individually, as in Ritter et al. (2018); Kristiadi et al. (2020). We use a grid search from 1 x 10~ to
1 x 10%* in logarithmic steps, and then a second, finer-grained grid search between the two best performing values (again
with logarithmic steps).

D.4. Datasets

The 1d toy dataset used in Section 6.1 was taken from (Antordn et al., 2020). We obtained it from the authors’ github repo:
https://github.com/cambridge—-mlg/DUN. Table 22 summarises the datasets used in Section 6.2.

We employ the Wine, Kin8nm and Protein datasets, together with their gap variants, because we find our models’ performance
to be most dependent on the quality of the estimated uncertainty here. On most other commonly used UCI regression
datasets (Herndndez-Lobato & Adams, 2015) we find increased uncertainty to hurt LL performance. In other words, the
predictions made when using the MAP setting of the weights are better than those from any Bayesian ensemble.

Wine and Protein are available from the UCI dataset repository (Dua & Graff, 2017). Kin8nm is available from https:
//www.openml.org/d/189 (Foong et al., 2019b). For the standard splits (Hernandez-Lobato & Adams, 2015) 90% of

https://github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
https://github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
github.com/team-approx-bayes/dl-with-bayes/blob/master/distributed/classification/configs/cifar10/resnet18_vogn_bs256_8gpu.json
https://github.com/cambridge-mlg/DUN
https://www.openml.org/d/189
https://www.openml.org/d/189

Bayesian Deep Learning via Subnetwork Inference

the data is used for training and 10% for validation. For the gap splits (Foong et al., 2019b) a split is obtained per input
dimension by ordering points by their values across that dimension and removing the middle 33% of the points. These are
used for validation.

The datasets used for our image experiments are outlined in Table 23.

Table 22. Datasets from tabular regression used in Section 6.2

Dataset N Train N Val (15% train) N Test Splits Output Dim Output Type Input Dim Input Type

Wine 1223 216 160 20 1 Continous 11 Continous
Wine Gap 906 161 532 11 1 Continous 11 Continous
Kin8nm 6267 1106 819 20 1 Continous 8 Continous
Kin8nm Gap 4642 820 2730 8 1 Continous 8 Continous
Protein 34983 6174 4573 5 1 Continous 9 Continous
Protein Gap 25913 4573 15244 9 1 Continous 9 Continous

Table 23. Summary of image datasets. The test and train set sizes are shown in brackets, e.g. (test & train).

NAME \ SIZE INPUT DIM. No. CLASSES NoO. SPLITS
MNIST (LeCun et al., 1998) 70,000 (60,000 & 10,000) 784 (28 x 28) 10 2
Fashion-MNIST (Xiao et al., 2017) 70,000 (60,000 & 10,000) 784 (28 x 28) 10 2
CIFARI10 (Krizhevsky & Hinton, 2009) | 60,000 (50,000 & 10,000) 3072 (32 x 32 x 3) 10 2
SVHN (Netzer et al., 2011) 99,289 (73,257 & 26,032) 3072 (32 x 32 x 3) 10 2

