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Abstract

The Bayesian paradigm has the potential to solve
core issues of deep neural networks such as poor
calibration and data inefficiency. Alas, scaling
Bayesian inference to large weight spaces often
requires restrictive approximations. In this work,
we show that it suffices to perform inference over
a small subset of model weights in order to obtain
accurate predictive posteriors. The other weights
are kept as point estimates. This subnetwork infer-
ence framework enables us to use expressive, oth-
erwise intractable, posterior approximations over
such subsets. In particular, we implement sub-
network linearized Laplace as a simple, scalable
Bayesian deep learning method: We first obtain a
MAP estimate of all weights and then infer a full-
covariance Gaussian posterior over a subnetwork
using the linearized Laplace approximation. We
propose a subnetwork selection strategy that aims
to maximally preserve the model’s predictive un-
certainty. Empirically, our approach compares
favorably to ensembles and less expressive poste-
rior approximations over full networks.

1. Introduction

A critical shortcoming of deep neural networks (NNs) is
that they tend to be poorly calibrated and overconfident
in their predictions, especially when there is a shift be-
tween the train and test data distributions (Nguyen et al.,
2015; Guo et al., 2017). To reliably inform decision mak-
ing, NNs need to robustly quantify the uncertainty in their
predictions (Bhatt et al., 2020). This is especially impor-
tant for safety-critical applications such as healthcare or
autonomous driving (Amodei et al., 2016).

Bayesian modeling (Bishop, 2006; Ghahramani, 2015)

“Equal contribution 'University of Cambridge “Max Planck In-
stitute for Intelligent Systems, Tiibingen >University of Amsterdam
“Microsoft Research *The Alan Turing Institute. Correspondence
to: Erik Daxberger <ead54 @cam.ac.uk>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1
145

presents a principled way to capture uncertainty via the
posterior distribution over model parameters. Unfortunately,
exact posterior inference is intractable in NNs. Despite
recent successes in the field of Bayesian deep learning (Os-
awa et al., 2019; Maddox et al., 2019; Dusenberry et al.,
2020), existing methods invoke unrealistic assumptions to
scale to NNs with large numbers of weights. This severely
limits the expressiveness of the inferred posterior and thus
deteriorates the quality of the induced uncertainty estimates
(Ovadia et al., 2019; Fort et al., 2019; Foong et al., 2019a).

Perhaps these unrealistic inference approximations can be
avoided. Due to the heavy overparameterization of NN,
their accuracy is well-preserved by a small subnetwork
(Cheng et al., 2017). Moreover, doing inference over a
low-dimensional subspace of the weights can result in accu-
rate uncertainty quantification (Izmailov et al., 2019). This
prompts the following question: Can a full NN’s model un-
certainty be well-preserved by a small subnetwork? In this
work we demonstrate that the posterior predictive distribu-
tion of a full network can be well represented by that of a
subnetwork. In particular, our contributions are as follows:

1. We propose subnetwork inference, a general framework
for scalable Bayesian deep learning in which inference
is performed over only a small subset of the NN weights,
while all other weights are kept deterministic. This al-
lows us to use expressive posterior approximations that
are typically intractable in large NNs. We present a con-
crete instantiation of this framework that first fits a MAP
estimate of the full NN, and then uses the linearized
Laplace approximation to infer a full-covariance Gaus-
sian posterior over a subnetwork (illustrated in Fig. 1).

2. We derive a subnetwork selection strategy based on the
Wasserstein distance between the approximate posterior
for the full network and the approximate posterior for
the subnetwork. For scalability, we employ a diagonal
approximation during subnetwork selection. Selecting a
small subnetwork then allows us to infer weight covari-
ances. Empirically, we find that making approximations
during subnetwork selection is much less harmful to the
posterior predictive than making them during inference.

3. We empirically evaluate our method on a range of bench-
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marks for uncertainty calibration and robustness to dis-
tribution shift. Our experiments demonstrate that ex-
pressive subnetwork inference can outperform popular
Bayesian deep learning methods that do less expressive
inference over the full NN as well as deep ensembles.

2. Subnetwork Posterior Approximation

Let w € R be the D-dimensional vector of all neural
network weights (i.e. the concatenation and flattening of all
layers’ weight matrices). Bayesian neural networks (BNNs)
aim to capture model uncertainty, i.e. uncertainty about
the choice of weights w arising due to multiple plausible
explanations of the training data D= {y, X}. Here, y € R”
is the output variable (e.g. classification label) and X €
RN I is the feature matrix. First, a prior distribution p(w)
is specified over the BNN’s weights w. We then wish to
infer their full posterior distribution

p(w|D) = p(wly,X) o< p(y|X,w)p(w). (1)

Finally, predictions for new data points X* are made
through marginalisation of the posterior:

p(y*\X*D):/p(y*IX*,w)p(w\D)dw. )

w
This posterior predictive distribution translates uncertainty
in weights to uncertainty in predictions. Unfortunately,
due to the non-linearity of NN, it is intractable to infer
the exact posterior distribution p(w|D). It is even com-
putationally challenging to faithfully approximate the pos-
terior due to the high dimensionality of w. Thus, crude
posterior approximations such as complete factorization,
ie. p(w|D) ~ Hcll):l q(wq) where wy is the d" weight in
w, are commonly employed (Hernandez-Lobato & Adams,
2015; Blundell et al., 2015; Khan et al., 2018; Osawa et al.,
2019). However, it has been shown that such an approxima-
tion suffers from severe pathologies (Foong et al., 2019a;b).

In this work, we question the widespread implicit assump-
tion that an expressive posterior approximation must include
all D of the model weights. Instead, we try to perform in-
ference only over a small subset of S < D of the weights.
The following arguments motivate this approach:

1. Overparameterization: Maddox et al. (2020) have
shown that, in the neighborhood of local optima, there
are many directions that leave the NN’s predictions un-
changed. Moreover, NNs can be heavily pruned without
sacrificing test-set accuracy (Frankle & Carbin, 2019).
This suggests that the majority of a NN’s predictive
power can be isolated to a small subnetwork.

2. Inference over submodels: Previous work! has pro-
vided evidence that inference can be effective even when

!See Section 8 for a more thorough discussion of related work.

not performed on the full parameter space. Examples in-
clude Izmailov et al. (2019) and Snoek et al. (2015) who
perform inference over low-dimensional projections of
the weights, and only the last layer of a NN, respectively.

‘We therefore combine these two ideas and make the follow-
ing two-step approximation of the posterior in (1):

p(w|D) ~ p(ws|D) [[o(w, — ;) 3)

~ q(ws) [[6(wr = %) = gs(w). @)

The first approximation (3) decomposes the full NN poste-
rior p(w|D) into a posterior p(wg|D) over the subnetwork
wg € R and Dirac delta functions 6(w,. — W,.) over the
D — S remaining weights w,. to keep them at fixed values
w, € R. Since posterior inference over the subnetwork
is still intractable, (4) further approximates p(wg|D) by
q(wg). However, importantly, if the subnetwork is much
smaller than the full network, we can afford to make g(wg)
more expressive than would otherwise be possible. We hy-
pothesize that being able to capture rich dependencies across
the weights within the subnetwork will provide better results
than crude approximations applied to the full set of weights.

Relationship to Weight Pruning Methods. Note that the
posterior approximation in (4) can be viewed as pruning
the variances of the weights {w,}, to zero. This is in
contrast to weight pruning methods (Cheng et al., 2017)
that set the weights themselves to zero. I.e., weight pruning
methods can be viewed as removing weights to preserve
the predictive mean (i.e. to retain accuracy close to the full
model). In contrast, subnetwork inference can be viewed
as removing just the variances of certain weights—while
keeping their means—to preserve the predictive uncertainty
(e.g. to retain calibration close to the full model). Thus, they
are complementary approaches. Importantly, by not pruning
weights, subnetwork inference retains the full predictive
power of the full NN to retain its predictive accuracy.

3. Background: Linearized Laplace

In this work we satisfy (4) by approximating the poste-
rior distribution over the weights with linearized Laplace
(MacKay, 1992). This is a tractable inference technique that
has recently been shown to perform strongly (Foong et al.,
2019b; Immer et al., 2020) and can be applied post-hoc to
pre-trained models. We now describe it in a general setting.

We denote our NN function as f : R’ — R©. We begin by
defining a prior over our NN’s weights, which we choose
to be a fully factorised Gaussian p(w) = A (w; 0, A\I). We
find a local optimum of the posterior, also known as a maxi-
mum a posteriori (MAP) setting of the weights:

W = argmax,, [log p(y|X, w) +logp(w)].  (5)
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Figure 1. Schematic illustration of our proposed approach. (a) We train a neural network using standard techniques to obtain a point
estimate of the weights. (b) We identify a small subset of the weights. (c) We estimate a posterior distribution over the selected subnetwork
via Bayesian inference techniques. (d) We make predictions using the full network with a mix of Bayesian and deterministic weights.

The posterior is then approximated with a second order
Taylor expansion around the MAP estimate:

. 1 ~ ~

log p(w|D) ~ log p(W|D) — 5 (w — W) "H(w — %) (6)

where H € RP*P is the Hessian of the negative log-
posterior density w.r.t. the network weights w:

H=N-E,p)[-0*logp(y|X,w)/0w?] + AL. (7)

Thus, the approximate posterior takes the form of a full-
covariance Gaussian with covariance matrix H~!:

p(w|D) = q(w) =N (w;w,H™"). 8

In practise, the Hessian H is commonly replaced with the
generalized Gauss-Newton matrix (GGN) H ¢ RPxP
(Martens & Sutskever, 2011; Martens, 2014; 2016)

H=Y" JTH,J,+ ). )

Here, J, = 0f(xn,w)/0w € RO*P is the Jacobian
of the model outputs f(x,,w) € R® wrt. w. H, =
—0?log p(y|f (xn, W))/0? f (%, W) € RO*O is the Hes-
sian of the negative log-likelihood w.r.t. model outputs.

Interestingly, when using a Gaussian likelihood, the Gaus-
sian with a GGN precision matrix corresponds to the true
posterior distribution when the NN is approximated with a
first-order Taylor expansion around w (Khan et al., 2019;
Immer et al., 2020). The locally linearized function is

fin(x,w) = f(x,w) + j(x)(w —w) (10)

where J(x) = 8f(x,w)/0w € RO*D. This turns the
underlying probabilistic model from a BNN into a gener-
alized linear model (GLM), where the Jacobian J(x) acts
as a basis function expansion. Making predictions with the
GLM fi;, has been found to outperform the corresponding
BNN f with the GGN-Laplace posterior (Lawrence, 2001;

Foong et al., 2019b; Immer et al., 2020). Additionally, the
equivalence between a GLM and a linearized BNN will help
us to derive a subnetwork selection strategy in Section 5.

The resulting posterior predictive distribution is

p(y™[x", D) = / p(y° | fin(o", w))p(w|D) dw . (1)

For regression, when using a Gaussian noise model
p(y* | fin(x*, W) = N(y*; fin(x*, W), %), our approx-
imate distribution becomes exact ¢(w) = p(w|D) =
N (w;w,H™!). We obtain the closed form predictive

p(y*[x*, D) = N(y*; f(x*, W), 2(x*)+0°T), (12)

where ©(x*) = J(x*)TH 'J(x*). For classifica-
tion with a categorical likelihood p(y*|fin(x*,w)) =
Cat(y™; ¢(fiin(x*, w)), the posterior is strictly convex. This
makes our Gaussian a faithful approximation. Here, ¢(-)
refers to the softmax function. The predictive integral has
no analytical solution. Instead we leverage the probit ap-
proximation (Gibbs, 1998; Bishop, 2006):

F0x°, ) o)
/ 1+gdiag(X(x*)) '

These closed-form expressions are attractive since they re-
sult in the predictive mean and classification boundaries
being exactly equal to those of the MAP estimated NN.

p(y*|x*, D) ~=Cat (y*; 1) <

Unfortunately, storing the full D x D covariance matrix
over the weight space of a modern NN (i.e. with very large
D) is computationally intractable. There have been efforts
to develop cheaper approximations to this object, such as
only storing diagonal (Denker & LeCun, 1990) or block
diagonal (Ritter et al., 2018; Immer et al., 2020) entries, but
these come at the cost of reduced predictive performance.
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4. Linearized Laplace Subnetwork Inference

We outline the following procedure for scaling the linearized
Laplace approximation to large neural network models
within the framework of subnetwork inference.

Step #1: Point Estimation, Fig. 1 (a). Train a neural net-
work to obtain a point estimate of the weights, denoted w.
This can be done using stochastic gradient-based optimiza-
tion methods (Goodfellow et al., 2016). Alternatively, we
could make use of a pre-trained model.

Step #2: Subnetwork Selection, Fig. 1 (b). Identify a
small subnetwork wg € R%, S < D. Ideally, we would
like to find the subnetwork which produces a predictive pos-
terior ‘closest’ to the full-network’s predictive distribution.
Regrettably, reasoning in the space of functions directly is
challenging (Burt et al., 2020). Instead, in Section 5, we
describe a strategy that minimizes the Wasserstein distance
between the sub- and full-network’s weight posteriors.

Step #3: Bayesian Inference, Fig. 1 (¢). Use the GGN-
Laplace approximation to infer a full-covariance Gaussian
posterior over the subnetwork’s weights wg € R:

p(ws|D) = q(ws) = N(ws; wg, Hg')  (14)
where Hg € RS*S is the GGN w.r.t. the weights wg:
Hs =" I8 H,Jg, + AsT. (15)

Here, Js, = 0f(x,,Wgs)/0ws €RO*9 is the Jacobian
w.r.t. wg. H,, is defined as in Section 2. In order to best
preserve the magnitude of the predictive variance, we update
our prior precision to be Ag = \-5/D (see App. C for more
details). All weights not belonging to the chosen subnet-
work are fixed at their MAP values. Note that this whole
procedure (i.e. Steps #1-#3) is a perfectly valid mixed infer-
ence strategy: We perform full Laplace inference over the
selected subnetwork and MAP inference over all remaining
weights. The resulting approximate posterior (4) is

gs(w) 2 N (ws; ws, Hz) L 6(w, — w,) . (16)

Given a sufficiently small subnetwork wg, it is feasible
to store and invert Hg. In particular, naively storing and
inverting the full GGN H scales as O(D?) and O(D?), re-
spectively. Using the subnetwork GGN ﬁs instead reduces
this burden to O(S?) and O(S?), respectively. In our exper-
iments, S < D with our subnetworks representing less that
1% of the total weights. Note that quadratic/cubic scaling in
S is unavoidable if we are to capture weight correlations.

Step #4: Prediction, Fig. 1 (d). Perform a local lineariza-
tion of the NN (see Section 3) while fixing w,. to w,.:

fin(x, ws) = F(x, W) + Js(x)(ws —Wg), (17

where J g(x) = 0f (x, Wg)/OWg € RO*S_ Following (12)
and (13), the corresponding predictive distributions are

p(y*[x*, D) = N(y"; f(x*, W), Bs(x")+0°I)  (18)
for regression and
f(x", w)
19
\/1+gdiag(25‘(x*))> (19)

for classification, where ¥(x*) in (12) and (13) is substi-
tuted with Y5 (x*) = Jg(x*)THg' Js(x*).

p(y*|x*, D) ~ softmax (

5. Subnetwork Selection

Ideally, we would like to choose a subnetwork such that the
induced predictive posterior distribution is as close as possi-
ble to the predictive posterior provided by inference over the
full network (11). This discrepancy between stochastic pro-
cesses is often quantified through the functional Kullback-
Leibler (KL) divergence (Sun et al., 2019; Burt et al., 2020):

sup  Dxi(ps(y™[X", D) || p(y*|X", D)),  (20)
neN, X+ exn

where pg denotes the subnetwork predictive posterior and
X" denotes a finite measurement set of n elements. Regret-
tably, reasoning directly in function space is a difficult task
(Nalisnick & Smyth, 2018; Pearce et al., 2019; Sun et al.,
2019; Antoran et al., 2020; Nalisnick et al., 2020; Burt et al.,
2020). Instead we focus our attention on weight space.

In weight space, our aim is to minimise the discrepancy
between the exact posterior over the full network (1) and the
subnetwork approximate posterior (4). This provides two
challenges. Firstly, computing the exact posterior distribu-
tion remains intractable. Secondly, common discrepancies,
like the KL divergence or the Hellinger distance, are not
well defined for the Dirac delta distributions found in (4).

To solve the first issue, we again resort to local linearization,
introduced in Section 3. The true posterior for the linearized
model is Gaussian or approximately Gaussian’:

p(w|D) ':./\/'(W;VAV,IfI_l) . 21

We solve the second issue by choosing the squared 2-
Wasserstein distance, which is well defined for distributions
with disjoint support. For the case of a full covariance Gaus-
sian (21) and a product of a full covariance Gaussian with
Dirac deltas (16), this metric takes the following form:

Wa(p(w|D), gs(w))? (22)
_ _ _ o 1/2
=Tr <H—1 +Hgl -2 (B} *H ' H ) ) :

2When not making predictions with the linearized model, the
Gaussian posterior would represent a crude approximation.
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Figure 2. Predictive distributions (mean =+ std) for 1D regression. The numbers in parentheses denote the number of parameters over
which inference was done (out of 2600 in total). The blue box highlights subnetwork inference using Wasserstein (top) and random
(bottom) subnetwork selection. Wasserstein subnetwork inference maintains richer predictive uncertainties at smaller parameter counts.

where the covariance matrix Iflgi is equal to ﬁgl padded
with zeros at the positions corresponding to w;., matching
the shape of H™!. See App. B for details.

Finding the subset wg € R of size S that minimizes (22)
would be combinatorially difficult, as the contribution of
each weight depends on every other weight. To address
this issue, we make an independence assumption among
weights, resulting in the simplified objective

D
Zcr 1—my),
d=1

where o7 is the marginal variance of the d™ weight, and
mgq = lif wy € wg and 0 otherwise (see App. B). The ob-
jective (23) is trivially minimized by a subnetwork contain-
ing the S weights with highest variances. This is related to
common magnitude-based weight pruning methods (Cheng
et al., 2017). The main difference is that our selection strat-
egy involves weight variances rather than magnitudes as we
target predictive uncertainty rather than accuracy.

Wa(p(w|D), gs(w (23)

In practice, even computing the marginal variances (i.e. the
diagonal of H™1) is intractable, as it requires storing and
inverting the GGN H. However, we can approximate poste-
rior marginal Xanances with the diagonal Laplace approxi-
mation diag(H™!) ~diag(H) ! (Denker & LeCun, 1990;

Kirkpatrick et al., 2017), diagonal SWAG (Maddox et al.,
2019), or even mean-field variational inference (Blundell
etal., 2015; Osawa et al., 2019). In this work we rely on the
former two, as the the latter involves larger overhead.

It may seem that we have resorted to the poorly performing
diagonal assumptions that we sought to avoid in the first

place (Ovadia et al., 2019; Foong et al., 2019a; Ashukha
et al., 2020). However, there is a key difference. We make
the diagonal assumption during subnetwork selection rather
than inference; we do full covariance inference over wg.
In Section 6, we provide evidence that making a diagonal
assumption during subnetwork selection is reasonable by
showing that 1) it is substantially less harmful to predictive
performance than making the same assumption during infer-
ence, and 2) it outperforms random subnetwork selection.

6. Experiments

We empirically assess the effectiveness of subnetwork infer-
ence compared to methods that do less expressive inference
over the full network as well as state-of-the-art methods for
uncertainty quantification in deep learning. We consider
three benchmark settings: 1) small-scale toy regression, 2)
medium-scale tabular regression, and 3) image classifica-
tion with ResNet-18. Further experimental results and setup
details are presented in App. A and App. D, respectively.

6.1. How does Subnetwork Inference preserve
Posterior Predictive Uncertainty?

We first assess how the predictive distribution of a full-
covariance Gaussian posterior over a selected subnetwork
qualitatively compares to that obtained from 1) a full-
covariance Gaussian over the full network (Full Cov), 2) a
factorised Gaussian posterior over the full network (Diag),
3) a full-covariance Gaussian over only the (Final layer)
of the network (Snoek et al., 2015), and 4) a point esti-
mate (MAP). For subnetwork inference, we consider both
Wasserstein (Wass) (as described in Section 5) and uniform
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Figure 3. Mean test log-likelihood values obtained on UCI datasets across all splits. Different markers indicate models with different
numbers of weights. The horizontal axis indicates the number of weights over which full covariance inference is performed. 0 corresponds
to MAP parameter estimation, and the rightmost setting for each marker corresponds to full network inference.

random subnetwork selection (Rand) to obtain subnetworks
that comprise of only 50%, 3% and 1% of the model param-
eters. For this toy example, it is tractable to compute exact
posterior marginal variances to guide subnetwork selection.

Our NN consists of 2 ReLLU hidden layers with 50 hidden
units each. We employ a homoscedastic Gaussian likeli-
hood function where the noise variance is optimised with
maximum likelihood. We use GGN-Laplace inference over
network weights (not biases) in combination with the lin-
earized predictive distribution in (18). Thus, all approaches
considered share their predictive mean, allowing better com-
parison of their uncertainty estimates. We set the full net-
work prior precision to A = 3 (a value which we find to
work well empirically) and set A\g = A - S/D.

We use a synthetic 1D regression task with two separated
clusters of inputs (Antoran et al., 2020), allowing us to
probe for ‘in-between’ uncertainty (Foong et al., 2019b).
Results are shown in Fig. 2. Subnetwork inference pre-
serves more of the uncertainty of full network inference
than diagonal Gaussian or final layer inference while doing
inference over fewer weights. By capturing weight correla-
tions, subnetwork inference retains uncertainty in between
clusters of data. This is true for both random and Wasser-
stein subnetwork selection. However, the latter preserves
more uncertainty with smaller subnetworks. Finally, the
strong superiority to diagonal Laplace shows that making a
diagonal assumption for subnetwork selection but then using
a full-covariance Gaussian for inference (as we do) performs
significantly better than making a diagonal assumption for
the inferred posterior directly (cf. Section 5). These re-
sults suggest that expressive inference over a carefully se-
lected subnetwork retains more predictive uncertainty
than crude approximations over the full network.

6.2. Subnetwork Inference in Large Models vs Full
Inference over Small Models

Secondly, we study how subnetwork inference in larger
NNs compares to full network inference in smaller ones.
We explore this by considering 4 fully connected NNs
of increasing size. These have numbers of hidden layers
ha={1, 2} and hidden layer widths wq={50, 100}. For a
dataset with input dimension ¢4, the number of weights is
given by D=(iq+1)wg+(hq—1)w3. Our 2 hidden layer,
100 hidden unit NNs have a weight count of the order 10%.
Full covariance inference in these NNs borders the limit of
computational tractability on commercial hardware. We first
obtain a MAP estimate of each NN’s weights and our ho-
moscedastic likelihood function’s noise variance. We then
perform full network GGN-Laplace inference for each NN.
We also use our proposed Wassertein rule to prune every
NN’s weight variances such that the number of variances
that remain matches the size of every smaller NN under
consideration. We employ the diagonal Laplace approxi-
mation to cheaply estimate posterior marginal variances for
subnetwork selection. We employ the linearization in (12)
and (18) to compute predictive distributions. Consequently,
NNs with the same number of weights make the same mean
predictions. Increasing the number of weight variances
considered will thus only increase predictive uncertainty.

We employ 3 tabular datasets of increasing size (input di-
mensionality, n. points): wine (11, 1439), kin8nm (8, 7373)
and protein (9, 41157). We consider their standard train-test
splits (Hernandez-Lobato & Adams, 2015) and their gap
variants (Foong et al., 2019b), designed to test for out-of-
distribution uncertainty. Details are provided in App. D.4.
For each split, we set aside 15% of the train data as a val-
idation set. We use these for early stopping when finding
MAP estimates and for selecting the weights’ prior preci-
sion. We keep other hyperparameters fixed across all models
and datasets. Results are shown in Fig. 3.
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Figure 4. Results on the rotated MNIST (left) and the corrupted CIFAR (right) benchmarks, showing the mean =+ std of the error (top)
and log-likelihood (bottom) across three different seeds. Subnetwork inference retains better uncertainty calibration and robustness to
distribution shift than point-estimated networks and other Bayesian deep learning approaches. See App. A for ECE and Brier score results.

We present mean test log-likelihood (LL) values, as these
take into account both accuracy and uncertainty. Larger
(wg = 100, hy = 2) models tend to perform best when
combined with full network inference, although Wine-gap
and Protein-gap are exceptions. Interestingly, these larger
models are still best when we perform inference over sub-
networks of the size of smaller models. We conjecture
this is due to an abundance of degenerate directions (i.e.
weights) in the weight posterior NN models (Maddox et al.,
2020). Full network inference in small models captures
information about both useful and non-useful weights. In
larger models, our subnetwork selection strategy allows us
to dedicate a larger proportion of our resources to modelling
informative weight variances and covariances. In 3 out of
6 datasets, we find abrupt increases in LL as we increase
the number of weights over which we perform inference,
followed by a plateau. Such plateaus might be explained
by most of the informative weight variances having already
been accounted for. Considering that the cost of computing
the GGN dominates that of NN training, these results sug-
gest that, given the same amount of compute, it is better
to perform subnetwork inference in larger models than
full network inference in small ones.

6.3. Image Classification under Distribution Shift

We now assess the robustness of large convolutional neural
networks with subnetwork inference to distribution shift
on image classification tasks compared to the following
baselines: point-estimated networks (MAP), Bayesian deep
learning methods that do less expressive inference over the
full network: MC Dropout (Gal & Ghahramani, 2016), di-
agonal Laplace, VOGN (Osawa et al., 2019) (all of which

assume factorisation of the weight posterior), and SWAG
(Maddox et al., 2019) (which assumes a diagonal plus low-
rank posterior). We also benchmark deep ensembles (Lak-
shminarayanan et al., 2017). The latter is considered state-
of-the-art for uncertainty quantification in deep learning
(Ovadia et al., 2019; Ashukha et al., 2020). We use ensem-
bles of 5 NN, as suggested by (Ovadia et al., 2019), and
16 samples for MC Dropout, diagonal Laplace and SWAG.
We use a Dropout probability of 0.1 and a prior precision of
A\ = 4 x 10* for diagonal Laplace, found via grid search. We
apply all approaches to ResNet-18 (He et al., 2016), which is
composed of an input convolutional block, 8 residual blocks
and a linear layer, for a total of 11,168,000 parameters.

For subnetwork inference, we compute the linearized pre-
dictive distribution in (19). We use Wasserstein subnetwork
selection to retain only 0.38% of the weights, yielding a
subnetwork with only 42,438 weights. This is the largest
subnetwork for which we can tractably compute a full co-
variance matrix. Its size is 42,4382 x 4 Bytes ~ 7.2 GB.
We use diagonal SWAG (Maddox et al., 2019) to estimate
the marginal weight variances needed for subnetwork selec-
tion. We tried diagonal Laplace but found that the selected
weights where those where the Jacobian of the NN evaluated
at the train points was always zero (i.e. dead ReLUs). The
posterior variance of these weights is large as it matches
the prior. However, these weights have little effect on the
NN function. SWAG does not suffer from this problem as it
disregards weights with zero training gradients. We use a
prior precision of A = 500, found via grid search.

To assess to importance of principled subnetwork selection,
we also consider the baseline where we select the subnet-
work uniformly at random (called Ours (Rand)). We per-
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Figure 5. Log-likelihoods of our method with subnetwork sizes between 100-40K using ResNet-18 on rotated MNIST (left) and corrupted
CIFAR10 (middle), vs. Ensembles and Diagonal Laplace, and respective covariance matrix memory footprints (right). For all subnetwork
sizes, we use the same hyperparameters as in Section 6.3 (i.e. no individual tuning per size). Performance degrades smoothly with
subnetwork size, but our method retains strong calibration even with very small subnetworks (requiring only marginal extra memory).

form the following two experiments, with results in Fig. 4.

Rotated MNIST: Following (Ovadia et al., 2019; Antoran
et al., 2020), we train all methods on MNIST and evaluate
their predictive distributions on increasingly rotated digits.
While all methods perform well on the original MNIST test
set, their accuracy degrades quickly for rotations larger than
30 degrees. In terms of LL, ensembles perform best out of
our baselines. Subnetwork inference obtains significantly
larger LL values than almost all baselines, including ensem-
bles. The only exception is VOGN, which achieves slightly
better performance. It was also observed in (Ovadia et al.,
2019) that mean-field variational inference (which VOGN is
an instance of) is very strong on MNIST, but its performance
deteriorates on larger datasets. Subnetwork inference makes
accurate predictions in-distribution while assigning higher
uncertainty than the baselines to out-of-distribution points.

Corrupted CIFAR: Again following (Ovadia et al., 2019;
Antoran et al., 2020), we train on CIFAR10 and evaluate on
data subject to 16 different corruptions with 5 levels of in-
tensity each (Hendrycks & Dietterich, 2019). Our approach
matches a MAP estimated network in terms of predictive
error as local linearization makes their predictions the same.
Ensembles and SWAG are the most accurate. Even so, sub-
network inference differentiates itself by being the least
overconfident, outperforming all baselines in terms of log-
likelihood at all corruption levels. Here, VOGN performs
rather badly; while this might appear to contrast its strong
performance on the MNIST benchmark, the behaviour that
mean-field VI performs well on MNIST but poorly on larger
datasets was also observed in (Ovadia et al., 2019).

Furthermore, on both benchmarks, we find that randomly
selecting the subnetwork performs substantially worse than
using our more sophisticated Wasserstein subnetwork selec-
tion strategy. This highlights the importance of the way the
subnetwork is selected. Overall, these results suggest that
subnetwork inference results in better uncertainty cali-
bration and robustness to distribution shift than other
popular uncertainty quantification approaches.

What about smaller subnetworks? One might wonder
if a subnetwork of ~40K weights is actually necessary. In
Fig. 5, we show that one can also retain strong calibration
with significantly smaller subnetworks. Full covariance
inference in a ResNet-18 would require storing ~11.2M?
params (~500TB). Subnet inference reduces the cost (on
top of MAP) to as little as 1K2? params (~4.0MB) while
remaining competitive with deep ensembles. This suggests
that subnetwork inference can allow otherwise intractable
inference methods to be applied to even larger NNs.

7. Scope and Limitations

Jacobian computation in multi-output models remains
challenging. With reverse mode automatic differentiation
used in most deep learning frameworks, it requires as many
backward passes as there are model outputs. This prevents
using linearized Laplace in settings like semantic segmenta-
tion (Liu et al., 2019) or classification with large numbers of
classes (Deng et al., 2009). Note that this issue applies to the
linearized Laplace method and that other inference methods,
without this limitation, could be used in our framework.

The choice of prior precision )\ determines the perfor-
mance of the Laplace approximation to a large degree. Our
proposed scheme to update A for subnetworks relies on hav-
ing a sensible parameter setting for the full network. Since
inference in the full network is often intractable, currently
the best approach for choosing A is cross validation using
the subnetwork approximation directly.

The space requirements for the Hessian limit the maxi-
mum number of subnetwork weights. For example, storing a
Hessian for 40K weights requires around 6.4GB of memory.
For very large models, like modern transformers, tractable
subnetworks would represent a vanishingly small propor-
tion of the weights. While we demonstrated that strong
performance does not necessarily require large subnetworks
(see Fig. 5), finding better subnetwork selection strategies
remains a key direction for future research.
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8. Related Work

Bayesian Deep Learning. There have significant efforts
to characterise the posterior distribution over NN weights
p(w|D). To this day, Hamiltonian Monte Carlo (Neal, 1995)
remains the golden standard for approximate inference in
BNNs. Although asymptotically unbiased, sampling based
approaches are difficult to scale to the large datasets (Betan-
court, 2015). As a result, approaches which find the best sur-
rogate posterior among an approximating family (most often
Gaussians) have gained popularity. The first of these was
the Laplace approximation, introduced by MacKay (1992),
who also proposed approximating the predictive posterior
with that of the linearised model (Khan et al., 2019; Im-
mer et al., 2020). The popularisation of larger NN models
has made surrogate distributions that capture correlations
between weights computationally intractable. Thus, most
modern methods make use of the mean field assumption
(Blundell et al., 2015; Hernandez-Lobato & Adams, 2015;
Gal & Ghahramani, 2016; Mishkin et al., 2018; Osawa et al.,
2019). This comes at the cost of limited expressivity (Foong
et al., 2019a) and empirical under-performance (Ovadia
et al., 2019; Antoran et al., 2020). We note that, Farquhar
et al. (2020) argue that in deeper networks the mean-field
assumption should not be restrictive. Our empirical results
seem to contradict this proposition. We find that scaling up
approximations that do consider weight correlations (e.g.
MacKay (1992); Louizos & Welling (2016); Maddox et al.
(2019); Ritter et al. (2018)) by lowering the dimensionality
of the weight space outperforms diagonal approximations.
We conclude that more research is warranted in this area.

Neural Linear Methods. These represent a generalised
linear model in which the basis functions are defined by
the [—1 first layers of a NN. That is, neural linear methods
perform inference over only the last layer of a NN, while
keeping all other layers fixed (Snoek et al., 2015; Riquelme
et al., 2018; Ovadia et al., 2019; Ober & Rasmussen, 2019;
Pinsler et al., 2019; Kristiadi et al., 2020). They can also be
viewed as a special case of subnetwork inference, in which
the subnetwork is simply defined to be the last NN layer.

Inference over Subspaces. The subfield of NN pruning
aims to increase the computational efficiency of NNs by
identifying the smallest subset of weights which are required
to make accurate predictions; see e.g. (Frankle & Carbin,
2019; Wang et al., 2020). Our work differs in that it retains
all NN weights but aims to find a small subset over which
to perform probabilistic reasoning. More closely related
work to ours is that of (Izmailov et al., 2019), who propose
to perform inference over a low-dimensional subspace of
weights; e.g. one constructed from the principal components
of the SGD trajectory. Moreover, several recent approaches
use low-rank parameterizations of approximate posteriors
in the context of variational inference (Rossi et al., 2019;

Swiatkowski et al., 2020; Dusenberry et al., 2020). This
could also be viewed as doing inference over an implicit sub-
space of weight space. In contrast, we propose a technique
to find subsets of weights which are relevant to predictive
uncertainty, i.e., we identify axis aligned subspaces.

9. Conclusion

Our work has three main findings: 1) modelling weight cor-
relations in NNs is crucial to obtaining reliable predictive
posteriors, 2) given these correlations, unimodal approxima-
tions of the posterior can be competitive with approxima-
tions that assign mass to multiple modes (e.g. deep ensem-
bles), 3) inference does not need to be performed over all
the weights in order to obtain reliable predictive posteriors.

We use these insights to develop a framework for scaling
Bayesian inference to NNs with a large number of weights.
We approximate the posterior over a subset of the weights
while keeping all others deterministic. Computational cost
is decoupled from the total number of weights, allowing us
to conveniently trade it off with the quality of approximation.
This allows us to use more expressive posterior approxima-
tions, such as full-covariance Gaussian distributions.

Linearized Laplace subnetwork inference can be applied
post-hoc to any pre-trained model, making it particularly
attractive for practical use. Our empirical analysis suggests
that this method 1) is more expressive and retains more
uncertainty than crude approximations over the full network,
2) allows us to employ larger NNs, which fit a broader
range of functions, without sacrificing the quality of our
uncertainty estimates, and 3) is competitive with state-of-the-
art uncertainty quantification methods, like deep ensembles.

We are excited to investigate combining subnetwork infer-
ence with different approximate inference methods, develop
better subnetwork selection strategies and further explore
the properties of subnetworks on the predictive distribution.
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