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Abstract 
The reliability of deep learning algorithms is fun-
damentally challenged by the existence of adver-
sarial examples, which are incorrectly classifed 
inputs that are extremely close to a correctly clas-
sifed input. We explore the properties of adver-
sarial examples for deep neural networks with 
random weights and biases, and prove that for any 
p ≥ 1, the `p distance of any given input from 
the classifcation boundary scales as one over the 
square root of the dimension of the input times 
the `p norm of the input. The results are based 
on the recently proved equivalence between Gaus-
sian processes and deep neural networks in the 
limit of infnite width of the hidden layers, and are 
validated with experiments on both random deep 
neural networks and deep neural networks trained 
on the MNIST and CIFAR10 datasets. The results 
constitute a fundamental advance in the theoret-
ical understanding of adversarial examples, and 
open the way to a thorough theoretical characteri-
zation of the relation between network architec-
ture and robustness to adversarial perturbations. 

1. Introduction 

Deep neural networks constitute an extremely powerful ar-
chitecture for machine learning and have achieved an enor-
mous success in several felds such as speech recognition, 
computer vision and natural language processing where they 
can often outperform human abilities (Mnih et al., 2015; Le-
Cun et al., 2015; Radford et al., 2015; Schmidhuber, 2015; 
Goodfellow et al., 2016). In 2014, a very surprising property 
of deep neural networks emerged in the context of image 
classifcation (Szegedy et al., 2014; Goodfellow et al., 2014): 
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an extremely small perturbation can change the label of a 
correctly classifed image. This property poses serious chal-
lenges to the reliability of deep learning algorithms since it 
may be exploited by a malicious adversary to fool a machine 
learning algorithm by steering its output. For this reason, 
methods to fnd perturbed inputs or adversarial examples 
have been named adversarial attacks. This problem further 
captured the attention of the deep learning community when 
it was discovered that real-world images taken with a cam-
era can also constitute adversarial examples (Kurakin et al., 
2018; Sharif et al., 2016; Brown et al., 2017; Eykholt et al., 
2018). To study adversarial attacks, two lines of research 
have been developed: one aims at developing effcient algo-
rithms to fnd adversarial examples (Su et al., 2019; Athalye 
et al., 2018; Liu et al., 2016), and the other aims at mak-
ing deep neural networks more robust against adversarial 
attacks (Madry et al., 2018; Tsipras et al., 2019; Nakkiran, 
2019; Lecuyer et al., 2019; Gilmer et al., 2019); algorithms 
to compute the robustness of a given trained deep neural net-
work against adversarial attacks have also been developed 
(Li et al., 2019a; Jordan et al., 2019). 

Several theories have been proposed to explain the phe-
nomenon of adversarial examples (Raghunathan et al., 2018; 
Wong & Kolter, 2018; Xiao et al., 2019; Cohen et al., 2019; 
Schmidt et al., 2018; Tanay & Griffn, 2016; Kim et al., 
2019; Fawzi et al., 2016; Shamir et al., 2019; Bubeck et al., 
2019; Ilyas et al., 2019). One of the most prominent the-
ories states that adversarial examples are an unavoidable 
feature of the high-dimensional geometry of the input space: 
Refs. (Gilmer et al., 2018; Fawzi et al., 2018; Shafahi et al., 
2019; Mahloujifar et al., 2019) show that, whenever the 
classifcation error is fnite, the label of a correctly classifed 
input can be changed with an adversarial perturbation of √ 
size O (1 / n ) times the norm of the input, where n is the 
dimension of the input space. 

In this paper, we explore the properties of adversarial ex-
amples for deep neural networks with random weights and 
biases in the limit of infnite width of the hidden layers. 
Our main result, presented in section 3, is a probabilistic 
robustness guarantee on the `1 distance of a given input 
from the closest classifcation boundary, which we later ex-
tend to all the `p distances1. We prove that the `1 distance �P � 1Proceedings of the 38 th International Conference on Machine n p1the `p norm of a vector x ∈ Rn is kxk = |xi|p . p i=1Learning, PMLR 139, 2021. Copyright 2021 by the author(s). 
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from the closest classifcation boundary of any given input 
x ∈ Rn whose entries are O(1) is with high probability at 
least ˜ 

√ 
n) (the tilde means that logarithmic factors areΩ ( 

hidden), i.e., the distance of any adversarial example from 
x is larger than Ω (˜ 

√ 
n). Since kxk1 = Θ(n), our result im-

plies that the size of any adversarial perturbation is at least √
Ω̃ (1 / n ) times the norm of the input. This lower bound 
to the size of adversarial perturbations matches the upper 
bound imposed by the high-dimensional geometry proven 
in Refs. (Gilmer et al., 2018; Fawzi et al., 2018; Shafahi 
et al., 2019; Mahloujifar et al., 2019). Therefore, our result√ 
proves that 1 / n is the universal scaling of the minimum 
size of adversarial perturbations with respect to the norm 
of the input. We also prove that, for any given unit vector 
v ∈ Rn , with high probability all the inputs x + t v with√ 
0 ≤ t ≤ O √( n) have the same classifcation as x. Since 
kxk2 = Θ( n), a remarkable consequence of this result is 
that a fnite fraction of the `2 distance to the origin can be 
traveled without encountering any classifcation boundary. 

Our results encompass a wide variety of network architec-
tures, namely any combination of convolutional or fully 
connected layers with nonlinear activation, skipped connec-
tions and pooling (see section 2). Our proof builds on the 
recently proved equivalence between deep neural networks 
with random weights and biases in the limit of infnite width 
and Gaussian processes (Lee et al., 2018; Yang, 2019b). 
We prove that the same probabilistic robustness guarantees 
for the adversarial distance also apply to a broad class of 
Gaussian processes when the variance is lower bounded 
by the Euclidean square norm of the input and the feature 
map of the kernel associated to the Gaussian process has an 
O(1) Lipschitz constant, a result that can be of independent 
interest. 

In section 4, we experimentally validate our theoretically 
predicted scaling of the adversarial distance for random 
deep neural networks, and we fnd a very good agreement 
between theory and experiments starting from n & 100. In 
subsection 4.1, we perform experiments on the adversarial 
distance for deep neural networks trained on the MNIST 
and CIFAR10 datasets. In both cases, the training does not 
change the order of magnitude of the adversarial distance. 
While for MNIST the adversarial distances for random and 
trained networks are very close, in the case of CIFAR10 the 
training decreases the adversarial distance by roughly half 
order of magnitude. As better discussed in subsection 4.1, 
this can be ascribed to the different nature of the CIFAR10 
with respect to the MNIST data. 

Our adversarial robustness guarantee applies also to deep 
neural networks trained with Bayesian inference under the 
hypothesis that the target function f is generated by the 
same random deep neural network employed for the train-
ing. Indeed, given the training inputs x(1), . . . , x(n) (which 

do not need to be random) and the corresponding random� � � � 
(1) (1) (n) (n)training labels y = f x , . . . , y = f x , the 

Bayesian classifer is a function g randomly drawn from the 
posterior probability distribution q obtained by conditioning 
on the observation of y(1), . . . , y(n) the prior probability 
distribution p generated by the random deep neural network. 
If we forget the values of the training labels, the probability 
distribution of g becomes the average of q over the possible 
values of the training labels y(1), . . . , y(n) induced by the 
random target function f . Such average has the effect of 

(1) (n)removing the conditioning on y , . . . , y . Therefore, af-
ter such average, the probability distribution of the Bayesian 
classifer g coincides with the prior probability distribution 

(1) (n)p regardless of the choice of p and of x , . . . , x . There-
fore, the properties of the adversarial distance for a given 
random deep neural network and for the Bayesian classifer 
associated to the same network coincide under the hypoth-
esis that the target function is also generated by the same 
random network. 

1.1. Related Works 

The equivalence between Gaussian processes and neural net-
works with random weights and biases in the limit of infnite 
width of the hidden layers has been known for a long time in 
the case of fully connected neural networks with one hidden 
layer (Neal, 1996; Williams, 1997), and has recently been 
extended to multi-layer (Schoenholz et al., 2016; Pennington 
et al., 2018; Lee et al., 2018; Matthews et al., 2018; Poole 
et al., 2016; Schoenholz et al., 2016) and convolutional deep 
neural networks (Garriga-Alonso et al., 2019; Xiao et al., 
2018; Novak et al., 2019). The equivalence is now proved 
for practically all the existing neural networks architectures 
(Yang, 2019b), and has been extended to trained deep neural 
networks (Jacot et al., 2018; Lee et al., 2019; Yang, 2019a; 
Arora et al., 2019; Huang & Yau, 2020; Li et al., 2019b; Wei 
et al., 2019; Cao & Gu, 2019) including adversarial training 
(Gao et al., 2019). Ref. (Cardelli et al., 2019b) proves a 
probabilistic robustness guarantee for Bayesian classifers 
with prior probability distribution given by a Gaussian pro-
cess in the same spirit of Theorem 1, and also this proof 
exploits the Borell–TIS inequality and Dudley’s theorem. 
The results of (Cardelli et al., 2019b) have been expanded 
to probabilistic guarantees for neural networks in (Cardelli 
et al., 2019a; Wicker et al., 2020). The smoothness of the 
feature map of a kernel plays a key role in machine learn-
ing applications (Mallat, 2012; Oyallon & Mallat, 2015; 
Bruna & Mallat, 2013; Bietti & Mairal, 2019a) and kernels 
associated to deep neural networks have been studied from 
this point of view (Bietti & Mairal, 2019b). In the setup of 
binary classifcation of bit strings, the Hamming distance of 
a given input from the closest classifcation boundary has 
been theoretically studied in (De Palma et al., 2019), where �p � 
the scaling O n /ln n has been found. 
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2. Setup 

Our inputs are D-dimensional images considered as ele-
(0)×I(0) (0)
Cments of Rn , where n is the number of the input C 

channels (e.g., n(0) 
= 3 for Red-Green-Blue images) and C 

I(0) = Zh1 × . . . × ZhD is the set of the input pixels, 
assumed for simplicity to be periodic. D = 2 recovers 
standard 2D images. For the sake of a simpler notation, 
we will sometimes consider the input space as Rn , with 

(0) I(0)n = n .C 

Our architecture allows for any combination of convolu-
tional layers, fully connected layers, skipped connections 
and pooling. For the sake of a simpler notation, we treat 
each of the above operations as a layer, even if it does 
not include any nonlinear activation. For simplicity, we 
assume that the nonlinear activation function is the ReLU 
τ (x) = max(0, x). Our results can be easily extended to 
other activation functions. 

(0)×I(0) 
CFor any l = 1, . . . , L + 1 and any input x ∈ Rn , 

let n(l) be the number of channels and I(l) the set of pixels C 
×I(l) 

Cof the output of the l-th layer φ(l)(x) ∈ Rn
(l) 

. The 
layer transformations have the following mathematical ex-
pression: 

• Input layer: We have I(1) = I(0) and 
(0)

nCX X 
(1) (1) (1)

φ (x) = b + W (1)i,α i ij,β xj,α+β 

j=1 β∈P(1) 

for any i = 1, . . . , n(1) and any α ∈ I(1), whereC 
P(1) ⊆ I(1) = I(0) is the convolutional patch of the 
frst layer. We assume for simplicity that −P(1) = 
P(1). 

• Nonlinear layer: If the (l + 1)-th layer is a nonlinear 
layer, we have I(l+1) = I(l) and 

(l+1)
φi,α (x) = 

(l) � �nCX X 
(l+1) (l+1) (l)
b + W τ φ (x) (2)i ij,β j,α−β 

j=1 β∈P(l+1) 

(l+1)for any i = 1, . . . , n and any α ∈ I(l+1), where C 
τ : R → R is the activation function and P(l+1) ⊆ 
I(l+1) = I(l) is the convolutional patch of the layer. 

P(l+1)We assume for simplicity that −P(l+1) = . 
I(l)Fully connected layers are recovered by = 

I(l+1) P(l+1)= = 1. 

• Skipped connection: If the (l+1)-th layer is a skipped 
(l+1) ( 

C
l) , I(l+1)connection, we have n = n = I(l) andC 

(l+1) (l) (l−k)
φ (x) = φ (x) + φ (x) (3)i,α i,α i,α 

(l+1)for any i = 1, . . . , n and any α ∈ I(l+1), where C 
k ∈ {1, . . . , l − 2} is such that the sum in (3) is well 

(l−k) (l)defned, i.e., n = n and I(l−k) = I(l). For the C C 
sake of a simple proof, we assume that the l-th layer is 
either a convolutional or a fully connected layer. 

• Pooling: If the (l + 1)-th layer is a pooling layer, we 
(l+1) (l)have n = nC , and I(l+1) is a partition of I(l),C 

i.e., the elements of I(l+1) are disjoint subsets of I(l) 

whose union is equal to I(l). We assume for simplicity 
that the l-th layer is a convolutional layer and that all 
the elements of I(l+1) have the same cardinality, which� 

I(l) I(l+1)is therefore equal to . We have X 
(l+1) (l)

φ (x) = φ (x) (4)i,α i,β 
β∈α 

(l+1)for any i = 1, . . . , n and any α ∈ I(l+1).C 

• Flattening layer: Let the (Lf + 1)-th layer be the 
fattening layer. We notice that we include a fully 
connected layer directly after the fattening as part of 
this layer. We have I(Lf +1) = 1 and 

(Lf +1)
φ (x) = i 

(Lf ) 
nCX X � � 

(Lf +1)
bi + Wij,α τ φ(Lf )(x) (5) 

j=1 (Lf )α∈I 

(Lf +1)for any i = 1, . . . , n .C 

• Output layer: The fnal output of the network is 
(L+1)

φ(x) = φ (x), and the output label is sign φ(x).1 
We introduce the other components of φ(L+1) for the 
sake of a simpler notation in the proof of Theorem 2. 

Our random deep neural networks draw all the weights 
(l) (l)

W and the biases b from independent Gaussianij,α i 
probability distributions with zero mean and variances 

2. 2(l) (l−1) (l)
σ n and σ , respectively. The variances areW C b 

allowed to depend on the layer. 

3. Theoretical Results 

A recent series of works (Schoenholz et al., 2016; Penning-
ton et al., 2018; Lee et al., 2018; Matthews et al., 2018; 
Poole et al., 2016; Garriga-Alonso et al., 2019; Xiao et al., 
2018; Novak et al., 2019; Yang, 2019b) has proved that 

(1) (L+1)in the limit n , . . . , n → ∞ the random deep neu-C C 
ral networks defned in section 2 are centered Gaussian 
processes, i.e., for any M ∈ N and any set of M inputs 

(0)×I(0)1 M ∈ Rnx , . . . , x , the joint probability distribution C � � � � 
1 Mof the corresponding outputs φ x , . . . , φ x ∈ R is 
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Gaussian with zero mean and covariance given by a kernel 
K(x, y) = E(φ(x) φ(y)) that depends on the architecture 
of the deep neural network. Therefore, the properties of 
adversarial perturbations for random deep neural networks 
are equivalent to the properties of adversarial perturbations 
for the corresponding Gaussian processes. First, we prove in 
Theorem 1 an adversarial robustness guarantee for a broad 
class of Gaussian processes. We then prove in Theorem 2 
that the guarantee applies to the Gaussian processes gen-
erated by random deep neural networks, and therefore it 
applies to random deep neural networks. 

We recall that we can associate to any kernel K on Rn a 
Reproducing Kernel Hilbert Space (RKHS) H with scalar 
product and norm denoted by · and k·k, respectively, and 
a feature map Φ : Rn → H such that for any x, y ∈ Rn 

(Rasmussen & Williams, 2006) 

K(x, y) = Φ(x) · Φ(y) . (6) 

The kernel K induces on the input space the RKHS distance 

2 2
d(x, y) = kΦ(x) − Φ(y)k 

= K(x, x) − 2 K(x, y) + K(y, y) . (7) 

We can now state our main result. 

Theorem 1 (`1 adversarial robustness guarantee for Gaus-
sian processes). Let φ be a Gaussian process on Rn with 
zero mean and covariance K, and let d be the associ-
ated RKHS distance. Let C, M > 0 be such that for any 
x, y ∈ Rn p

K(x, x) ≥ C kxk2 , d(x, y) ≤ M C kx − yk . (8)2 

Let x0 ∈ Rn, and for any r > 0 let 

B1 = {x ∈ Rn : kx − x0k1 < r} (9)r 

be the `1 ball with center x0 and radius r. Then, for any 
0 < δ < 1 and any 

√ 
kx0k2 δ π 

0 < r ≤ � √ √ √ � (10) 
M 12 ln 4n + 8 ln n ln 2n + 2 π 

we have � � 
P ∃ x ∈ B1 : φ(x) = 0 ≤ δ . (11)r 

Moreover, let v be a unit vector in Rn, and for any r > 0 let 
Lr = {x0 + t v : 0 ≤ t ≤ r} be the segment starting in x0, 
parallel to v and with length r. Then, for any 

0 < r ≤ π kx0k δ /(2 M + π) (12)2 

we have 
P (∃ x ∈ Lr : φ(x) = 0) ≤ δ . (13) 

We prove the frst part of Theorem 1 in subsection 3.1, and 
we refer to the Supplementary Manuscript for the proof of 
the second part. 
Remark 1. Since our classifer is sign φ(x), we have φ(x) = 
0 for some x in B1 iff B1 is crossed by a classifcation bound-r r 
ary, i.e., iff there exists x ∈ B1 such that φ(x) φ(x0) < 0.r 

Remark 2. The prefactor in (10) is not sharp. Indeed, the 
proof of Theorem 1 relies on Dudley’s theorem (Bartlett, 
2013), which provides an upper bound to the expectation 
value of the maximum of a Gaussian process over a given 
region, and on an estimate of the covering number of the 
`1 unit ball (Theorem 3). Despite employing the best state-
of-the-art tools, the prefactors of both these results are not 
sharp (Ledoux & Talagrand, 2013; Price, 2016). 

The following Theorem 2, which we prove in the Supple-
mentary Manuscript, states that the kernels of the Gaussian 
processes associated to random deep neural networks satisfy 
the hypotheses of Theorem 1. 

Theorem 2 (smoothness of the DNN Gaussian processes). 
The kernel associated to the output of a random deep neural 
network as in section 2 satisfes (8) with q � 

I(0)M = I(Lf ) , (14) 

where I(0) and I(Lf ) are sets of the pixels of the input and 
of the layer immediately before the fattening, respectively. 

Corollary 1 (`1 adversarial robustness guarantee for ran-
dom deep neural networks). Let φ be a random deep neural 

(0)×I(0) 
Cnetwork as in section 2. For any input x0 ∈ Rn and 

any r > 0 let n o 
(0)×I(0) 

B1 = x ∈ RnC : kx − x0k1 < r . (15)r 

(1) (L+1)Then, in the limit n , . . . , n →∞, for any 0 < δ <C C 

×I(0)

Moreover, let v be a unit vector in Rn , and for any 

1 and any q � 

0 < r ≤ 
I(Lf ) I(0)kx0k2 δ π 

√ √ √ 
12 ln 4n + 8 ln n ln 2n + 2 π 

, (16) 

(0)where n = nC I(0) , we have � 
P ∃ x ∈ B1 

r 

� 
: φ(x) = 0 ≤ δ . (17) 

(0)
C 

r > 0 let Lr = {x0 + t v : 0 ≤ t ≤ r}. Then, for any 

π kx0k δ � 
20 < r ≤ q (18) 

I(0) I(Lf )2 + π 

we have 
P {∃ x ∈ Lr : φ(x) = 0} ≤ δ . (19) 
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Remark 3. The bounds of Corollary 1 do not depend on the 
choice of the variances of weights and biases. 
Remark 4 (asymptotic scaling). Theorem 1 and Corollary 1 
hold for any choice of n, n(0) and I(0). In the limit n →∞,C √ 
if all the entries of x0 are Θ(1) we have kx0k2 = Θ( n), 
and therefore both (10) and (12) become, up to logarithmic 
factors, � √ � � 

0 < r ≤ Õ δ n M . (20) 
(0) I(0)Analogously, in the limit n = n → ∞ both (16)C 

and (18) become � q �� 
I(Lf ) I(0)0 < r ≤ Õ δ n . (21) 

Remark 5 (`p adversarial robustness guarantees). Let us� 
I(Lf ) I(0)assume for simplicity that does not scale 

with n. For any p ≥ 1 and any r > 0, let n o 
(0)×I(0) 
CBp = x ∈ Rn : kx − x0kp < r (22)r 

be the `p ball with center x0 and radius r. Since 
p−1 
pkx − x0k1 ≤ n kx − x0kp (23) 

(0) ×I(0) 
Cfor any x ∈ Rn , we trivially have from Remark 4 

that in the limit n →∞, 

P (∃ x ∈ Bp : φ(x) = 0) ≤ δ (24)r � � 
− 1 

for 0 < r ≤ Õ δ n p 
1

2 . In particular, the `2 and `∞ 

distances from the closest classifcation boundary scale at 
least as ˜ Ω (1/ 

√ 
Ω(1) and ˜ n), respectively. If all the entries 

of x0 are Θ(1), then kx0kp = Θ(n p 
1 

), and the ratio between 
the `p distance to the classifcation boundary and kx0kp 

scales at least as ˜ 
√ 
n) regardless of p, i.e., regardless Ω (1/ √ 

of the choice of the norm, a fraction 1/ n of the input must 
be changed to change the label. 

To summarize, we have proved that the `1 distance of any 
given input from the closest classifcation boundary is with√ 
high probability at least Ω( n), where n is the dimension 
of the input. Moreover, for any p ≥ 1, the `p distance of any 
given input from the closest classifcation boundary is with√ 
high probability at least Ω (1/ n) times the `p norm of the 
input. This result applies to both smooth Gaussian processes 
and deep neural networks with almost any architecture and 
random weights and biases. 

3.1. Proof of Theorem 1, Part I 

Let � � 
pr = P ∃ x ∈ Br 

1 : φ(x) = 0 , (25) 

and for any φ0 > 0 let � � 
pr(φ0) = P ∃ x ∈ B1 : φ(x) = 0 | φ(x0) = φ0 . (26)r 

Conditioning on φ(x0) = φ0, φ becomes the Gaussian 
process with average 

µ(x) = K(x, x0) φ0 /K(x0, x0) (27) 

and covariance 
K(x, x0) K(x0, y)

K̂(x, y) = K(x, y) − . (28)
K(x0, x0) 

We put φ(x) = µ(x) − ϕ(x) for any x ∈ Rn, such that ϕ is 
a centered Gaussian process with covariance K̂ . Let 

K(x, x0)
Kr = inf , 

x∈B r 
1 K(x0, x0) 

σ2 ˆϕr = E sup ϕ(x) , = sup K(x, x) , (29)r 
x∈B1 x∈B1 

r r 

and let us assume that Kr φ0 > ϕr. The Borell–TIS in-
equality (Adler & Taylor, 2009) provides an upper bound to 
pr(φ0): 
Theorem (Borell–TIS inequality). Let ϕ be a centered 
Gaussian process on Ω ⊂ Rn , and let K̂ be the associ-
ated kernel. Then, for any t > 0 � � 

2 σ2P sup ϕ(x) ≥ E sup ϕ(x) + t ≤ e − t2 

, (30) 
x∈Ω x∈Ω 

where σ2 = sup K̂(x, x).x∈Ω 

We have from the Borell–TIS inequality� � 
pr(φ0) ≤ P ∃ x ∈ Br 

1 : ϕ(x) ≥ µ(x) 
(Kr φ0−ϕr )

2� � − 
r≤ P ∃ x ∈ B1 : ϕ(x) ≥ Kr φ0 ≤ e 2 σ2 . (31)r 

Recalling that φ(x0) is a centered Gaussian random variable 
with variance K(x0, x0), we have Z ∞ 

0− 
φ2 dφ0

2 K(x0,x0)pr = 2 pr(φ0) e p 
0 2πK(x0, x0) 

ϕrZ 
φ2 dφ0Kr 0− 

2 K(x0,x0)≤ 2 e p 
0 2πK(x0, x0)Z ∞ (Kr φ0−ϕr )

2 φ2 
0− − dφ02 σ2 2 K(x0,x0)

r+ 2 e p
ϕr 2πK(x0, x0) q 
Kr 

2 
π ϕr + σr 

≤ p . (32)
Kr K(x0, x0) 

We get an upper bound on ϕr from Dudley’s theorem 
(Bartlett, 2013). 
Theorem (Dudley’s theorem). Let ϕ be a centered Gaus-
sian process on Ω ⊂ Rn , and let d̂  be the RKHS distance 
of the associated kernel. For any � > 0, let N(�) be the 
minimum number of balls of d̂ with radius � that can cover 
Ω. Then, Z ∞√ p

E sup ϕ(x) ≤ 8 2 ln N(�) d� . (33) 
x∈Ω 0 
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We directly get from Dudley’s theorem Z ∞√ p
ϕr ≤ 8 2 ln Nr(�) d� , (34) 

0 

where Nr(�) is the minimum number of balls of d̂ with ra-
dius � that can cover B1 . Let N(�) be the minimum numberr 
of balls of the Euclidean distance with radius � that can 
cover the unit `1 ball. In the Supplementary Manuscript we 
prove the following Lemma 1: 

Lemma 1. d̂(x, y) ≤ d(x, y) for any x, y ∈ Rn . 

From Lemma 1 and (8) we get d̂(x, y) ≤ M C kx − yk2 
for any x, y ∈ Rn, therefore Nr(�) ≤ N (�/(M C r)) and 
(34) implies Z ∞√ p

ϕr ≤ 8 2 M C r ln N(�) d� . (35) 
0 

In the Supplementary Manuscript we prove the following 
Theorem 3: 

Theorem 3. For any � > 0, the open unit ball B1 of the `1 

norm in Rn can be covered with ⎧ ⎪ 1 � ≥ 1⎨ 
1 

1N(�) ≤ (2n) �2 √ < � < 1 (36)n⎪ � �n⎩ 11 + 2 
� 0 < � ≤ √ 

n 

balls of the Euclidean distance with radius � and centers in 
B1. 

We get from Theorem 3 Z ∞ p
ln N(�) d� ≤ 

0 sZ √ � � Z 11 
n 2 √ d� 

n ln 1 + d� + ln 2n 
1� �0 √ r Z 1 

s � � 
n 

√ln 4n 1 1 ln n 
= ln √ + dx + ln 2n 

2 2 n x 20 sr Z 1 � � √ln 4n 1 1 ln n ≤ ln √ + dx + ln 2n 
2 0 2 2 x 2 

√ √3 ln n ≤ ln 4n + ln 2n = an , (37)
4 2 

where in the second line we made the change of variable √ 
x = � n. In the Supplementary Manuscript, we prove the 
following Lemma 2 and Lemma 3: 

Lemma 2. We have .p
Kr ≥ 1 − M C r K(x0, x0) . (38) 

Lemma 3. We have σr ≤ M C r. 

Putting together (37), (35), (32), Lemma 2 and Lemma 3 
we get 

16 16√ an + 1 √ an + 1 π π 
pr ≤ √ ≤ kx0k 

, (39)
K(x0,x0) 2 − 1− 1 M rM C r 

where the last inequality follows from (8). Therefore, we 
have pr ≤ δ for 

M r δ ≤ , (40)16kx0k2 √ an + 1 + δ
π 

and the claim follows. 

4. Experiments 

To experimentally validate Corollary 1 and Remark 5, we 
performed adversarial attacks on random inputs for vari-
ous network architectures with randomly chosen weights 2. 
As shown in the Supplementary Manuscript, experimental 
fndings were consistent across a variety of networks. For 
sake of brevity, in this section we only provide fgures and 
results for a simplifed residual network. Figure 1 plots 
the median distance of adversarial examples for a residual 
network similar to the frst proposed residual network (He 
et al., 2016). This network contains three residual blocks 
and does not contain a global average pooling layer before 
the fnal output (its complete architecture is given in the 
Supplementary Manuscript). Attacks were performed on 
2-dimensional images with three channels and pixel values 
chosen randomly from the standard uniform distribution. 

Results from Figure 1 plotting median adversarial distances 
as a function of the input dimension are consistent with 
the expected theoretical scaling in Remark 5. Namely, ad-
versarial distances in the `1 , `2 , and `∞ norms√scale with 
the dimension of the input n proportionally to n, a con-√ 
stant C (not dependent on n), and 1/ n, respectively (up 
to logarithmic factors). Adversarial distances relative to 
the average starting norm of an input are plotted in Fig-
ure 2. This adjusted metric named relative distance provides 
a convenient means of understanding the scaling of adver-
sarial distances, since relative adversarial distances scale √ 
proportionally to 1/ n in all norms. 

4.1. Adversarial Attacks on Trained Neural Networks 

Results from section 4 indicate that adversarial attacks on 
networks with randomly chosen weights empirically con-
form with our main fndings presented in section 3. In this 
section, we extend our experimental analysis to networks 
trained on MNIST and CIFAR10 data. We trained networks 

2code to replicate experiments published at 
https://github.com/bkiani/Adversarial-robustness-guarantees-for-
random-deep-neural-networks 

https://github.com/bkiani/Adversarial-robustness-guarantees-for-random-deep-neural-networks
https://github.com/bkiani/Adversarial-robustness-guarantees-for-random-deep-neural-networks
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Figure 1. Random untrained residual networks: The median `p distances of closest adversarial examples from their respective inputs 
for p = 1, 2, ∞ scale as predicted in Remark 5 for a residual network (see the Supplementary Manuscript for full description of network). 
Error bars span ±5 percentiles from the median. For each input dimension, results are calculated from 2000 samples (200 random 
networks each attacked at 10 random points). See the Supplementary Manuscript for further details on how experiments were performed. 
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Figure 2. Random untrained networks: Median relative dis-
tance of closest adversarial examples kΔxkp/kx0kp from their 
respective inputs (p ∈ {1, 2, ∞}) scale with the input dimension √ 
n as O(1/ n) in all norms for a residual network with random 
weights (see the Supplementary Manuscript for full description 
of network), confrming the theoretical predictions of Remark 5. 
Results plotted here are for residual networks with random weights. 
Error bars span ±5 percentiles from the median. For each input 
dimension, results are calculated from 2000 samples (200 random 
networks each attacked at 10 random points). 

with the same residual network architecture given in the 
prior section on MNIST and CIFAR10 data under the task 

of binary classifcation. For the case of MNIST, the bi-
nary classifcation task was determining if a digit is odd 
or even. For CIFAR10, image classes were assigned to bi-
nary categories of either {airplane, bird, deer, frog, ship}
or {automobile, cat, dog, horse, truck}. Networks were 
trained for 15 and 25 epochs for the MNIST and CIFAR10 
datasets respectively achieving greater than 98% training 
set accuracy in all cases. We refer to the Supplementary 
Manuscript for full details on the training of the networks. 

Properties of trained neural networks, especially as they 
relate to adversarial robustness and generalization, are de-
pendent on the properties of the data used to train them. For 
example, since neural networks can be trained to “memo-
rize” data (Choromanska et al., 2015), Corollary 1 can be 
forced to fail if the network is trained on a dataset which 
contains very close inputs with different labels. From Fig-
ure 4, the networks trained on CIFAR10 data show a smaller 
adversarial distance with respect to random networks on 
both random images and images taken from the training or 
test set. In the case of MNIST, training decreases the adver-
sarial distance for random images, but does not signifcantly 
change it for training or test images. A possible explana-
tion for this discrepancy is the conspicuous geometric and 
visual structure inherent in the MNIST dataset relative to 
CIFAR10. Digits in MNIST all have the same uniform 
black background and geometry and roughly fll the whole 
image, while in CIFAR10 the background and the relative 
size of the relevant part of the image can vary signifcantly, 
and pictures are taken from various different angles (e.g., 
different orientations of a dog or car). Thus, when trained 
on MNIST, networks can more easily embed training and 
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Figure 3. Trained networks: Adversarial distance by percentile for random images (images with randomly chosen pixel values) and 
images in the training and test sets. The expected linear relationship between distance and percentile is observed for random images 
apart from the highest percentiles as is evident from the linear ft over percentiles ranging from 0 to 0.25 shown as solid line. Adversarial 
attacks are performed on the `1 norm. Network architecture is a simplifed residual network (see Supplementary Manuscript). 

test points within areas far from classifcation boundaries. 
More generally, networks trained on MNIST data achieve 
low generalization error and increased adversarial distances 
are correlated with those lower errors (though adversarial 
robustness can sometimes be at odds with generalization 
(Raghunathan et al., 2019; Tsipras et al., 2019)). On the 
other hand, the networks trained on CIFAR10 slightly suf-
fer from overftting, since they have a 16.3% discrepancy 
between the performances on the training and the test data. 
Therefore, the lower adversarial distance might be due to 
noise-like signals employed for prediction. 

Another possible explanation of the discrepancy in the size 
of the adversarial perturbations between random and trained 
deep neural networks is that networks trained with stochastic 
gradient descent are known to be less robust to adversarial 
perturbations than networks trained with Bayesian inference 
(Duvenaud et al., 2016; Bekasov & Murray, 2018; Carbone 
et al., 2020). As shown in section 1, under the hypothe-
sis that the target function is generated by a given random 
deep neural network, the classifer obtained from Bayesian 
training of the same network has the same properties as 
a function generated by the random network. Therefore 
we expect that, for the size of the adversarial perturbations, 
random deep neural networks are closer to deep neural net-
works trained with Bayesian inference than to deep neural 
networks trained with gradient descent. 

From Corollary 1, we expect the portion of images that 
have at least one adversarial example within a given `1 

distance to increase linearly with the distance. This fnding 

is validated by results shown in Figure 3 which plots the 
adversarial distance by percentile (sorted smallest to largest 
distance). In the case of random images, the linear increase 
in adversarial distance by percentile is evident throughout 
most of the percentiles in the chart conforming closely to the 
linear ft (dotted line). Interestingly, this linear correlation is 
even observed in images in the training and test sets outside 
of the smallest and highest percentiles. For training and 
test set images, networks usually predicted labels with high 
confdence thus limiting the percentage of images falling at 
small distances from a classifcation boundary. 

5. Discussion 

We have studied the properties of adversarial examples for 
deep neural networks with random weights and biases and 
have proved that for any p ≥ 1, the ̀ p distance from the clos-
est classifcation boundary of any given input is with high 
probability at least ˜ 

√ 
n) times the `p norm of the input, Ω (1/ 

where n is the dimension of the input space (Corollary 1 
and Remark 5). This lower bound matches the upper bound 
of (Gilmer et al., 2018; Fawzi et al., 2018; Shafahi et al., 
2019; Mahloujifar et al., 2019), and our result determines 
the universal scaling of the minimum size of adversarial 
perturbations. Under the hypothesis that the target function 
is generated by a given random deep neural network, our 
probabilistic robustness guarantee also applies to the same 
network trained with Bayesian inference. 

We have validated our theoretical results with experiments 
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Figure 4. Random vs trained networks: Median distance of adversarial examples (in `1 norm) for random neural networks and neural 
networks of same architecture trained on MNIST and CIFAR10 data Figure 1. Analysis is performed for random images (images with 
randomly chosen pixel values) and images in the training and test sets. Network architecture is a simplifed residual network (see 
Supplementary Manuscript). 

on both random deep neural networks and deep neural 
networks trained with stochastic gradient descent on the 
MNIST and CIFAR10 datasets. The experiments on random 
networks are in complete agreement with our theoretical pre-
dictions. Networks trained on MNIST and CIFAR10 data 
are mostly consistent with our main fndings, and we conjec-
ture that the proof of our adversarial robustness guarantee 
can be extended to trained deep neural networks. Indeed, 
(Jacot et al., 2018; Lee et al., 2019; Yang, 2019a; Arora 
et al., 2019; Huang & Yau, 2020; Li et al., 2019b; Wei et al., 
2019; Cao & Gu, 2019) have proved that the training of deep 
neural networks via stochastic gradient descent is similar 
to the training of Gaussian processes with Bayesian infer-
ence, and the classifer generated by a trained deep neural 
network still behaves as a Gaussian process. Therefore, we 
expect that the robustness of deep neural networks trained 
with stochastic gradient descent can be studied with similar 
techniques, and we believe that a probabilistic robustness 
guarantee similar to the guarantee proved in this paper can 
be proved. While the robustness guarantee for random deep 
neural networks does not require any assumption on the 
inputs, extensions to trained deep neural networks will def-
initely require assumptions on the training data. Given 
our results on random untrained networks extend directly 
to random networks trained via Bayesian inference under 
the hypothesis that the target classifer is drawn from the 
same random distribution, we conjecture that extending our 
results more broadly to trained networks will require that 
training labels look “typical” with respect to the probability 
distribution generated by the random initialization of the 
deep neural network at the beginning of the training. 

The robustness guarantee of Corollary 1 depends on the 
architecture of the deep neural network through the ratio 
between the number of pixels of the output and of the input 
layer, favoring the case where such ratio is not small. We 

expect that with similar techniques the dependence of the 
bound on the architecture can be refned, thus allowing for 
a systematic study of how the choice of the model affects 
the adversarial robustness. Moreover, the extension of our 
results to deep neural networks trained with stochastic gra-
dient descent would provide an analytic lower bound to the 
size of adversarial perturbations in terms of their architec-
ture, and would therefore open the way to the frst thorough 
theoretical understanding of the relationship between the 
network architecture and its robustness to adversarial at-
tacks. 

Finally, our methods can be employed to study the robust-
ness of deep neural networks with respect to adversarial 
perturbations that keep the data manifold invariant, such 
as smooth deformations of the input image (Mallat, 2012; 
Oyallon & Mallat, 2015; Bruna & Mallat, 2013; Bietti & 
Mairal, 2019a;b). 
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