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Abstract
Detecting semantic anomalies is challenging due
to the countless ways in which they may appear
in real-world data. While enhancing the robust-
ness of networks may be sufficient for modeling
simplistic anomalies, there is no good known way
of preparing models for all potential and unseen
anomalies that can potentially occur, such as the
appearance of new object classes. In this paper,
we show that a previously overlooked strategy for
anomaly detection (AD) is to introduce an explicit
inductive bias toward representations transferred
over from some large and varied semantic task.
We rigorously verify our hypothesis in controlled
trials that utilize intervention, and show that it
gives rise to surprisingly effective auxiliary objec-
tives that outperform previous AD paradigms.

1. Introduction
The goal of anomaly detection (AD) is the identification of
unusual samples within data (Edgeworth, 1887; Chandola
et al., 2009; Pang et al., 2020a; Ruff et al., 2021). For data
types that are semantically rich such as images, “unusual-
ness” can be caused by a variety of high-level (or semantic)
factors, for example the appearance of new objects classes,
or unexpected shapes or poses. For these settings, there
has been continued interest in developing new deep AD
methods (Zhai et al., 2016; Schlegl et al., 2017; Sabokrou
et al., 2018; Deecke et al., 2018; Ruff et al., 2018; Golan &
El-Yaniv, 2018; Pidhorskyi et al., 2018; Hendrycks et al.,
2019b;c; Goyal et al., 2020; Tack et al., 2020) that utilize
end-to-end learning, a defining property amongst deep learn-
ing approaches (Krizhevsky et al., 2012; He et al., 2016;
Goodfellow et al., 2016).

Because of the sheer number of factors that can potentially
cause an anomaly, there is no feasible way of a priori de-
scribing or anticipating them. As a result, for deep AD there
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exists no established principal learning objective. Several
auxiliary solutions have been proposed: one line of work uti-
lizes self-supervision (Golan & El-Yaniv, 2018; Hendrycks
et al., 2019c; Bergman & Hoshen, 2020; Tack et al., 2020;
Sohn et al., 2021), for example learning representations
from the task of predicting simple geometric transforma-
tions (rotations, translations, etc.) applied to non-anomalous
examples. A second popular approach broadly resembles
weak supervision, and uses large unstructured collections
of data as auxiliary anomalies (Hendrycks et al., 2019b;c;
Ruff et al., 2020a).

Considering the rather ad-hoc nature of many of these ap-
proaches, especially given the semantic richness present in
natural images, one may wonder whether they learn partic-
ularly meaningful features from such auxiliary objectives.
This is problematic since anomalies can manifest themselves
in ways that require a good semantic understanding — for
example when anomalies appear in crowded scenes (Ma-
hadevan et al., 2010).

Here we propose a different perspective and hypothesize
that, because there is simply no way of anticipating all poten-
tial semantic anomalies for unseen images in advance, the
best bet is to follow a transfer-based approach that utilizes
the semantically rich features obtained from some semantic
task solved on a large, semantically varied dataset. We sys-
tematically evaluate different strategies to introduce such
an inductive bias in AD, and identify simple strategies that
yield surprisingly powerful AD methods.

Our work builds on the recently increased availability and
utilization of networks pretrained on semantically rich tasks
that incorporate different variations commonly seen in data
(edges, color, semantic categories, etc.). While He et al.
(2019) fundamentally questioned whether actual benefits
are achieved from the use of pretrained models, Hendrycks
et al. (2019a) painted them in a more positive light, showing
they improve robustness and uncertainty calibration.

Rich semantic representations have been shown to boost the
performance in many machine learning problems, including
image classification (Donahue et al., 2014; Guo et al., 2019),
object detection (Girshick et al., 2014; Girshick, 2015), the
transfer between large numbers of tasks (Zamir et al., 2018),
or from one domain to another (Rebuffi et al., 2017; 2018).
In another example, a surge of papers has recently elevated
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the role of pretrained models in natural language processing
(Mikolov et al., 2018; Devlin et al., 2019; Howard & Ruder,
2018; Adhikari et al., 2019; Hendrycks et al., 2020).

Our central hypothesis is that transferring features from se-
mantic tasks such as ILSVRC image classification (Deng
et al., 2009) provides very powerful and generic representa-
tions for various AD problems, even when the pretraining
task is only loosely related to the task of AD. In doing so, it
is important to ensure that the change in representation is not
excessive, as this risks catastrophic forgetting (Kirkpatrick
et al., 2017). For AD in particular, it is crucial to preserve
variations incorporated during pretraining that, even though
they potentially don’t exist in the training data, can nonethe-
less be meaningful for inferring anomalous semantics at test
time (Tax & Müller, 2003; Rippel et al., 2020). Opposed to
mere feature extraction (Bergman et al., 2020), our experi-
ments show that it is critical to let the network have some
flexibility to learn new variations important for AD.

To the best of our knowledge, a rigorous analysis and eval-
uation of transfer-based approaches for AD is still lacking
in the literature. Our experiments show that such strate-
gies provide very powerful methods for AD that outper-
form previous approaches in the deep AD literature on a
set of common benchmarks (Section 5). Moreover they are
straightforward to train and deploy, and can be coupled with
any modern network architecture.

Besides experiments on the predominant AD benchmarks,
we propose the use of disentanglement datasets (Gondal
et al., 2019) to evaluate the semantic detection performance
of AD models. In doing so, we verify that our proposed
method is able to robustly detect anomalies under interven-
tions (e.g. a change of object color), showing it preserves
meaningful semantic variations in its representations.

In addition to verifying the suitability of our method on
semantic benchmarks (Section 5.2), models trained on se-
mantic tasks have been shown to learn elements required
for non-semantic decisions in early parts of the network
(Zeiler & Fergus, 2014). Indeed we find that our methods
are suitable for tasks considered non-semantic (Ahmed &
Courville, 2020), such as the popular CIFAR-10 one-versus-
rest benchmark (Section 5.3).

2. Related Work
Anomaly detection has a long history (Edgeworth, 1887) and
has been extensively studied in the machine learning litera-
ture, e.g. through hidden Markov models for detecting net-
work attacks (Ourston et al., 2003), active learning of anoma-
lies (Pelleg & Moore, 2005), or dynamic Bayesian networks
for traffic incident detection (Singliar & Hauskrecht, 2006).
An overview over traditional AD methods can be found in
Chandola et al. (2009) and Emmott et al. (2013).

Previous deep AD methods utilized autoencoders (Zhou
& Paffenroth, 2017; Zong et al., 2018), hybrid methods
(Erfani et al., 2016), one-class classification (Ruff et al.,
2018; Sabokrou et al., 2018; Ghafoori & Leckie, 2020;
Goyal et al., 2020), or GANs (Goodfellow et al., 2014;
Schlegl et al., 2017; Akcay et al., 2018; Deecke et al., 2018;
Perera et al., 2019; Ngo et al., 2019; Berg et al., 2019).
Another line of work explores detecting anomalous videos
(Sultani et al., 2018; Ionescu et al., 2019; Ngo et al., 2019;
Pang et al., 2020b).

A recent focus has been on developing auxiliary tasks for
AD, often following the paradigm of self-supervision, for
example predicting geometric transformations of normal
data (Golan & El-Yaniv, 2018; Hendrycks et al., 2019c).
Different from this, Hendrycks et al. (2019b) propose carry-
ing out AD in a weakly supervised manner in what they call
outlier exposure (OE), where one utilizes large unstructured
sets of data as auxiliary outliers to improve detection perfor-
mance. While our approaches also leverage large corpora,
they establish inductive biases as a separate crucial element
for semantic AD.

Several recent publications have investigated unsupervised
mechanisms to learn disentangled representations (Kulka-
rni et al., 2015; Higgins et al., 2017; Bouchacourt et al.,
2018; Burgess et al., 2018; Chen et al., 2018; Kim & Mnih,
2018; Kumar et al., 2018; Locatello et al., 2019; 2020). We
propose using image datasets developed for disentangle-
ment (Gondal et al., 2019) for gaining better insights into
AD methods, letting us show that an inductive bias seems
necessary to detect anomalies on a semantic level.

3. Motivation
To motivate our approach we investigate the semantic via-
bility of features learned under different auxiliary AD ob-
jectives. We employ a strategy inspired by linear probing
(Zhang et al., 2017) in a two-stage setup very commonly
used in AD applications (Erfani et al., 2016; Sohn et al.,
2021): after a feature extraction phase f over some data
x ∼ p(x), a subsequent one-class model g is learned to en-
capsulate the normal class w.r.t. the push-forward f∗(p(x)).

For the data we make use of a standard AD benchmark
(Ruff et al., 2018): single classes from CIFAR-10 (e.g. dogs)
constitute the normal class, and the one-class model g is
learned over all embedded training examples of this class.
At test time, we measure whether the two-stage model can
successfully identify the appearance of the remaining object
classes (cats, deers, etc.) as anomalous. The metric reported
in Table 1 results from repeating this procedure for all ten
classes, and recording the area under the ROC curve (AUC)
relative to that of a random baseline (AUC of 0.5).

The initial extraction phase occurs at one of three layers
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Layer (i) Self-sup. (ii) Weakly-sup. (iii) Transfer-b.

fconv,1 1.44 (0.19) 1.58 (0.20) 2.02 (0.21)
fconv,2 4.60 (0.17) 3.83 (0.16) 5.48 (0.19)
fconv,3 4.63 (0.15) 5.12 (0.12) 6.72 (0.15)

Table 1. Percent improvement in AUC relative to a random base-
line on CIFAR-10 AD for one-class SVMs on top of features
extracted from LeNet layers (conv1-3) trained through different
learning paradigms (transfer-based etc.). Standard deviations in
parentheses were computed over five random seeds.

(conv1-3) of a LeNet architecture (LeCun et al., 1989)
trained via three different paradigms (see next paragraph).
The subsequent one-class stage always uses the exact same
OC-SVM (Schölkopf et al., 1999). Fixing a simple model g
on top of fconv,i(x) allows direct insights into the viability
of each layer’s features for semantic AD.

We compare fconv,i after training the extraction model with
three different learning paradigms for AD:

(i) self-supervision through geometric transformation of
the input data as in Hendrycks et al. (2019c);

(ii) weakly supervised classification via outlier exposure
(CIFAR-100 as OE dataset) (Hendrycks et al., 2019b);

(iii) transferring from another task (CIFAR-100 classifica-
tion) and subsequent finetuning through OE.

For (i), (ii), and (iii), deeper features always result in per-
formance improvements (see Table 1). When extracting at
deeper layers – which are typically associated with higher
semantic function (Yosinski et al., 2014; Zeiler & Fergus,
2014; Mahendran & Vedaldi, 2016; Asano et al., 2020) –
there is however a performance gap between paradigms:
(i) self-supervised features do not improve from conv2 to
conv3, indicating they learn predominantly low-level fea-
tures. For (ii) OE-based extraction performance increases a
little at every layer, but overall AUCs are most improved by
the (iii) transfer-based approach, which raises mean AUC
by 6.72% in conv3. From this, we can already observe
that transfer-based features can have a favorable impact for
robust downstream AD detection performance.

In our experimental section (Section 5) we expand on this
finding and show that, when transferring semantic represen-
tations to complex AD tasks, it is crucial to ensure models
do not suffer from catastrophic forgetting. The next section
introduces ways in which this can be achieved, e.g. through
adequate regularization.

4. Methods
We review components of our proposed approach in Sec-
tions 4.1 and 4.2, and subsequently introduce two methods

for semantic AD with an inductive bias: ADIB (Section 4.3)
and ADRA (Section 4.4).

4.1. AD using an Unstructured Corpus

In AD, a (semantic) understanding of normal examples is
extracted from a set Sn = {xj}nj=1 assumed to have been
sampled i.i.d. from the normal data distribution P+ over
some space X . The goal is to learn a one-class model
fθ : X → [0, 1] with parameters θ ∈ Θ that decides whether
a previously unseen x ∈ X is normal (s.t. fθ(x) ≈ 0) or
anomalous (fθ(x) ≈ 1).

The way Sn is used to learn fθ defines how different ap-
proaches in the AD literature can be categorized, e.g. in
an unsupervised way (Ruff et al., 2018), or through self-
supervision (Golan & El-Yaniv, 2018) (c.f . Section 2). The
concept of outlier exposure (OE) (Hendrycks et al., 2019b)
utilizes a large number of unlabelled images from some
unstructured corpus of data Qm (where commonly m� n),
for example 80 Million Tiny Images (Torralba et al., 2008),
on which models are trained to identify whether samples
belong to the corpus or the normal data P+. Importantly,
this is a form of weak supervision via existing resources
(Zhou, 2018), and not equivalent to supervised classifica-
tion: images from the auxiliary corpus are not necessarily
true anomalies (and may even contain samples from P+).
For an N -sized batch of samples, the associated learning
objective can be formulated as

arg min
θ

{
L[fθ] = LSn

[fθ] + LQm
[fθ] =

1

N

[ ∑
x∈Sn

log fθ(x) +
∑
x∈Qm

log(1− fθ(x))
]}
. (1)

Recent state-of-the-art AD methods have proposed to mod-
ify this objective by using radial functions Ruff et al.
(2020a), which is in line with the so-called concentration
assumption common in AD (Schölkopf & Smola, 2002;
Steinwart et al., 2005). We include such radial functions
in our ablation (Table 4), however empirically observed
that – when paired with an explicit inductive bias – standard
classifiers typically performed better.

4.2. Transfer-Based AD

Following work that investigated the prospects of large pre-
trained networks (Zamir et al., 2018; Adhikari et al., 2019;
Hendrycks et al., 2020), a recent study proposed carrying
out AD through a nearest neighbor search on top of features
extracted from a large pretrained residual network (Bergman
et al., 2020). However as can be seen from the experimental
results in Table 5, simply transferring over fixed represen-
tations to an unrelated task seems subpar for semantic AD.
Next, we outline how parameters obtained from some pre-
training task can be more effectively transferred to AD.
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Pretraining itself tends to follow a simple standard protocol:
a model’s parameters are randomly initialized with some
distribution, for example Xavier initialization (Glorot &
Bengio, 2010). Optimization of a suitable transfer task T
(e.g. ImageNet object classification) yields a set of general-
purpose parameters θ0 ∈ Θ. The so-obtained model fθ0 is
then ready to be transferred to some downstream task B.

The traditional methodology for leveraging pretrained mod-
els is to continue to optimize the model parameters (or a
subset thereof) on B. One crucial limitation of this learning
protocol is that when learning on B isn’t carried out care-
fully through the introduction of some explicit inductive
bias (Li et al., 2018), this risks catastrophic forgetting of
information previously extracted from T . To alleviate this
issue, a common approach is to use regularization, e.g. as
in continual learning (Kirkpatrick et al., 2017; Lopez-Paz
& Ranzato, 2017). In the following two sections, we intro-
duce two new AD-specific learning methods that prevent
catastrophic forgetting.

4.3. Anomaly Detection with an Inductive Bias

Due to the complex ways in which semantic anomalies may
manifest themselves in images, we hypothesize that our
best bet for robust semantic AD is to introduce a semantic
inductive bias into models.

To achieve this, we augment the learning criterion intro-
duced in eq. (1) with an additional regularizer Ω: Θ→ R+

that constraints models, resulting in the following objective:

arg min
θ∈Θ

{
LSn [fθ] + LQm [fθ] + Ω(θ)

}
. (2)

As our ablations (Table 4) show, an inductive bias such asL2

regularization toward initial pretrained parameters θ0 ∈ Θ
is crucial for robust semantic AD performance. Motivated
by this finding, in Anomaly Detection with an Inductive Bias
(ADIB) we set Ω(θ) = α||θ − θ0||2 scaled by α ∈ R+.

We find that ADIB outperforms previous state-of-the-art
AD methods on semantic anomaly benchmarks. For the
CIFAR-10 semantic AD benchmark, for example, it raises
the state of the art to 74.6 versus 41.6 mean AP reported
previously by Ahmed & Courville (2020). Moreover, ADIB
sets a new state of the art on the widespread one-versus-rest
AD benchmark, raising the bar from 96.1 (Ruff et al., 2020a)
to 99.1 mean AUC.

4.4. Anomaly Detection with Residual Adaptation

Regularization can also be formulated to bolster parameter
efficiency. For this, we propose constraining the underlying
generating function of residual networks (He et al., 2016)
Φ(x) = x + f(x) to allow at most a linear change from
the pretrained mapping Φ0 with f0 in every layer, whereby

Φ(x)− Φ0(x) = V x. This is then rearranged to:

Φ(x) = x+ f0(x) + V x, (3)

where V linearly corrects from adjacent layers (and can be
implemented via 1x1 convolutions), and f0 is the residual
3x3 convolution obtained from some transfer task T . As-
suming that pretrained models will have obtained strong
general-purpose representations that should require only
minimal changes to adapt to new tasks, only the V are
learned, while f0 is left unchanged. Similar strategies have
been used in multi-task (Rebuffi et al., 2017; 2018; Deecke
et al., 2020) and NLP (Stickland & Murray, 2019) settings
to restrict the number of learnable parameters there.

We apply this strategy in Anomaly Detection with Resid-
ual Adaptation (ADRA), and our experiments in Section 5
demonstrate that its performance is often comparable to that
of regularizing all parameters via Ω(θ). At the same time, as
only V gets learned at each layer, ADRA is highly efficient.
Such savings are crucial for applications in which multiple
normal datasets exist but memory footprints are restrictive
(e.g. federated learning scenarios (Yang et al., 2019; Bhagoji
et al., 2019)).

5. Experiments
For evaluation, we first propose a novel experiment that is
based on disentanglement datasets that have been introduced
recently (Section 5.1). We then evaluate ADIB and ADRA
on two benchmark settings: semantic AD (Section 5.2), and
the widely adopted one-versus-rest AD (Section 5.3). All
experiments have been implemented with PyTorch (Paszke
et al., 2019).1

5.1. Examining Models through Interventions

As previous authors have emphasized, curating datasets with
semantic anomalies is challenging (Ahmed & Courville,
2020). We here propose to achieve this via datasets origi-
nally developed for disentangled representations (Kulkarni
et al., 2015; Higgins et al., 2017; Bouchacourt et al., 2018;
Burgess et al., 2018; Chen et al., 2018; Kim & Mnih, 2018;
Kumar et al., 2018; Locatello et al., 2019; 2020) that con-
tain underlying ground-truth factors of images, in particular
high-resolution, realistic datasets such as the recently re-
leased MPI3D (Gondal et al., 2019). In contrast to previous
evaluations for semantic AD, for example those that mod-
ify CIFAR-10 to such a task (Ahmed & Courville, 2020),
interventions on ground-truth factors allow for principled
measurements of semantic capabilities of a given model,
as for example the color of an object can be changed in a
systematic fashion.

1Code available at https://github.com/VICO-UoE/
TransferAD.

https://github.com/VICO-UoE/TransferAD
https://github.com/VICO-UoE/TransferAD
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Figure 1. Detection performance in AUC under interventions on
color, shape, and size of images in MPI3D.

MPI3D contains joint pairs of latent ground-truth factors z
(color, shape, angle, etc.), and corresponding images xz of
a robot arm mounted with an object. The original dataset
comes in three styles (photo-realistic, simple, or detailed
animation); because the models we evaluate use rich deep
architectures, we skip evaluation on simple and animated
images (which are useful for simpler models) and focus on
the photo-realistic images here.

All models use the same number of parameters, and dif-
fer only in which AD loss is optimized — DSVDD (Ruff
et al., 2018) uses eq. (1) without any weak supervision (no
LQm [fθ] term). SAD (Ruff et al., 2020a;b) differs from
DSVDD only in that it uses OE. Our models combine both
OE and an inductive bias, see eq. (2). To ensure fair com-
parison, we use the exact same ResNet26 for all methods,
and initialize all of them in exactly the same way, i.e. with
the same pretrained weights. Note however our proposed
ADRA has less modeling power than DSVDD and SAD,
due to having fewer learnable parameters.

For semantic AD experiments on MPI3D, we propose fixing
a red cone as the normal object (chosen arbitrarily), and
train models on all available views. Anomalies are obtained
by interventions on three underlying factors: (i) changing
color to blue, (ii) transforming shape to cube, and (iii) in-
creasing size. Two additional degrees of freedom exist in the
dataset: background color and camera height. Interventions
on these have an outsized impact on images however, and
do not provide any real challenge to a residual network (or
any other modern vision architecture, for that matter), which
is why we do not consider them here.

For weak supervision through OE we use all remaining
images that do not belong to neither the normal nor the
anomaly class. For example white, green, brown, and olive
all appear in the corpus Qm.

Optimization The underlying model for DSVDD, SAD,
ADRA, ADIB is the exact same ResNet26, optimized via
stochastic gradient descent (momentum parameter of 0.9,
weight decay of 10−4) for a total of 100 epochs, with learning
rate reductions by 1/10 after 60 and 80 epochs. The batch

size is fixed to 128, and we only use standard augmentations.
For all models, we initialize parameters via θ0 obtained from
pretraining on ImageNet and then train them further on the
downstream AD task.

In ADRA only linear corrections V are learned, while θ0 is
fixed. For an explicit inductive bias in ADIB, we scale the
regularization term Ω(θ) with α=10−2, as recommended
by Li et al. (2018). Results are averaged over 5 seeds.

Results AUCs for different interventions are displayed in
Fig. 1. Detecting even the most simple semantic anomaly,
such as a change in object color zcolor = red → blue is
impossible when learning without any weak supervision, as
is the case for DSVDD (11.7 AUC).

Our proposed intervention protocol confirms that it is benefi-
cial to introduce a concept of differentness via OE. In other
words, exposing models to the concept of red being nor-
mal, while also showing it examples of other colors (brown,
green, etc.) prepares the model for potential anomalous
shifts — although SAD has never seen a blue example, OE
enables it to identify it as “not red”, and hence an anomaly.

To obtain more robust models that can pick up on less ob-
vious interventions such as changing the shape zshape =
cone→cube or zsize =small→ large, adequate forms of reg-
ularization appear to be critical. While it has fewer learnable
parameters, ADRA improves performance over SAD under
all interventions. Some performance gap remains, however,
which is likely a consequence of the parameter-efficiency
of ADRA, letting it rely more on the weights of the base
network which potentially aren’t particularly well suited for
the task.

ADIB has a higher degree of flexibility, thus allowing for
sample-efficient utilization of those features which are use-
ful from the pretrained network. While ADIB might be a
simple strategy for the transfer of rich semantic features to
AD, the performance under all three interventions shows
that it can robustly detect semantic anomalies.

We finally note that weak supervision through OE consis-
tently increased disentanglement in the learned representa-
tions. DCI disentanglement (Eastwood & Williams, 2018)
almost doubles from 0.068 for DSVDD to 0.103 for SAD,
their only distinction being the absence and presence of
weak supervision via Qm, respectively. Locatello et al.
(2020) made a similar observation in the context of unsu-
pervised learning, finding that some weak supervision is
required for disentanglement.

Non-Semantic Shift Recent work examined model ro-
bustness toward non-semantic shift, such as the appearance
of color not contained in the training data, which can con-
fuse models from their primary objective of detecting se-
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Figure 2. Robustness of detecting cube under non-semantic color
shifts for DSVDD (no OE), SAD (uses OE), and our ADIB. The
x-axis indicates colors that are included in the normal distribution.

mantic categories (Ahmed et al., 2021). In order to examine
this setting on MPI3D we (w.l.o.g.) set cube = anomalous
and cone = normal and consider color a non-semantic factor.

The experiment consists of a controlled sequence of trials: a
single color (red) is included in the normal data at first, and
the detection performance of models for cone vs. cube (of
any color) is evaluated. Then another color is picked and
added to the normal data (which now contains red & blue),
and models are evaluated again. Repeating this for green,
white, etc. yields P+

red,. . .,P
+
all and gives precise control over

the degree in which semantic context may be established.

Fig. 2 shows the extent to which our transfer-based approach
improves robustness to non-semantic shifts and underlines
the importance of preventing drift from the transfer task.
SAD makes use of OE (which in this experiment includes
shapes other than cone and cube, but never additional col-
ors) and enhances performance relative to DSVDD (which
does not use OE). A gap remains however when context is
established only through OE (SAD vs. ADIB). Especially
for few colors in P+ transfer-based AD appears very useful
to manifesting the right semantic context.

5.2. Semantic AD

In this section, we evaluate recently proposed benchmarks
for semantic AD (Ahmed & Courville, 2020). This setup is
equivalent to that presented in our motivation (Section 3),
but here we evaluate a broad range of recent state-of-the-art
AD models.

In the CIFAR-10 and STL-10 semantic AD benchmarks 9
out of 10 object classes form the normal data Sn (e.g. all
classes except dogs), so that images from multiple classes
form a multi-modal normal distribution P+. The single
class that is left out (i.e. dogs) is declared anomalous and
never seen during training. At test time, the AD model
has to identify the held-out class, i.e. we measure whether
fθ(x) ≈ 1 when x contains a dog. This requires that the

AD model has a good semantic understanding of the objects
in the normal distribution P+, and this benchmark has been
shown to be more difficult than the popular one-versus-rest
AD benchmarks (Ahmed & Courville, 2020; Bergman et al.,
2020) (which we also evaluate in Section 5.3).

Ahmed & Courville (2020) determine semantic anomalies
via MSP (Hendrycks & Gimpel, 2017) and ODIN (Liang
et al., 2018) using an auxiliary self-supervised criterion akin
to RotNet (Gidaris et al., 2018), while Bergman et al. (2020)
use a nearest neighbor search over fixed pretrained features.
We include all existing results in Table 2.

Optimization As before, for ADIB we set α=10−2 fol-
lowing the suggestion of Li et al. (2018); in elastic weight
consolidation (EWC) we set the Fisher multiplier to 400, as
recommended by Kirkpatrick et al. (2017). For experiments
on CIFAR-10 (Krizhevsky & Hinton, 2009), we introduce an
inductive bias by regularizing the network weights towards
those of ResNet26 trained on ImageNet at 32x32 resolu-
tion. We use the same architecture for STL-10 (Coates et al.,
2011), but since images have a higher resolution the initial
model weights were obtained by training on ImageNet at a
resolution of 96x96.

For eqs. (1) and (2) we contrast Sn against images from an
unstructured corpus Qm. Following previous work that uses
OE (Hendrycks et al., 2019b; Ruff et al., 2020a), for CIFAR-
10 we fix this to contain all samples from the CIFAR-100
training split. As already emphasized, Qm equals weak
supervision: CIFAR-100 gives a viable surrogate learning
signal, however does not contain examples of the anomalous
CIFAR-10 categories. STL-10 contains a large unlabeled
split, which we use for OE.

Results There are discrepancies in how performance is
reported in the semantic AD literature: some authors recom-
mend average precision (AP) (Ahmed & Courville, 2020),
while others report AUC (Bergman & Hoshen, 2020). We
include both metrics in Table 2, and report AP for STL-10
(Table 3) as this benchmark was so far only evaluated by
Ahmed & Courville (2020) who report AP as AUC is overly
optimistic for the STL-10 semantic AD benchmark (Davis
& Goadrich, 2006).

On the CIFAR-10 semantic AD benchmark, ADIB outper-
forms the previously reported methods by a substantial mar-
gin: 74.6 vs. 41.6 mAP, and 95.1 vs. 71.7 mAUC. Even
though it requires a smaller number of learnable parameters
ADRA comes very close: 95.0 mAUC, and 72.9 mAP.

As our results confirm, inferring anomalies on STL-10 is
significantly harder. In particular, even when using a state-
of-the-art HSC classifier (Ruff et al., 2020a) initialized with
pretrained θ0 but without regularization Ω(θ), this does not
successfully address the semantic AD task (mAP of 27.7,
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mAUC mAP

ODIN (Ahmed & Courville, 2020) — 41.6
GT (Golan & El-Yaniv, 2018) 61.7 —
kNN-AD (Bergman & Hoshen, 2020) 71.7 —
ADRA (ours) 95.0 (0.1) 72.9 (0.4)
ADIB (ours) 95.1 (0.1) 74.6 (0.3)

Table 2. Results on the CIFAR-10 semantic AD benchmark; GT
reported in Bergman & Hoshen (2020).

Class ODIN HSC ADRA ADIB

Airplane 23.4 23.1 49.3 (8.9) 41.4 (7.4)
Bird 40.1 13.8 18.9 (8.1) 44.0 (2.9)
Car 16.9 39.9 74.6 (6.5) 72.2 (10.5)
Cat 31.4 18.9 29.6 (3.4) 51.0 (2.1)
Deer 29.7 25.3 20.7 (1.9) 43.0 (5.7)
Dog 26.1 17.3 26.6 (3.5) 32.2 (3.1)
Horse 23.6 30.1 52.5 (5.9) 53.7 (2.5)
Monkey 28.3 18.4 23.0 (2.7) 46.6 (1.9)
Ship 15.4 49.2 69.2 (2.6) 51.7 (8.7)
Truck 16.6 40.7 64.3 (2.2) 58.7 (3.6)

mAP 25.1 27.7 42.9 (1.4) 49.5 (1.2)

Table 3. APs on the STL-10 semantic AD benchmark.

Table 3). When adding a regularization term performance
improves to 35.0 mAP (a3 in Table 4), supporting our as-
sumption that variations that are important to determining
anomalies at test time are forgotten during training, yielding
poorer performance across classes.

ADIB improves performance to 49.5 mean AP. While having
much fewer effective parameters, ADRA almost matches
this performance (42.9 mAP) — interestingly, ADRA out-
performs all other AD models on STL-10 man-made objects
(cars, trucks, etc.), potentially due to there being a minority
of examples of human-made objects in CIFAR-10 and a re-
ported increase in robustness of linear bypasses on smaller
modes (Deecke et al., 2020).

Ablation The transfer of features from rich semantic tasks
to AD has to be carried out carefully. We examine this in
an ablation shown in Table 4, for which we use the exact
same model in each experiment a1–a7, and only switch on
and off individual components: starting from random (a1)
or pretrained models without regularization (a2) is not suffi-
cient, as also highlighted in our intervention experiments in
Section 5.1. Using an HSC loss (Ruff et al., 2020a) with the
exact same explicit inductive bias through Ω(θ) that we use
in ADIB reduces performance (a3 vs. a7). DOC (Perera &
Patel, 2019) is conceptually very similar to HSC, combining
a radial compactness loss with a descriptiveness loss that
requires ImageNet data. Our result (a3 vs. a4) confirms
they also behave very similarly performance-wise.

L Tr. Reg. CIFAR-10 STL-10

a1 eq. (1) 7 7 60.3 32.9
a2 eq. (1) 3 7 64.9 38.6
a3 HSC 3 L2 68.5 35.0
a4 DOC 3 7 65.8 35.2
a5 eq. (2) 3 EWC 66.4 39.7

a6 ADRA (ours) 72.9 (0.3) 42.9 (1.4)
a7 ADIB (ours) 74.6 (0.3) 49.5 (1.2)

Table 4. Ablations in terms of mAP. Tr. indicates absence or pres-
ence of transfer learning; Reg. that of regularization. Included are
comparisons against hyperspherical classifiers (Ruff et al., 2020a)
in a3, and EWC (Kirkpatrick et al., 2017) in a5.

In a5 we find that EWC, a popular strategy for continual
learning that regularizes weights via the Fisher informa-
tion (Kirkpatrick et al., 2017), performs poorly compared
to ADIB. This makes perfect sense, as EWC was designed
to slow down learning on model weights relevant for the
pretraining task: when pretraining on a demanding task
like ImageNet, this can restrain capacity. Crucially for our
scenario we need model capacity to free up and focus on
semantic AD instead. In other words, as we never return
the model to ImageNet classification, there simply is no
good reason why we would want to preserve it. This abla-
tion shows that, while they may be simple, our proposed
strategies are surprisingly effective AD strategies.

Qualitative Analysis In Figure 3 we visualize the high
semantic association of the representation learned by ADIB,
and compute feature embeddings for samples from CIFAR-
10, mapped to two dimensions using t-SNE (van der Maaten
& Hinton, 2008). The representation was learned on the
CIFAR-10 semantic AD setup, i.e. trained on a multi-
category P+ that contains 9 out of 10 classes (• cat, • dog,
etc.). At test time the singular anomalous category (• bird)
gets revealed to the model.

While ADIB has no access to semantic categories or labels,
it organizes the feature space in a highly semantic man-
ner: • deer and • horses are semantically similar and cluster
together, so do • cats and • dogs, while • frogs are separated
from the other animals. Moreover, man-made objects such
as • cars, • trucks, etc. are clearly separated from animal
categories. This matches human intuition.

Even though the anomalous • bird category is never seen
during training, it is located near other animals. We display
one bird that has a similar feature representation to man-
made objects: for this image, it is indeed difficult to identify
it as a bird, and it should be no surprise that it is located far
away from the •-cluster in feature space.

In Figure 4 we display examples from STL-10 that have
been assigned a high anomaly score by ADIB. The anoma-
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Airplane
Automobile

Bird
Cat

Deer
Dog

Frog
Horse

Ship
Truck

Figure 3. ADIB learns a feature space that is semantically mean-
ingful. It separates objects that occur naturally (• cats, • dogs, etc.)
from man-made ones (•, •, •, •). It even locates examples from the
unseen bird category (•) nearby other animals. The arrow high-
lights a bird that gets mapped close to man-made objects, and
identifying it as one indeed requires a fair bit of imagination.

(a) Cats. (b) Dogs.

(c) Horses. (d) Monkeys.

Figure 4. Anomalous examples from STL-10.

lous images are indeed unusual: either because animals
appear in an unexpected pose (e.g. cat reaching for cam-
era), because of the presence of captions, or in some cases –
such as dogs – because the underlying object class is almost
impossible to discern from the image.

5.3. Non-Semantic AD

We evaluate the performance of ADIB and ADRA on
the standard CIFAR-10 one-versus-rest AD benchmark,
which has recently been deemed a non-semantic problem
by Ahmed & Courville (2020). While this is a less com-
plex benchmark that can be solved using shallower feature
representations, it is reported across large parts of the AD
literature (Ruff et al., 2018; Deecke et al., 2018; Golan &
El-Yaniv, 2018; Hendrycks et al., 2019b; Abati et al., 2019;
Hendrycks et al., 2019c; Perera et al., 2019; Bergman &
Hoshen, 2020; Ruff et al., 2020b;a) and therefore is still
meaningful for comparison of our proposed methods to
previous AD models.

In some sense, this benchmark can be viewed as opposite of
semantic AD: only a single object class is fixed as the normal

Class GT kNN GT+ HSC ADRA ADIB

Airplane 74.7 93.9 90.4 96.7 99.0 (0.1) 99.2 (0.3)
Automobile 95.7 97.7 99.3 98.9 99.7 (0.1) 99.8 (0.1)
Bird 78.1 85.5 93.7 93.2 97.5 (0.4) 98.6 (0.2)
Cat 72.4 85.5 88.1 90.6 96.3 (0.4) 97.0 (0.7)
Deer 87.8 93.6 97.4 97.1 98.9 (0.1) 99.3 (0.1)
Dog 87.8 91.3 94.3 94.7 97.7 (0.2) 98.2 (0.3)
Frog 83.4 94.3 97.1 98.0 99.6 (0.1) 99.6 (0.2)
Horse 95.5 93.6 98.8 97.9 99.6 (0.1) 99.8 (0.1)
Ship 93.3 95.1 98.7 98.2 99.5 (0.1) 99.6 (0.1)
Truck 91.3 95.3 98.5 97.7 99.4 (0.1) 99.5 (0.2)

mAUC 86.0 92.5 95.6 96.3 98.7 (0.1) 99.1 (0.1)

Table 5. AUCs for different methods on the CIFAR-10 one-versus-
rest AD benchmark. Included are geometric transformations (GT)
(Golan & El-Yaniv, 2018), kNN-AD (Bergman et al., 2020), self-
supervised transformations (GT+) (Hendrycks et al., 2019c), and
hyperspherical classifiers (HSC) (Ruff et al., 2020a).

OE Dataset HSC ADRA ADIB

SVHN 70.2 75.3 (+5.1) 79.8 (+9.6)
CIFAR-100 96.3 98.7 (+2.4) 99.1 (+2.8)

Table 6. Ablations on the CIFAR-10 one-versus-rest AD bench-
mark for different choices of OE. Relative gain (vs. HSC) displayed
in parentheses.

class — say, dogs. All dogs in the CIFAR-10 training split
are collected into Sn (so 5000 out of 50 000 total samples),
from which models are trained. Models are then evaluated
against the entire CIFAR-10 test split, and performance is
measured by checking whether anomaly scores assigned to
dogs are lower than scores assigned to all nine remaining
non-dog classes.

For this benchmark previous works almost exclusively re-
port AUC, and we follow this custom here. Note that the
optimization settings remain unchanged from those in Sec-
tion 5.2.

Results As shown in Table 5, ADIB raises the current
state of the art to 99.1 mAUC, a marked gap to the previous
best method with 96.1 mAUC. As demonstrated by the
performance of kNN-AD (Bergman et al., 2020), simply
using features from a large pretrained network is inferior
when looking to detecting anomalies.

These results suggest that favorable inductive biases are crit-
ical for utilizing AD models to their full potential. ADRA
once again comes very close in terms of performance, while
requiring a much smaller number of learnable parameters.

Ablation Recent work examined the hierarchical relation-
ship between distributions for out-of-distribution detection
(Schirrmeister et al., 2020). We take inspiration from their
work and critically examine the role of CIFAR-100 as OE
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in an ablation that compares it to the use of SVHN as OE.2

Results in Table 6 make it evident that SVHN is less well
suited for CIFAR-10, as performance drops for all methods.
For HSC (the current state-of-the-art AD method using OE)
we obtain 70.2 mAUC here. A sizeable drop, but still im-
proving from 64.8 mAUC for DSVDD (the mathematical
equivalent to using no OE).

Our method obtains 79.8 mAUC when coupled with SVHN,
a gain of +9.6 over HSC. This is a considerably larger dif-
ference than the gain for CIFAR-10 coupled with CIFAR-
100 of +2.8 reported in Table 5 (ours: 99.1 vs. HSC: 96.3
mAUC), indicating that transfer-based AD benefits perfor-
mance more when not using CIFAR-100 as OE (albeit it is
better suited overall). In other words, the importance of the
transfer task increases as the suitability of OE decreases.

5.4. Robustness to Small Modes

An ideal AD model has the ability to incorporate informa-
tion from normal examples even if they form only a minor
mode of P+, in the sense that only few samples from this
class are contained in Sn — for example a rare dog breed.
Since AD is concerned with low-probability events, the
ability to robustly incorporate such small modes from few
examples is of special importance.

To measure AD robustness, we let the normal class be con-
stituted by samples associated with two classes (ya, yb),
such that Sn ∼ 1

r+1Pya + r
r+1Pyb , where the minor mode

amplitude r ∈ [0, 1] controls the number of examples from
yb in the normal data. For a robust AD model, even as Sn
is relaxed to contain only examples from ya, its ability to
identify the smaller category yb as non-anomalous would
remain intact.

We use CIFAR-10 here, and report primary and secondary
AUCs as a function of r for ya = “ship” and yb = “truck”
in Figure 5. We compare our methods to SAD (Ruff et al.,
2020b) with pretrained weights, which corresponds to ADIB
with α=0, i.e. without a regularization term Ω(θ).

For SAD performance for the secondary class decreases
much faster than for our methods. This trend is consis-
tent across class pairings (more pairs are displayed in the
supplements), and indicates that adequate transfer-based
regularization as in ADRA and ADIB is crucial to robustly
incorporating small modes of data in AD.

2While some previous work such as Hendrycks et al. (2019b)
or Hendrycks et al. (2019c) used 80 Million Tiny Images instead
of CIFAR-100 for OE, the dataset was withdrawn and further use
has been discouraged by the authors.

0.9 0.7 0.5 0.3 0.1
Minor Mode Amplitude

1.05

1.00

0.95

0.90

0.85

R
el
at
iv
e
A
U
C

SAD
ADRA
ADIB

Figure 5. Relative AUCs for the secondary object category yb =
“truck”. Dashed curves display primary class performance.

6. Conclusion
Detecting semantic anomalies is a difficult task, due to the
infinite and complex ways these can manifest themselves.
We have proposed two methods to account for such com-
plexities: ADIB sets a new state of the art in semantic AD
tasks and ADRA provides a highly efficient, yet surprisingly
effective learning protocol.

We used interventions to show that our methods can de-
tect subtle semantic anomalies, and verified that ADIB and
ADRA offer high AD robustness. An interesting question
for future research is whether detecting anomalies requires
disentanglement, and if it can benefit from the ongoing
development of disentangled representations.
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