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Abstract
Algorithmic stability is a key characteristic to
ensure the generalization ability of a learning
algorithm. Among different notions of stabil-
ity, uniform stability is arguably the most popu-
lar one, which yields exponential generalization
bounds. However, uniform stability only consid-
ers the worst-case loss change (or so-called sen-
sitivity) by removing a single data point, which
is distribution-independent and therefore unde-
sirable. There are many cases that the worst-case
sensitivity of the loss is much larger than the av-
erage sensitivity taken over the single data point
that is removed, especially in some advanced
models such as random feature models or neural
networks. Many previous works try to mitigate
the distribution independent issue by proposing
weaker notions of stability, however, they either
only yield polynomial bounds or the bounds de-
rived do not vanish as sample size goes to infin-
ity. Given that, we propose locally elastic sta-
bility as a weaker and distribution-dependent sta-
bility notion, which still yields exponential gen-
eralization bounds. We further demonstrate that
locally elastic stability implies tighter generaliza-
tion bounds than those derived based on uniform
stability in many situations by revisiting the ex-
amples of bounded support vector machines, reg-
ularized least square regressions, and stochastic
gradient descent.

1. Introduction
A central question in machine learning is how the perfor-
mance of an algorithm on the training set carries over to un-
seen data. Continued efforts to address this question have
given rise to numerous generalization error bounds on the
gap between the population risk and empirical risk, using a
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variety of approaches from statistical learning theory (Vap-
nik, 1979; 2013; Bartlett & Mendelson, 2002; Bousquet
& Elisseeff, 2002). Among these developments, algorith-
mic stability stands out as a general approach that allows
one to relate certain specific properties of an algorithm to
its generalization ability. Ever since the work of Devroye
& Wagner (1979), where distribution-independent expo-
nential generalization bounds for the concentration of the
leave-one-out estimate are proposed, various results for dif-
ferent estimates are studied. Lugosi & Pawlak (1994) study
the smooth estimates of the error for the deleted estimate
developed in terms of a posterior distribution and Kearns &
Ron (1999) propose error stability, which provides sanity-
check bounds for more general classes of learning rules re-
garding the deleted estimate. For general learning rules,
Bousquet & Elisseeff (2002) propose the notion of uniform
stability, which extends Lugosi & Pawlak (1994)’s work
and yields exponential generalization bounds. Loosely
speaking, Bousquet & Elisseeff (2002) show that an algo-
rithm would generalize well to new data if this algorithm
is uniformly stable in the sense that its loss function is not
sensitive to the deletion of a single data point. To date, uni-
form stability is perhaps the most popular stability notion.

Despite many recent developments, most results on stabil-
ity and generalization can be divided into two categories
if not counting sanity-check bounds. The first category in-
cludes stability notions such as hypothesis stability, which
only yield sub-optimal polynomial generalization bounds.
The second category includes stability notions based on
uniform stability and its variants, which yield optimal ex-
ponential generalization bounds. Nevertheless, the stability
notions in the second category either stop short of provid-
ing distribution-dependent bounds or, worse, the bounds do
not vanish even when the training sample size tends to in-
finity (Abou-Moustafa & Szepesvári, 2019). Recognizing
these facts, in this paper, we aim to relax the uniform stabil-
ity notion and propose a weaker and distribution-dependent
stability notion, which yields exponential generalization
bounds that are consistent in the sense that the bounds van-
ish to zero as the training sample size tends to infinity.

1.1. A Motivating Example

To further motivate our study, note that there are many
cases where the worst-case sensitivity of the loss is much
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(a) Sensitivity of neural networks. (b) Sensitivity of a random feature model. (c) Sensitivity of a linear model.

Figure 1. Class-level sensitivity approximated by influence functions for neural networks (based on a pre-trained 18-layer ResNet), a
random feature model (based on a randomly initialized 18-layer ResNet), and a linear model on CIFAR-10. The vertical axis denotes
the classes in the test data and the horizontal axis denotes the classes in the training data. The class-level sensitivity from class a in the
training data to class b in the test data is defined as C(ca, cb) =

1

|Sa|×|S̃b|

∑
zi∈Sa

∑
z∈S̃b

|l(θ̂, z) − l(θ̂−i, z)|, where Sa denotes the

set of examples from class a in the training data and S̃b denotes set of examples from class b in the test data.

larger than the average sensitivity, especially in random
feature models or neural networks. As a concrete example,
from Figure 1, we can observe that the sensitivity of neu-
ral networks and random feature models depends highly on
the label information. To be precise, consider training two
models on the CIFAR-10 dataset (Krizhevsky, 2009) and
another dataset obtained by removing one training exam-
ple, say an image of a plane, from CIFAR-10, respectively.
Figure 1 shows that the difference between the loss func-
tion values for the two models depends on the label of the
test image that the loss function is evaluated at: the dif-
ference between the loss function values, or sensitivity for
short, is significant if the test image is another plane, and
the sensitivity is small if the test image is from a different
class, such as car or cat. Concretely, the average plane-to-
plane difference is about seven times the average plane-to-
cat difference. The dependence on whether the two images
belong to the same class results in a pronounced diagonal
structure in Figure 1(a), which is consistent with the phe-
nomenon of local elasticity in deep learning training (He &
Su, 2020; Chen et al., 2020). In particular, this structural
property of the loss function differences clearly demon-
strates that uniform stability fails to capture how sensi-
tive the loss function is in the population sense, which is
considerably smaller than the worst-case sensitivity, for the
neural networks and random feature models.

1.2. Our Contribution

As our first contribution, we introduce a new notion of al-
gorithmic stability that is referred to as locally elastic sta-
bility to take into account the message conveyed by Fig-
ure 1. This new stability notion imposes a data-dependent
bound on the sensitivity of the loss function, as opposed
to a constant bound that uniform stability and many of its

relaxations use.

The second contribution of this paper is to develop a gen-
eralization bound for any locally elastically stable algo-
rithm. This new generalization bound is obtained by a
fine-grained analysis of the empirical risk, where using
McDiarmid’s inequality as in Bousquet & Elisseeff (2002)
no longer works. Specifically, we expect the empirical
sum of the sensitivities by deleting different samples to be
close to the expected sensitivity taken over the deleted sam-
ple. However, conditioning on that event, the dependency
among input examples invalidate McDiarmid’s inequality.
To overcome this difficulty, we develop novel techniques
that allow us to obtain a sharper analysis of some important
quantities. Our results show that the generalization error is,
loosely speaking, upper bounded by the expectation of the
sensitivity function associated with locally elastic stability
over the population of training examples. Assuming uni-
form stability, however, classical generalization bounds are
mainly determined by the largest possible sensitivity over
all pairs of training examples. We further demonstrate that
our bounds are tighter than those derived based on uniform
stability in many situations by revisiting the examples of
bounded support vector machines (SVM), regularized least
square regressions, and stochastic gradient descent (SGD).
Although it requires further exploration on how to make the
new bounds applicable to deep learning models in practice,
the insights from this new stability notion shall shed light
on the development of future approaches toward demysti-
fying the generalization ability of modern neural networks.

1.3. Related Work

Ever since Kearns & Ron (1999) and Bousquet & Elisse-
eff (2002) proposed the notions of uniform stability and
hypothesis stability, a copious line of works has been de-



Generalization Bounds with Locally Elastic Stability

voted to extending and elaborating on their frameworks. In
Mukherjee et al. (2006), Shalev-Shwartz et al. (2010) and
Kutin & Niyogi (2002), the authors show there exist cases
where stability is the key necessary and sufficient condi-
tion for learnability but uniform convergence is not. On
one hand, error stability is not strong enough to guarantee
generalization (Kutin & Niyogi, 2012). On the other hand,
hypothesis stability guarantees generalization but only pro-
vides polynomial tail bounds. Fortunately, uniform stabil-
ity guarantees generalization and further provides exponen-
tial tail bounds. In Feldman & Vondrak (2018), the authors
develop the generalization bound for the cases where uni-
form stability parameter is of order Ω(1/

√
m), where m

is the sample size. In subsequent work, Feldman & Von-
drak (2019) prove a nearly tight high probability bound for
any uniformly stable algorithm. In Bousquet et al. (2020),
the authors provide sharper bounds than Feldman & Von-
drak (2019) and also provide general lower bounds which
can be applied to certain generalized concentration inequal-
ities. There are also works seeking to relax uniform stabil-
ity such as (Abou-Moustafa & Szepesvári, 2019), but their
bound still has a small term that would not vanish even with
an infinite sample size and a vanishing stability parameter.

In addition, researchers demonstrate that many popular op-
timization methods, such as SGD, satisfy algorithmic sta-
bility. In Hardt et al. (2015), the authors show that SGD
satisfies uniform stability. Lei & Ying (2020) further re-
lax the smoothness and convexity assumptions, and others
instead discuss the nonconvex case for SGD in more de-
tail (Kuzborskij & Lampert, 2018; Madden et al., 2020).
Kuzborskij & Lampert (2018) recently propose another no-
tion of data-dependent stability for SGD. Our work can be
viewed as a relaxation of uniform stability and SGD will be
shown to satisfy our new notion of algorithmic stability.

2. Locally Elastic Stability
We first collect some notations that are used throughout
this paper, which mostly follows that of Bousquet & Elis-
seeff (2002). Denote by S = {z1, z2, · · · , zm} the train-
ing set, where zi ∈ Z ⊆ Rd are i.i.d. draws from a
distribution D on the space Z . One instance of Z is
X × Y , where X and Y are input space and label space
respectively. For a function class F , a learning algo-
rithm A : Zm → F takes the training set S as input
and outputs a function AS ∈ F . For any m-sized train-
ing set S, let S−i = {z1, · · · , zi−1, zi+1, · · · , zm} be
derived by removing the ith element from S and Si =
{z1, · · · , zi−1, z

′
i, zi+1, · · · , zm} be derived by replacing

the ith element from S with another example z′i. For any
input z, we consider a loss function l(f, z). We are par-
ticularly interested in the loss l(f, z) when the function
f = AS .

Now, we formally introduce the notion of locally elastic
stability below. Let βm(·, ·) be a sequence of functions in-
dexed by m ≥ 2 that each maps any pair of z, z′ ∈ Z to a
positive value.

Definition 2.1 (Locally Elastic Stability). An algorithm A
has locally elastic stability βm(·, ·) with respect to the loss
function l if, for all m, the inequality

|l(AS , z)− l(AS−i , z)| ≤ βm(zi, z)

holds for all S ∈ Zm, 1 ≤ i ≤ m, and z ∈ Z .

In words, the change in the loss function due to the removal
of any zi is bounded by a function depending on both zi
and the data point z where the loss is evaluated. In this
respect, locally elastic stability is data-dependent. In gen-
eral, βm(·, ·) is not necessarily symmetric with respect to
its two arguments. To further appreciate this definition, we
compare it with uniform stability, which is perhaps one of
the most popular algorithmic stability notions.

Definition 2.2 (Uniform Stability (Bousquet & Elisseeff,
2002)). Let βUm be a sequence of scalars. An algorithm A
has uniform stability βUm with respect to the loss function l
if

|l(AS , z)− l(AS−i , z)| ≤ βUm (1)

holds for all S ∈ Zm, 1 ≤ i ≤ m, and z ∈ Z .

First of all, by definition one can set βUm =
supz′,z βm(z′, z). Furthermore, a simple comparison be-
tween the two notions immediately reveals that locally
elastic stability offers a finer-grained definition of the
loss function sensitivity. The gain is significant par-
ticularly in the case where the worst possible value of
|l(AS , z)− l(AS−i , z)| is much larger than its typical re-
alizations.

2.1. Estimation Using Influence Functions

In the introduction part, we motivated the proposal of lo-
cally elastic stability by showing the class-level sensitivity
for a random feature model and neural networks in Figure
1. In this subsection, we elaborate more on the experimen-
tal results and the corresponding approximation method.
The examples we considered demonstrate small βm(zi, z)
for most z’s in Z for any training example zi,. The fact that
βm(zi, z) is small for most of z’s is important to obtain a
sharper generalization bound with locally elastic stability
than the bound with uniform stability.

Specifically, consider a function f that is parameterized by
θ and write l(θ, z) instead of l(f, z) for the loss. Writ-
ing f = fθ, the algorithm A aims to output fθ̂ where
θ̂ = arg minθ∈Θ

∑m
j=1 l(θ, zj)/m (we temporarily ig-

nore the issue of uniqueness of minimizers here). Then,
AS defined previously is exactly fθ̂. Denote θ̂−i =
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Models supz′∈S,z∈Z βm(z′, z) supz′∈Z Ezβm(z′, z) ratio

Neural networks 3.05 0.02 153
Random feature model 1.73 0.04 43

Table 1. Comparison between locally elastic stability and uni-
form stability for neural networks and the random feature model
in Figure 1.

arg minθ∈Θ

∑
j 6=i l(θ, zj)/m, we aim to quantitatively es-

timate |l(θ̂, z)− l(θ̂−i, z)| for all i’s. However, quantifying
the above quantity for all i’s is computationally prohibitive
in practice for neural networks and also a pain even for
random feature model. In order to alleviate the compu-
tational issue, we adopt influence functions from Koh &
Liang (2017) and consider the same simplified model as
in Koh & Liang (2017): an N -layer neural network whose
first N − 1 layers are pre-trained. Given that model, when
the loss function l(θ, z) is strictly convex in θ for all z, such
as the continuously used cross entropy loss and squared
loss with l2 penalty on θ, we have the following approx-
imation:

βm(zi, z) := |l(θ̂, z)− l(θ̂−i, z)|

≈ 1

m

∣∣∇θl(θ̂, z)H−1

θ̂
∇θl(θ̂, zi)

∣∣, (2)

where Hθ̂ =
∑m
j=1∇2l(θ̂, zj)/m is the Hessian. We re-

mark that it is very common in transfer learning to pre-
train the N − 1 layers and it is different from the random
feature model, where the first N − 1 layers are chosen to
be independent of data. We further consider training the
full N -layer neural networks by analyzing the sensitivity
of the loss step-wisely for SGD in the Appendix. In Fig-
ure 1, we demonstrate the class-level sensitivity approxi-
mated by influence functions for neural networks (based
on a pre-trained 18-layer ResNet (He et al., 2016)) and a
random feature model (based on a randomly initialized 18-
layer Resnet) on CIFAR-10 (Krizhevsky, 2009).

The results indicate that for random feature models and
neural networks with a training example zi, if z is from
the same class of zi, then βm(zi, z) is large; if z is from
a different class βm(zi, z) is small. Recognizing the long
tail property of class frequencies for image datasets in prac-
tice, it would lead to small βm(zi, z)’s for most z’s for any
training example zi.

We close this section by providing empirical evidence to
justify our statement that “βm(zi, z) for most z’s is small
for any training example zi.” Specifically, we compare
supz′∈S,z∈Z βm(z′, z) and supz′∈Z Ezβm(z′, z) for both
neural networks and the random feature model, and the re-
sults are shown in Table 1.

It is worth noticing the dependence on whether the two im-
ages belong to the same class results in a pronounced diag-

onal structure in Figure 1(a) and 1(b), and in contrast, lin-
ear models do not exhibit such a strong dependence on the
class of images, as evidenced by the absence of a diagonal
structure in Figure 1(c). We believe the above phenomenon
is one of the reasons that neural networks generalize well
and our new proposed stability provides a new direction to-
wards understanding the generalization behavior of neural
networks.

2.2. Connection with Local Elasticity

Locally elastic stability has a profound connection with a
phenomenon identified by He & Su (2020), where the au-
thors consider the question: how does the update of weights
of neural networks using induced gradient at an image (say
a tiger) impact the prediction at another image? In response
to this question, He & Su (2020) observe that the impact is
significant if the two images have the same membership
(e.g., the test image is another tiger) or share features (e.g.,
a cat), and the impact is small if the two images are not
semantically related (e.g., a plane).1 In contrast, this phe-
nomenon is generally not present in kernel methods, and
Chen et al. (2020) argue that this absence is in part respon-
sible for the ineffectiveness of neural tangent kernels com-
pared to real-world neural networks in terms of generaliza-
tion. Related observations have been made in Chatterjee
(2020) and Fort et al. (2019). This phenomenon, which He
& Su (2020) refer to as local elasticity, would imply the
characteristic of neural networks that we observe in Fig-
ure 1. Intuitively, from local elasticity we would expect
that if we remove an image of a cat in the training set S, the
loss after training on a test image of a plane would not be
affected much compared with the loss obtained by training
on the original training set (assuming the same random-
ness from sampling). Conversely, the final loss would be
affected much if the test image is another tiger. Our Defini-
tion 2.1 formalizes the intuition of local elasticity by incor-
porating the membership dependence into the sensitivity of
the loss function, hence is named as locally elastic stability.

The improvement brought by locally elastic stability is fur-
ther enhanced by the diversity of real-life data. First, the
number of classes in tasks resembling practical applica-
tions is often very large. For example, the ImageNet dataset
contains more than 1000 classes (Deng et al., 2009). For
most pairs z′, z, their class memberships are different, lead-
ing to a relatively small value of βm(z′, z) compared to the
uniform upper bound adopted in uniform stability. More-
over, the long tail property of real-life images suggest that
the class of cats, for example, consists of many cats with
different appearances and non-vanishing frequencies (Zhu

1To be complete, this phenomenon does not appear in the ini-
tialized neural networks and become pronounced only after sev-
eral epochs of training on the dataset.
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et al., 2014) (further elaborations are included in Appendix
??). Combining with the observations mentioned above,
we would expect that for any fixed training example z′,
βm(z′, z) would be small for most z sampled from the dis-
tribution D. Therefore, the use of a uniform upper bound
on the sensitivity is too pessimistic.

3. Generalization Bounds
In this section, we present our generalization bound for lo-
cally elastically stable algorithms and compare it to those
implied by classical algorithmic stability notions.

Assumptions. We assume the space Z is bounded. In
addition, from the approximation shown in (2), for many
problems one has |l(θ̂, z) − l(θ̂−i, z)| = O(1/m). More-
over, Bousquet & Elisseeff (2002) show that βUm in uniform
stability satisfies βUm = O(1/m) for many problems in-
cluding bounded SVM, k-local rules, and general regular-
ization algorithms. This fact suggests that it is reasonable
to expect that βm(z′, z) = Oz′,z(1)/m for locally elastic
stability. More specifically, we have the following assump-
tion.
Assumption 3.1. For the function βm(·, ·), for any z, z′ ∈
Z ,

βm(z′, z) =
β(z′, z)

m

for some function β(·, ·) that is independent of m. In addi-
tion, β(·, z) as a function of its first argument is L-Lipchitz
continuous for all z ∈ Z and the loss function and there
exists Mβ > 0 such that |β(·, ·)| ≤Mβ .

In essence, βm(z′, z) = β(z′, z)/m is equivalent to as-
suming that supmmβm(z′, z) is finite for all z′, z. The
boundedness assumption of β(·, ·) holds if β is a continu-
ous function in conjunction with the boundedness of Z . In
relating this assumption to uniform stability in Definition
2.2, we can take βUm = Mβ/m.

Now, we are ready to state our main theorem. For con-
venience, write ∆(AS) as a shorthand for the defect
Ezl(AS , z) −

∑m
j=1 l(AS , zj)/m, where the expectation

Ez is over the randomness embodied in z ∼ D. In particu-
lar, Ezl(AS , z) depends on AS .
Theorem 3.1. Let A be an algorithm that has locally
elastic stability βm(·, ·) with respect to the loss function
l, which satisfies 0 ≤ l ≤ Ml for a constant Ml. Under
Assumption 3.1, for any given η and any 0 < δ < 1 and ,
for sufficiently large m, with probability at least 1 − δ, we
have

∆(AS) ≤
2 supz′∈Z Ezβ(z′, z)

m

+2

(
2 sup
z′∈Z

Ezβ(z′, z) + η +Ml

)√
2 log(2/δ)

m
.

We remark that (1). the parameter η in Theorem 3.1 is used
to control the deviation supz′∈Z

∣∣∣∑j 6=k β(z′, zj)/m −

Ezβ(z′, z)
∣∣∣. As shown in our Lemma A.4 in the Appendix,

we only need η > 2Mβ/m. Thus, as stated in our the-
orem, for any given η > 0, as long as the sample size
is large enough, i.e. m > 2Mβ/η, all the claims involv-
ing η hold. In the subsequent discussions, for instance,
in Section 4.1, we can set η = supz′∈Z Ezβ(z′, z) and
Theorem 3.1 still holds. (2). Theorem 3.1 holds for m
that is larger than a bound depending on δ, η, d, L,Mβ ,
and Ml, One coarse and sufficient condition provided
in the Appendix is that m is large enough such that
log(C ′m)/m 6 η2/(64M2

β), 2M2 log(2/δ)/(M̃2m) 6

η2/(128M2
β), 2M/M̃

√
2 log(2/δ)/m 6 η2/(128M2

β),
and m > 2Mβ/η for constants C ′ (depnding on d),
M̃,Mβ , η, which can be achieved once we notice that
limm→∞ log(C ′m)/m→ 0.

In this theorem, the bound on the defect ∆(AS) tends to
0 as m → ∞. The factor

√
log(2/δ) results from the fact

that this locally elastic stability-based bound is an exponen-
tial bound. Notably, the bound depends on locally elastic
stability through supz′∈Z Ezβ(z′, z), which is closely re-
lated to error stability (Kearns & Ron, 1999). See more
discussion in Section 4.

Remark 3.1. In passing, we make a brief remark on the
novelty of the proof. An important step in our proof is
to take advantage of the fact that |

∑
j 6=k β(z′, zj)/m −

Ezβ(z′, z)| is small with high probability. Conditioning
on this event, however, zj’s are no longer an i.i.d. sample
from D. The dependence among input examples would un-
fortunately invalidate McDiarmid’s inequality, which is a
key technique in proving generalization bounds for uniform
stability. To overcome this difficulty, we develop new tech-
niques to obtain a more careful analysis of some estimates.
More details can be found in our Appendix.

4. Comparisons with Other Notions of
Algorithmic Stability

Having established the generalization bound for locally
elastic stability, we compare our results with some classical
notions (Bousquet & Elisseeff, 2002). As will be shown in
this subsection, error stability is not sufficient to guarantee
generalization, hypothesis stability only yields polynomial
bounds, and uniform stability only considers the largest
loss change on z in Z by removing zi from S. In con-
trast, locally elastic stability not only provides exponential
bounds as uniform stability but also takes into account the
varying sensitivity of the loss. This fine-grained perspec-
tive can be used to improve the generalization bounds de-
rived from uniform stability, when the average loss change
by removing zi from S over different z’s in Z is much
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smaller than the worst-case loss change.

4.1. Uniform Stability

Following Bousquet & Elisseeff (2002), for an algorithm
A having uniform stability βUm (see Definition 2.2) with
respect to the loss function l, if 0 ≤ l(·, ·) ≤ Ml, for any
δ ∈ (0, 1) and sample sizem, with probability at least 1−δ,

∆(AS) ≤ 2βUm + (4mβUm +Ml)

√
log(1/δ)

2m
.

Notice that if an algorithm A satisfies locally elastic sta-
bility with βm(·, ·), then it it has uniform stability with pa-
rameter βUm := supz′∈S,z∈Z β(z′, z)/m. We can identify
supz′∈S,z∈Z β(z′, z) with Mβ in Assumption 3.1.

To get a better handle on the tightness of our new general-
ization bound, we revisit some classic examples in Bous-
quet & Elisseeff (2002) and demonstrate the superiority of
using our bounds over using uniform stability bounds in
certain cases. In order to have a clear presentation, let us
briefly recap the assumptions and concepts used in Bous-
quet & Elisseeff (2002).

Assumption 4.1. Any loss function l considered in this
paragraph is associated with a cost function cl, such that
for a hypothesis f with respect to an example z = (x, y),
the loss function is defined as

l(f, z) = cl(f(x), y).

Definition 4.1. A loss function l defined on YX × Y is σ-
admissible with respect to YX if the associated cost func-
tion cl is convex with respect to its first argument and the
following condition holds: for any y1, y2 ∈ Y and any
y′ ∈ Y

|cl(y1, y
′)− cl(y2, y

′)| ≤ σ‖y1 − y2‖Y ,

where ‖ · ‖Y is the corresponding norm on Y .

Reproducing kernel Hilbert space. A reproducing ker-
nel Hilbert space (RKHS)H is a Hilbert space of functions,
in which point evaluation is a continuous linear functional
and satisfies for any h ∈ H, any x ∈ X

h(x) = 〈h,K(x, ·)〉

where K is the corresponding kernel of H. In particular,
by Cauchy-Schwarz inequality, for any h ∈ H, any x ∈ X

|h(x)| ≤ ‖h‖K
√
K(x, x),

where ‖ · ‖K is the norm induced by kernel K for the re-
producing kernel Hilbert spaceH. We denote

√
K(x, x) as

κ(x). Notice that for the reproducing kernel Hilbert space,
K must be a positive semi-definite kernel and κ(x) ≥ 0.

In order to derive locally elastic stability bounds, we intro-
duce the following lemma, which is a variant of Theorem
22 in Bousquet & Elisseeff (2002).
Lemma 4.1. Let H be a reproducing kernel Hilbert space
with kernel K, and for any x ∈ X , K(x, x) ≤ κ2 < ∞.
The loss function l is σ-admissible with repect toH and the
learning algorithm is defined by

AS = arg min
h∈H

1

m

m∑
j=1

l(h, zj) + λ‖h‖2K ,

where λ is a positive constant. Then, AS has uniform sta-
bility βUm and locally elastic stability βm(zi, z) such that

βUm ≤
σ2κ2

2λm
and βm(zi, z) ≤

σ2κ(xi)κ(x)

2λm
.

Now, we are ready to investigate how the locally elastic
bounds improve over the uniform stability bounds in the
bounded SVM regression and regularized least square re-
gression studied in Bousquet & Elisseeff (2002). We re-
mark here, following the same settings in Bousquet & Elis-
seeff (2002), though the algorithms in the examples below
are minimizing a regularized version of the loss, the gener-
alization gap studied above is still ∆(AS) = Ezl(AS , z)−∑m
j=1 l(AS , zj)/m.

Example 4.1 (Stability of bounded SVM regression). As-
sume K is a bounded kernel, such that K(x, x) ≤ κ2 for
all x ∈ X , and Y = [0, B] for a real positive number B.
Consider the loss function for τ > 0,

l(f, z) = |f(x)− y|τ =

{
0, if |f(x)− y| ≤ τ,
|f(x)− y| − τ, otherwise.

The learning algorithm is defined by

AS = arg min
h∈H

1

m

m∑
j=1

l(h, zj) + λ‖h‖2K .

Noting 0 ≤ l(f, z) ≤ B and σ = 1 in our case 2 and us-
ing Lemma 4.1, we obtain the following bound via uniform
stability:

∆(AS) ≤ κ2

λm
+

(
2κ2

λ
+B

)√
log(1/δ)

2m
. (B1)

In addition, we obtain the following bound via locally elas-
tic stability by choosing η = κExκ(x)/λ

∆(AS) ≤ κExκ(x)

λm

+

(
3κExκ(x)

λ
+ 2B

)√
2 log(2/δ)

m
. (B2)

2There are several small typos in the original Example 1 and 3
in Bousquet & Elisseeff (2002) with respect to the range of l(f, z)
which we correct in our examples.
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For simplicity, we consider K to be the bilinear kernel
(similar analysis can be extended to other kernels such as
polynomial kernels) K(x, x′) = 〈x, x′〉 and all x ∈ X ’s
norm are bounded by B′. Then, κ = B′2 and Exκ(x) =
Ex‖x‖2. Apparently, the first term on the RHS in (B2) is
smaller than the first term on the RHS in (B1). So we focus
on comparing the second terms for both inequalities. For
δ < 0.5, we have log(2/δ) ≤ 2 log(1/δ). Applying the
above inequality to (B2), we can simplify the expressions,
and if we further have(

2κ2

λ
+B

)
≥ 2
√

2

(
3κExκ(x)

λ
+ 2B

)
(3)

the bound obtained in (B2) is tighter than the one in (B1).
If the scale of κExκ(x)/λ and B and are relatively small
comparing with κ2/λ, (3) apparently holds. Notice the first
requirement regarding κExκ(x)/λ being relatively small
comparing with κ2/λ is distribution-dependent and can be
easily achieved if the distribution of ‖x‖ is concentrated
around zero. If we further have B

′2 is large enough com-
paring with Bλ, the bound in (B2) is tighter than the one
in (B1).

In particular, if x is a distribution such that

P
(
‖x‖ ≤ B′

6

)
≥ 23

24
,

and B′2 ≥ 8
√

2Bλ, δ < 0.5, the bound obtained in (B2)
is tighter than the one in (B1). Moreover, our locally elas-
tic bound is significantly tighter than the one obtain via
uniform stability, if B′2 � Bλ.

Example 4.2 (Stability of regularized least square regres-
sion). Consider Y = [0, B] and denoteH as the reproduc-
ing kernel Hilbert space induced by kernelK. The regular-
ized least square regression algorithm is defined by

AS = arg min
h∈H

1

m

m∑
j=1

l(h, zj) + λ‖h‖2K ,

where l(f, z) = (f(x) − y)2. Then, with Lemma 4.1, we
obtain the following bound via uniform stability

∆(AS) ≤ 4κ2B2

λm
+

(
8κ2B2

λ
+B2

)√
log(1/δ)

2m
. (B3)

Meanwhile, we can obtain the following bound via locally
elastic stability

∆(AS) ≤ 4κExκ(x)B2

λm

+

(
12κExκ(x)B2

λ
+ 2B2

)√
2 log(2/δ)

m
. (B4)

Similarly, for simplicity, let us consider K to be the bilin-
ear kernel K(x, x′) = 〈x, x′〉 and all x ∈ X ’s norm are
bounded by B′. κ = B′2 and Exκ(x) = Ex‖x‖2. With
the same spirit as in Example 4.1, if x is a distribution such
that

P
(
‖x‖ ≤ B′

4

)
≥ 3

4

and suppose B′4 ≥ λ, δ < 0.5, the bound obtained in (B4)
is tighter than the one in (B3). Similar as Example 4.1, our
locally elastic bound is significantly tighter than the one
obtain via uniform stability, if B′4 � λ.

4.2. Hypothesis Stability.

For a training set S with m examples, an algorithm A has
hypothesis stability βHm with respect to the loss function l
if

ES,z |l(AS , z)− l(AS−i , z)| ≤ βHm
holds for all S ∈ Zm and 1 ≤ i ≤ m, where βHm is a
sequence of scalars . If 0 ≤ l(·, ·) ≤Ml, for any δ ∈ (0, 1)
and sample size m, Bousquet & Elisseeff (2002) show that
with probability at least 1− δ

∆(AS) ≤
√
M2
l + 12MlmβHm

2mδ
.

For βHm = O(1/m), hypothesis stability only provides a
tail bound of order O(1/

√
mδ) (polynomial tail bound)

while locally elastic stability provides tail bounds of or-
der O(

√
log(1/δ)/m) (exponential tail bound). In addi-

tion, for an algorithm A satisfying locally elastic stability
βm(·, ·), it by definition satisfies hypothesis stability with
parameter Ez′,zβm(z′, z).

4.3. Error Stability.

For a training set S with m examples, an algorithm A has
error stability βEm with respect to the loss function l if

|Ez[l(AS , z)]− Ez[l(AS−i , z)]| ≤ βEm,

for all S ∈ Zm and 1 ≤ i ≤ m. Error stability is closely re-
lated to locally elastic stability in the sense that βEm can take
the value of supz′∈Z Ezβm(z′, z). However, as pointed out
by Kutin & Niyogi (2012), this notion is too weak to guar-
antee generalization in the sense that there exists an algo-
rithm A where the error stability parameter goes to 0 as the
sample size m tends to infinity but the generalization gap
does not go to 0.

5. Locally Elastic Stability and Stochastic
Gradient Descent

In Hardt et al. (2016), the authors demonstrate that SGD
satisfies uniform stability under the standard Lipschitz and
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(a) Neural networks (epoch 0). (b) Neural networks (epoch 10). (c) Neural networks (epoch 50).

(d) Random feature model (epoch 0). (e) Random feature model (epoch 50). (f) Random feature model (epoch 250).

Figure 2. Exact stepwise characterization of class-level sensitivity for neural networks and random feature models trained with dif-
ferent numbers of epochs by SGD on CIFAR-10. The class-level sensitivity for a stepwise update of SGD is C′(ca, cb) =

1

|Sa|·|S̃b|

∑
zi∈Sa

∑
z∈S̃b

|l(θ̂t− η∇θl(θ̂t, zi), z)− l(θ̂t, z)|, where Sa denotes the set of examples with class a in the training data and

S̃b denotes the set of examples with class b in the test data.

smoothness assumptions. As another concrete application
of locally elastic stability, we revisit this problem and show
that SGD also satisfies locally elastic stability under similar
assumptions.

SGD algorithm consists of multiples steps of stochastic
gradient updates θ̂t+1 = θ̂t − ηt∇θl(θ̂t, zit), where we
allow the learning rate to change over time and ηt is the
learning rate at time t, it is picked uniformly at random
from {1, · · · ,m}. Throughout this subsection, we develop
our results for a T -step SGD. For a randomized algorithm
A like SGD, we can extend the definition of locally elastic
stability just as Hardt et al. (2016) do for uniform stability
(Definition 2.2). As shown in Figure 2, we further demon-
strate the step-wise characterization of class-level sensitiv-
ity for neural networks (based on a pre-trained ResNet-18)
and random feature models (based on a randomly initial-
ized ResNet-18) trained for different numbers of epochs by
SGD on CIFAR-10.
Definition 5.1. A randomized algorithm A is βm(·, ·)-
locally elastic stable if for all datasets S ∈ Zn, we have

|EA [l(AS , z)]− EA [l(AS−i , z)]| ≤ βm(zi, z),

where the expectation is over the randomness embedded in
the algorithm A .

For SGD, the algorithm A outputs functions AS and
AS−i which are parameterized by θ̂T and θ̂−iT and we fur-
ther study whether there is a function βm(·, ·) such that
|E[l(θ̂T , z)] − E[l(θ̂−iT , z)]| ≤ βm(zi, z), where the ex-
pectation is taken with respect to randomness coming from
uniformly choosing the index at each iteration. Under sim-
ilar settings as in Hardt et al. (2016), we develop estimates
of the locally elastic stability parameters separately for con-
vex, strongly convex, and non-convex cases. Due to the
space constraint, we only show our results here for con-
vex and non-convex cases and defer the treatment of the
strongly convex case to Appendix.

Proposition 5.1 (Convex Optimization). Assume that the
loss function l(·, z) is α-smooth and convex for all z ∈ Z .
In addition, l(·, z) is L(z)-Lipschitz and L(z) < ∞ for all
z ∈ Z: |l(θ, z)− l(θ′, z)| ≤ L(z)‖θ − θ′‖ for all θ, θ′. We
further assume L = supz∈Z L(z) < ∞. Suppose that we
run SGD with step sizes ηt ≤ 2/α for T steps. Then,

|E[l(θ̂T , z)]− E[l(θ̂−iT , z)]| ≤ (L+ L(zi))L(z)

m

T∑
t=1

ηt.

Proposition 5.2 (Non-convex Optimization). Assume that
the loss function l(·, z) is non-negative and bounded for
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all z ∈ Z . Without loss of generality, we assume 0 ≤
l(·, z) ≤ 1. In addition, we assume l(·, z) is α-smooth.
We further assume l(·, z) is L(z)-Lipschitz and L(z) < ∞
for all z ∈ Z and L = supz∈Z L(z) < ∞. Suppose that
we run SGD for T steps with monotonically non-increasing
learning rate ηt ≤ c/t for some constant c > 0. Then,

|E[l(θ̂T , z)]− E[l(θ̂−iT , z)]| ≤ γmφα(m,T, zi, z),

where φα(m,T, zi, z) = (c(L(zi) +L)L(z)Tαc)
1

αc+1 and
γm = (1 + 1/(αc))/(m− 1).

From the propositions above, we see that SGD has locally
elastic stability with parameter taking the form β(·, ·)/m,
where β(·, ·) is independent of m. This is consistent with
our assumptions regarding the form of βm(·, ·) in Section
3. We remark that unlike Hardt et al. (2016), our results
use θ̂−iT instead of θ̂iT in order to be consistent with our
definition in Definition 2.1, where θ̂iT is the parameter ob-
tained by training on Si (replacing the ith element from S
with another example instead of removing the ith element
as in S−i). This setting requires us to provide new tech-
niques. Specifically, we construct new coupling sequences
to obtain an upper bound on |E[l(θ̂T , z)]−E[l(θ̂−iT , z)]| (see
more in the Appendix).

Comparison with results in Hardt et al. (2016) By us-
ing L(z) instead of L, if EL(z)� L, which holds for most
common models in practice, we would expect to obtain a
sharper generalization bound for SGD compared with the
one derived using uniform stability in Hardt et al. (2016)
according to the discussion in Section 4. Due to limited
space, let us only compare Proposition 5.2 with Theorem
3.12 in Hardt et al. (2015) with a simple example as an
illustration. With some abuse of notation, we still use
∆(AS) to denote EzE[l(θ̂T , z)]−

∑m
i=1 E[l(θ̂−iT , z)]/m.

In Theorem 3.12 in Hardt et al. (2015), via uniform sta-
bility, under the assumptions in Proposition 5.2, one can
obtain the following bound:

∆(AS) ≤ 2βUm + (4mβUm + 1)

√
log(1/δ)

2m
, (B5)

where

βUm =
1 + 1/(αc)

m− 1

(
2cL2Tαc

) 1
αc+1 .

While via locally elastic stabilty, one can obtain

∆(AS) ≤
2 supz′∈Z Ezβ(z′, z)

m

+2

(
2 sup
z′∈Z

Ezβ(z′, z) + 1

)√
2 log(2/δ)

m
. (B6)

where

β(z′, z) =
1 + 1/(αc)

m− 1
(c(L(z′) + L)L(z)Tαc)

1
αc+1 .

Example 5.1. Let us take l(θ, z) = z2e−θ
2

, where θ and
z are all scalars, where z ∈ [0, 1] and θ ∈ R. Apparently,
the loss function is α = 2-smooth with respect to z. Mean-
while,

d

dθ
l(θ, z) = −2z2θe−θ

2

.

The fact that θe−θ
2 ≤ e−1/2/

√
2 leads to L(z) =√

2e−1/2z2 and L =
√

2e−1/2.

With the same spirit as in Example 4.1, if we choose
learning rate η ≤ 1/t, when δ < 0.5, as long as
supz′∈Z Ezβ(z′, z) <

√
2/8βUm and βUm ≥ 2

√
2 − 1/2,

the bound obtained in (B6) is tighter than the one in (B5).
It is easy to see that these conditions can be easily satisfied
if T is large enough and E[(L(z))

1
3 ] < L

1
3 . Therefore, if

we further have the condition that z lies in a small vicinity
of 0 with high probability (for example, P

(
|z| ≤ 1

2

)
> 2

3 ),
then the bound obtained in (B6) would be tighter than the
one in (B5). In particular, if the training time T is long
enough, the bound obtained in (B6) would be significantly
tighter than the one in (B5).

6. Conclusion and Future Work
In this work, we introduce a new notion of algorithmic sta-
bility, which is a relaxation of uniform stability yes still
gives rise to exponential generalization bounds. It also
provides a promising direction to obtain useful theoretical
bounds for demystifying the generalization ability of mod-
ern neural networks through the lens of local elasticity (He
& Su, 2020). However, as shown in Theorem 3.1, we cur-
rently still require the sample size m to be large enough
so that our theoretical results hold. Whether that require-
ment could be removed is worthy of further investigation.
In addition, our bound is related to the constant Ml, which
is typically very large in practice if we apply the bound to
neural networks. Thus, an interesting question is to exam-
ine whether this constant could be improved or not.
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