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Abstract

Online advertisements are primarily sold via re-
peated auctions with reserve prices. In this paper,
we study how to set reserves to boost revenue
based on the historical bids of strategic buyers,
while controlling the impact of such a policy on
the incentive compatibility of the repeated auc-
tions. Adopting an incentive compatibility metric
which quantifies the incentives to shade bids, we
propose a novel class of dynamic reserve pricing
policies and provide analytical tradeoffs between
their revenue performance and bid-shading incen-
tives. The policies are inspired by the exponen-
tial mechanism from the literature on differen-
tial privacy, but our study uncovers mechanisms
with significantly better revenue-incentive trade-
offs than the exponential mechanism in practice.
We further empirically evaluate the tradeoffs on
synthetic data as well as real ad auction data from
a major ad exchange to verify and support our
theoretical findings.

1. Introduction

Online advertising is the practice of placing text, banner,
or video ads on search engines, publisher websites, or so-
cial media for the purpose of raising brand awareness and
generating sales to site visitors. This form of advertising
represents a major source of revenue for both online pub-
lishers and Internet companies; the revenue of this market
exceeded $124.6 billion in 2019, witnessing a 15.9% in-
crease from 2018 (PricewaterhouseCoopers, 2020). A large
fraction of online ads are sold via repeated auctions in which
the advertisers bid in real time.

Reserve pricing is a key tool used to boost revenue in re-
peated auctions (Ostrovsky & Schwarz, 2011; Paes Leme
et al., 2016). However, according to classical auction theory,
setting the reserve in an effective manner requires knowl-
edge of the advertisers’ valuation distributions (Myerson,
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1981). A natural idea to circumvent this difficulty in practice
is to learn a reserve price from the advertisers’ historical
bids, a practice known as dynamic reserve pricing. Although
this approach is intuitive, one must be cautious with this
kind of pricing policy since it complicates the long-term
incentives of the advertisers. In particular, an advertiser may
have an incentive to shade her bids in order to lower future
reserve prices, even if each auction in isolation is truthful
(e.g., second-price).

In the past decade, there has been a growing body of litera-
ture on dynamic reserve pricing with strategic advertisers
under different settings. Two typical assumptions made
in the literature are that the advertisers are impatient, so
that they discount their utilities in the future (Amin et al.,
2014; Drutsa, 2018; Golrezaei et al., 2019; Deng et al.,
2019; 2020a), and that the market is large enough that each
advertiser contributes a negligible fraction of the total rev-
enue (Liu et al., 2018; Epasto et al., 2018). It has been
shown that a constant fraction of revenue loss against the
revenue-optimal benchmark is inevitable if these two as-
sumptions do not hold (Amin et al., 2013). Nonetheless,
in practice, many ad slots see competition from only a few
large advertisers and it is likely that these advertisers care
about their long-run utilities as much as their instantaneous
payoffs in each auction (Nedelec et al., 2019).

In this paper, we consider an environment in which the ad-
vertisers are patient and the market might be small with only
a few advertisers. Our objective is to understand the tradeoff

between bid-shading incentives and revenue performance

for different reserve pricing policies. Intuitively, in a single-
buyer second-price auction environment, a reserve pricing
policy that does not learn from the advertisers’ historical
bids and always sets a zero reserve would result in zero
revenue, and induce no bid-shading incentive; on the other
hand, a reserve pricing policy setting the Myersonian (i.e,
revenue-optimal) reserve (Myerson, 1981) with respect to
the advertisers’ historical bid distribution maximizes rev-
enue (provided that the advertisers bid truthfully in the past),
but it induces a significant bid-shading incentive.

We consider a multi-stage model in which the auctioneer
learns a reserve from the bids in the last stage and applies it
in the current stage (see Section 2.1). Incentive compatibility
is classically defined as a binary notion: An auction is either
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incentive compatible or not. To achieve a more nuanced
comparison between different reserve pricing policies, we
adopt an incentive compatibility metric which can be inter-
preted as a quantitative index of the advertiser’s incentives
to shade its bids (see Section 2.2 and 2.3). The advantage
of this metric is that it is simple to compute via black-box
simulations, and more importantly, it decomposes into static
and dynamic components so that the incentives specifically
induced by dynamic reserve prices can be evaluated.

Our Contributions. We first provide analytical revenue-
incentive tradeoff for linear reserve pricing policies. A
policy is linear if the reserve is scaled by a factor � when
all the advertisers’ bids are scaled by �. Linear policies
include the policy of setting the Myersonian reserve, and
more generally any policy of setting the reserve as a fixed
quantile of the bid distribution. We show that for such
policies, there is precisely a linear tradeoff between revenue
and bid-shading incentives: One must sacrifice one unit of
the incentive metric in order to gain one unit of revenue. In
other words, we obtain the intuitive result that the larger the
revenue, the stronger the bid-shading incentive on the part
of the advertiser. Our result further implies that although the
Myersonian reserve maximizes revenue, it also minimizes
the incentive metric among all linear policies in a single-
buyer environment.

Motivated by our results for linear policies, we propose a
novel class of non-linear policies based on the Box-Cox
transformations familiar from statistics (Box & Cox, 1964).
These policies randomize over a set of quantiles to select the
reserve, where the weight ascribed to a quantile is propor-
tional to some function of its revenue performance. There-
fore, in these policies, bid shading affects not just the quan-
tiles but also their relative weights. We provide a closed-
form characterization of the revenue-incentive tradeoffs for
our class of non-linear policies, demonstrating that they can
result in significantly better revenue-incentive tradeoffs than
linear policies.

Our analysis reveals the possibility of inducing bid-raising
incentives via a non-linear policy’s mixture weights, which
can counteract the bid-shading incentives. However, there
is no dominant non-linear policy and designing a non-linear
policy to induce bid-raising incentives is an empirical ques-
tion that must take into account the actual valuation distri-
butions at hand. Our class of non-linear policies is inspired
by the exponential mechanism from the literature on dif-
ferential privacy, which is a fundamental technique used to
mitigate incentives to deviate from truthfulness when the
market is large (McSherry & Talwar, 2007; Epasto et al.,
2018). Our results shed light on how to adapt and generalize
the exponential mechanism to achieve a significantly better
revenue-incentive tradeoffs in a small market.

We empirically evaluate the revenue-incentive tradeoffs of
our class of nonlinear policies on both synthetic data and real
ad auction data from a major ad exchange. The experiments
verify and support our theoretical findings, and uncover non-
linear policies with significantly better revenue-incentive
tradeoffs than both linear policies and the exponential mech-
anism for realistic bid distributions.

Related Work. The recent line of study on revenue-
optimal dynamic reserve pricing with strategic advertisers
was initiated by Amin et al. (2013) and Medina & Mohri
(2014); see den Boer (2015) for a survey. They design
no-regret policies in a non-contextual environment with a
single impatient advertiser, and the regret guarantee is later
improved by Drutsa (2017; 2018; 2020). Amin et al. (2014)
develop a no-regret policy in a contextual setting and Gol-
rezaei et al. (2019) enrich the model by incorporating market
noise. Deng et al. (2019; 2020a) generalize these results
by designing a robust dynamic mechanism which competes
favourably against the optimal dynamic mechanism. All
these results concern impatient advertisers and Amin et al.
(2013) show that no learning algorithm can achieve sublin-
ear revenue loss with a patient advertiser. For a large market,
Liu et al. (2018) design no-regret policies using techniques
from differential privacy, while McSherry & Talwar (2007)
and Epasto et al. (2018) provide general frameworks for de-
signing mechanisms that are approximately incentive com-
patible. For patient buyers and small markets, Nedelec et al.
(2019) investigate the advertiser’s bidding strategies against
different dynamic reserve pricing policies.

There has been a growing amount of interest in developing
metrics that quantify incentive compatibility. The common
approach is to evaluate the advertiser’s regret, which is
her utility difference between best-responding and truthful
reporting (Parkes et al., 2001; Duetting et al., 2015; Balcan
et al., 2019). However, computing a regret-based metric is
often a complex optimization task of solving for the best
response, and moreover, it is unclear how to generalize
regret to repeated auctions. In this work, we instead adopt an
incentive compatibility metric recently introduced in Deng
et al. (2020b), which generalizes the idea of the marginal
incentive to deviate (Erdil & Klemperer, 2010). The metric
has been adopted to develop variants of generalized second-
price auction using deep learning (Zhang et al., 2020).

2. Preliminaries

We consider an environment with multiple buyers partici-
pating in repeated auctions with a single seller (e.g., an ad
exchange). The repeated auctions sell a sequence of queries,
each granting the winning buyer a chance to display ads on
the website. These queries arrive in an online manner and
they must be sold once they arrive. For convenience, we
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assume that there is exactly one query per round, so the t-th
query arrives at round t.

For ease of presentation, we take the perspective of one
fixed buyer. We assume that the buyer’s private valuation
vt 2 V = R�0 for round t is drawn independently from
a continuous distribution Ft over V with density function
ft. Upon the arrival of the t-th query, the buyer first learns
her private valuation vt drawn from Ft and then submits
her bid bt 2 V to the seller. After receiving the bids from
all buyers, the seller decides how to allocate and charge
for the ad slot according to an allocation function xt and a
payment function pt. As we take the perspective of one fixed
buyer, xt and pt subsume the mechanism (in particular, the
reserve price applied) and other buyers’ bidding behavior.
In line with the literature, we assume that the buyer’s utility
is quasi-linear such that her utility under bid bt at round t
with private valuation vt is ut(bt; vt) = vt · xt(bt)� pt(bt).
For convenience, let ût(vt) = vt · xt(vt) � pt(vt) be the
buyer’s utility under truthful bidding.

We consider a widely adopted auction format: the second-

price auction with lazy personalized reserve (Ostrovsky &
Schwarz, 2011; Paes Leme et al., 2016), in which the buyer
wins the ad slot if she bids higher than the highest bid from
others b�t and the reserve rt for round t. If a buyer wins, she
pays max(b�t , rt); otherwise, she pays nothing. We further
assume that at each round, the highest bid among other buy-
ers is drawn independently from a continuous distribution
Gt over V with density function gt. In practice, many other
auction formats are used in online advertising (e.g., first-
price auction, generalized second-price auction). In this
work, we are interested in the incentives across auctions,
rather than within each individual auction, so we consider
second-price auctions (which are truthful) to focus on the
dynamic incentives.

2.1. A Multi-stage Model for Reserve Pricing

In a setting where the seller has no prior knowledge about
the buyers’ valuations, a canonical way to apply reserve
pricing is to learn a reserve to apply in the future from the
buyers’ historical bids (Kanoria & Nazerzadeh, 2014; den
Boer, 2015). To analyze the tradeoff between incentives and
revenue under different reserve pricing policies, we propose
a multi-stage model where each stage consists of sufficiently
many queries (rounds), and the reserve is set to be the same
within each stage. In particular,

• The reserve is set to be 0 for all queries in stage 1;

• For each stage t > 1, the seller applies a reserve pricing
policy to compute a reserve rt from the buyer’s bids
from stage t � 1; The seller sets the reserve to rt for
queries in stage t.

One can hardly hope for a good revenue performance guar-
antee for dynamic reserve pricing if the environments are
quite different across both stages. For the purpose of theoret-
ical analysis, we further assume that Ft = F and Gt = G
for all t, so that they are identical across queries. We will ex-
amine how the revenue-incentive tradeoffs generalize across
stages in our experiments for realistic bid distributions that
arise practice.

2.2. Incentive Compatibility Metric

An auction hx, pi is incentive compatible (IC) if reporting
truthfully is always an optimal strategy for the buyer re-
gardless of her private valuation and others’ bids. Formally,
for all v 2 V , v 2 argmaxb v · x(b) � p(b). Myerson’s
lemma (Myerson, 1981) pins down the relationship between
the allocation and payment rule for any truthful auction: (1)
The allocation rule x is non-decreasing; (2) The payment
rule satisfies p(v) = v ·x(v)�

R v
0 x(z)dz. In particular, the

latter condition implies that for each valuation, the deriva-
tive of the buyer’s utility equals the allocation probability,
i.e., dû(v)

dv = x(v) for all v.

Inspired by Myerson’s lemma, Deng et al. (2020b) proposes
a metric to quantify incentive compatibility.

Theorem 2.1 (Individual Stage-IC Metric (Deng et al.,
2020b)). The stage-IC metric SIChx,pi

for an agent with

valuation distribution F in an auction hx, pi is defined as

lim
↵!0

E
⇥
û
�
(1 + ↵)v

�⇤
� E

⇥
û
�
(1� ↵)v

�⇤

2↵ · E [v · x(v)] .

The expectation here is taken over the valuation distribu-
tion F . Intuitively, the numerator of SIC is the difference
between the agent’s expected utility when her valuations
are perturbed multiplicatively up versus down by ↵, while
the denominator is 2↵ times the expected welfare. This
metric can be viewed as a test of the Myerson’s condition
dû(v)
dv = x(v) for all v, except that only the mean value of

the test is reported.

Deng et al. (2020b) demonstrates that the metric takes the
form of an index between 0 and 1 for reasonable auctions:
it is non-negative if the buyer’s utility under truthful bidding
is non-decreasing in her true valuation, and it is at most 1 if
overbidding is a weakly dominated strategy. Additionally,
the metric is 1 for incentive-compatible auctions while it
is 0 for first-price auctions. More importantly, the metric
captures the marginal benefit of uniform bidding, in which
the buyer always bids b = �v for a constant factor � ap-
proaching to 1. In particular, when the metric is below 1,
the buyer has incentive to shade her bids. The smaller the
metric, the stronger the bid-shading incentive. On the other
hand, when the metric is above 1, the buyer has the incen-
tive to raise her bids. The larger the metric, the stronger
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the bid-raising incentive. This observation is important in
practice, as uniform bidding has been shown to be a typical
(and sometimes optimal) strategy for buyers to participate
in ad auctions in complex environments (Aggarwal et al.,
2019; Balseiro & Gur, 2019; Deng et al., 2021a).

2.3. Dynamic Incentive Compatibility Metric

Intuitively, a mechanism is dynamic-IC if for any stage t,
reporting truthfully at stage t is an optimal strategy for the
buyer regardless of her private valuation and others’ bids,
assuming the buyer always bids truthfully in the future (Mir-
rokni et al., 2020; Deng et al., 2020b; 2021b).1

The IC metric can be generalized to multi-stage auctions by
taking the future stages into account to verify the definition
of dynamic-IC. In our multi-stage model, when measuring
dynamic-IC for stage t, only stage t+1 is relevant since the
bids at stage t only affect the reserve price at stage t+1; and
the reserve prices for all future stages are the same provided
that the buyer always reports truthfully from stage t + 1
onwards, under the dynamic-IC definition.

We therefore focus, without loss of generality, on a multi-
stage model with two stages. Note that with the reserve
learned from stage 1 fixed, stage 2 would be IC, and there-
fore, the buyer has no incentive to misreport in stage 2.
However, the buyer may still have incentive to misreport in
stage 1 to lower the reserve in stage 2.

To define the metric for dynamic-IC in stage 1, let x1(b)
and p1(b) be the expected allocation and payment when the
buyer bids b in stage 1. Moreover, let x2(�, b) and p2(�, b)
represent the expected allocation and payment when she
submits bids uniformly scaled by a factor � from her private
valuations in stage 1, i.e., �v, and bids b in stage 2. In addi-
tion, let û2(�, v) = v · x2(�, v) + p2(�, v). Therefore, the
buyer’s expected cumulative utility under truthful bidding
is E[û1(v)] + E[û2(1, v)]. We are now ready to define the
dynamic-IC metric adapted from (Deng et al., 2020b).

Definition 2.2 (Dynamic-IC Metric). The dynamic-IC met-

ric DIC for a buyer with valuation distribution F in a dy-

namic auction in stage 1 is defined as

SIChx1,p1i + lim
↵!0

E [û2(1 + ↵, v)]� E [û2(1� ↵, v)]

2↵ · E [v · x1(v)]
.

The dynamic-IC metric (DIC) additionally takes the utility
in stage 2 into account: the additional term shares the same
denominator as the stage-IC metric, while the numerator
computes the utility difference in stage 2 under truthful
bidding when the buyer’s valuations are perturbed multi-
plicatively up versus down by ↵ in stage 1.

1By a backward induction argument, this is equivalent to as-
suming the buyer bids in a way to optimize her utility in the future.

Since our auction format is IC for stage 1 in isolation2,
SIChx1,p1i is always 1 (Deng et al., 2020b). Therefore, we
can rewrite the metric as follows:

DIC = 1 + lim
↵!0

E [û2(1 + ↵, v)]� E [û2(1� ↵, v)]

2↵ · E [v · x1(v)]
.

The second term is usually negative under dynamic reserve
pricing since dynamic reserve pricing induces the buyer to
shade her bids.

2.4. Reserve Pricing Policy

In general, a reserve pricing policy maps a distribution
of the buyer’s bids to a distribution of reserves. Given
a distribution F over V with finite and non-zero density
function f , there is a bijection between values in V and
quantiles  2 [0, 1] such that  = F (v). For convenience,
denote the quantile function that maps a quantile to a value
by q such that q() = F�1(). As a result, it is with-
out loss of generality to represent a reserve pricing policy
M : �(V ) ! �([0, 1]) as a function that maps a distribu-
tion of bids to a distribution of quantiles, where�(V ) is the
set of distributions over V .

Denote by MF the distribution of quantiles returned by M
under truthful bidding when the buyer’s valuation distribu-
tion is F . Notice that the dynamic-IC metric only depends
on the bid distributions generated by the uniform bidding
strategy with factor (1�↵) and (1+↵). We denote by M�

F
the distribution of quantiles returned by the policy when
the buyer adopts the uniform bidding strategy with factor �,
and the reserve price will be set to � · q() with a quantile
 selected by the policy. A policy is called linear if it is
independent of �: M�

F = MF for all �. In a linear policy,
the distribution over quantiles remains unchanged, while the
reserve price is scaled accordingly by �.

3. Linear Policy

We begin by analyzing linear policies. Observe that given
a quantile distribution MF , the revenue contribution from
the buyer under truthful bidding is REV = REVreserve +
REVcompt, where REVreserve is the contribution from reserve
(when the highest bid from others is below the reserve) and
REVcompt is the contribution from competition (when the
highest bid from others is above the reserve):

REVreserve = E
⇠MF

h
(1� )q() ·G

�
q()

�i
,

REVcompt = E
⇠MF

"Z 1

0

Z v

q()
z · g(z)dzf(v)dv

#
.

2More precisely, the auction for stage 1 is IC if the buyer were
to participate only in stage 1 but not stage 2.
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Here, (1� ) ·G
�
q()

�
is the probability that the buyer’s

valuation is above q() and the highest bid from others is
below q(). In other words, it is the probability that the
reserve q() is effective under truthful bidding.

Let û2(�, v;) be the buyer’s utility in stage 2 when (i) in
stage 1, she adopts the uniform bidding strategy with factor
� and (ii) in stage 2, she truthfully bids her private value
v while the reserve is the -th quantile from stage 1, i.e.,
� · q(). Note that û2(�, v;) = 0 if v  � · q(); and

û2(�, v;) =
�
v � � · q()

�
·G

�
� · q()

�

+

Z v

�·q()
(v � z) · g(z)dz,

if v > � · q(), where the first term is the utility when the
highest bid from others is below � · q() and the second
term is the utility when the highest bid from others is above
� · q(). We further define

util(,�) = E
v⇠F

[û2(�, v;)]

as the buyer’s expected utility. We now proceed to provide
analytical revenue-incentive tradeoffs for linear policies. For
convenience, let W = E [v · x1(v)] for the rest of the paper.
Theorem 3.1. For any linear policy, the dynamic-IC metric

of each buyer with valuation distribution F and competing

bid distribution G satisfies

DIC = 1� REVreserve/W.

Proof. We focus on lim↵!0
E[û2(1+↵,v)]�E[û2(1�↵,v)]

2↵ in
DIC since other terms are constant. For a linear policy,
this can be written as

lim
↵!0

E [û2(1 + ↵, v)]� E [û2(1� ↵, v)]

2↵

= lim
↵!0

E⇠M1+↵
F

[util(, 1 + ↵)]� E⇠M1�↵
F

[util(, 1� ↵)]

2↵

= lim
↵!0

E⇠MF [util(, 1 + ↵)]� E⇠MF [util(, 1� ↵)]

2↵

=
@ E⇠MF [util(,�)]

@�

�����
�=1

,

where the second equation follows that the policy is linear.
All that remains to show is that

@util(,�)

@�

���
�=1

= �(1� ) · q() ·G
�
q()

�

for any  (details deferred to Appendix A.1).

Theorem 3.1 reveals a linear tradeoff between the dynamic-
IC metric and the revenue contribution from the reserve:
The larger REVreserve is, the stronger bid-shading incentive

the buyer has in stage 1. Theorem 3.1 also shows that the
metric is fully determined by REVreserve, and as a result,
for any two linear policies MF and M 0

F that achieves the
same REVreserve, their dynamic-IC metrics must be the same.
Moreover, as REV = REVreserve when there is only one
buyer, we immediately have the following corollary for the
single-buyer environment:

Corollary 3.2. For any linear policy under the single-buyer

two-stage model, the dynamic-IC metric of a buyer with

valuation distribution F satisfies DIC = 1� REV/W .

Note that the policy that applies the Myersonian re-
serve (Myerson, 1981) estimated from the bid distribution
is also linear. Hence, the Myersonian reserve maximizes
revenue but also minimizes the dynamic-IC metric (i.e., cre-
ates the strongest bid shading incentives) among all linear
policies in the single-buyer environment.

4. Non-linear Policy Based on the Box-Cox

Transformation

In the previous section, we analyzed the revenue-incentive
tradeoff for linear reserve pricing policies. We now turn
to reserve pricing policies that are not linear. A canoni-
cal non-linear policy is inspired by the exponential mecha-
nism (McSherry & Talwar, 2007; Epasto et al., 2018), which
is widely used to establish differential privacy and leads to
approximate-IC mechanisms when the market is large. For-
mally, there is a weight function w : [0, 1] ! R�0 that
assigns each quantile  a weight w(), and the probability
of selecting each quantile  is proportional to exp(✓ ·w()),
where ✓ 2 R�0 is an adjustable parameter. For example,
w() can be the revenue in stage 1 when the reserve is
q(). Another canonical mechanism is the power mech-
anism (Epasto et al., 2020), in which the probability of
selecting each quantile  is proportional to w()✓.

We consider a broad class of non-linear policies that contains
both the exponential mechanism and the power mechanism.
It is inspired by the power transformation proposed by Box
& Cox (1964), known as the Box–Cox transformation. The
single-parameter Box-Cox transformation function is:

⌧�(y) =

⇢
(y� � 1)/�, � 2 R \ {0};
ln y, � = 0.

Definition 4.1 (Non-linear Policy based on the Box-Cox
Transformation). A non-linear policy M is specified by

a tuple h�, ✓,wi, where � 2 R and ✓ 2 R�0. The

probability of selecting each quantile  is proportional to

exp(✓ · ⌧�(w())).

Observe that when � = 0, the policy becomes the power
mechanism, and when � = 1, it becomes the exponential
mechanism. Recall that the dynamic-IC metric concerns the
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bid distribution generated by the uniform bidding strategy
for factor (1� ↵) and (1 + ↵). For convenience, denote by
w(,�) the weight function when the buyer adopts the uni-
form bidding strategy with factor � in stage 1. We assume
that w(,�) is continuous and differentiable with respect to
�, but we do not require it to be continuous with respect to .
This enables different weight function formats for different
. The following theorem characterizes the dynamic-IC
metric for our class of non-linear policies.

Theorem 4.2. For any non-linear policy M = h�, ✓,wi,
the dynamic-IC metric of a buyer with valuation distribution

F and competing bid distribution G satisfies

DIC = 1� (REVreserve � ✓ · )/W,

where

 = cov⇠MF


util(, 1),

@w(,�)

@�

��
�=1

· w(, 1)��1

�
.

Proof. We focus on lim↵!0
E[û2(1+↵,v)]�E[û2(1�↵,v)]

2↵ in
DIC since other terms are constant. For a non-linear policy,
this can be written as

lim
↵!0

E [û2(1 + ↵, v)]� E [û2(1� ↵, v)]

2↵

= lim
↵!0

E⇠M1+↵
F

[util(, 1 + ↵)]� E⇠M1�↵
F

[util(, 1� ↵)]

2↵

=
@ E⇠M�

F
[util(,�)]

@�

���
�=1

=
@ E⇠MF [util(,�)]

@�

���
�=1

+
@ E⇠M�

F
[util(, 1)]

@�

���
�=1

=� REVreserve +
@ E⇠M�

F
[util(, 1)]

@�

���
�=1

,

where the last equation would follow the proof of Theo-

rem 3.1. The equation
@ E

⇠M
�
F
[util(,1)]

@�

���
�=1

= ✓ ·  then

concludes the proof (details deferred to Appendix A.2).

Theorem 4.2 shows that compared with linear policies (The-
orem 3.1), the dynamic-IC metric for non-linear policies
has an additional covariance term of ✓ · under the quantile
distribution MF . Note that Theorem 4.2 generalizes Theo-
rem 3.1 since a linear mechanism can be implemented with
a weight function independent of � so that @w(,�)

@� = 0 for
any  and �.

Intuitively, under linear policies, a buyer who adopts the
uniform bidding strategy can only change the scale of the
reserve while the distribution of quantiles remains the same,
which gives the buyer the incentive to shade her bids to
lower the reserve. Such an incentive is captured by the

partial derivative

@ E⇠MF [util(,�)]

@�

��
�=1

= �REVreserve,

where � appears in the utility of the second stage. In con-
trast, under non-linear policies, a buyer can further change
the distribution of the quantiles, and such an effect is cap-
tured by the partial derivative

@ E⇠M�
F
[util(, 1)]

@�

��
�=1

= ✓ · ,

where � appears in the distribution M�
F of the quantiles.

A properly designed non-linear policy, resulting in a positive
covariance term  , will create an incentive for the buyer to
raise her bids, offsetting the bid-shading incentive captured
by REVreserve. Note that util(, 1) is non-increasing as 
increases, and therefore, the covariance term is likely to be
positive if @w(,�)

@�

��
�=1

· w(, 1)��1 is also non-increasing
for most quantiles.

In particular, when w(,�) is linear in �, i.e., w(,�) =
� · w(, 1), we immediately have:
Corollary 4.3. For any non-linear policy M = h�, ✓,wi
with w(,�) linear in �, the dynamic-IC metric of a buyer

with valuation distribution F and competing bid distribution

G satisfies DIC = 1� (REVreserve � ✓ · )/W where

 = cov⇠MF

⇥
util(, 1),w(, 1)�

⇤
.

Particularly, for a power mechanism in which � = 0, the

dynamic-IC metric satisfies DIC = 1� REVreserve/W .

Corollary 4.3 implies that the revenue-incentive tradeoff in
a power mechanism with a weight function linear in � is
exactly the same as in a linear policy. In the single-buyer
environment, all the revenue comes from reserve pricing,
i.e., REV = REVreserve, and is hence linear in �. Similarly,
the welfare performance is also linear in �. Therefore, if
one uses a convex combination between the revenue and
the welfare performance as the weight function, the tradeoff
given in Corollary 4.3 still applies.

5. Experiments

In this section we report on results from simulations of the
non-linear policies. When simulating a policy, we use REV
(i.e., the buyer’s expected payment) as the weight function.
By varying the parameter ✓ (in Definition 4.1), we obtain dif-
ferent combinations of (REVreserve/W, DIC) which yields
a tradeoff curve that we plot. Note that the first coordinate
is (normalized) revenue under truthful bidding, but when
DIC < 1 one would expect buyers to shade their bids. The
plots are best interpreted as showing dominance relation-
ships: for two mechanisms that yield the same revenue
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Figure: Synthetic data experiment: revenue-incentive tradeoff without competing bids under non-linear policies with
different �; the dashed line corresponds to the line of DIC = 1� REVreserve/W .

under truthful bidding, the one with higher DIC should in
practice be closer to this predicted revenue.

We first present synthetic-data experiments to verify the
theory, and next report on experiments over real bid data
from a major ad exchange to understand which particular
policies work well over realistic bid distributions in practice.

5.1. Synthetic Data

We first provide results using synthetic data. We consider a
standard log-normal distribution F1 with density function
f1(x) = 1

x
p
2⇡

· exp(� ln x
2 ) and a shifted log-normal dis-

tribution F2 with density function f2(x) = f1(x � 1) for
x > 1 and f2(x) = 0 for x 2 (0, 1]. We use a log-normal
distribution because it is commonly used to model bid and
value distributions in practice (Lahaie & Pennock, 2007;
Ostrovsky & Schwarz, 2011; Thompson & Leyton-Brown,
2013; Golrezaei et al., 2019).

We consider a single-buyer environment without compet-
ing bids. We compute the 100-quantiles, excluding the
100-th quantile (i.e., the maximum), and their revenues as
the weights. Figure 1 shows the revenue curve for both
distributions. Observe that the revenue for the log-normal
distribution is increasing as the quantile increases for most
of the support, while the revenue for the shifted log-normal
distribution is decreasing over most of the support. Accord-
ing to the covariance term  in Corollary 4.3, this suggests
that a non-linear policy with negative � should have a better
tradeoff than one with positive � for the log-normal distri-
bution, but have a worse tradeoff for the shifted log-normal
distribution. Figures 2 and 3 show the tradeoffs and confirm
these theoretical findings. In addition, we see that for the
log-normal distribution, the smaller �, the better the trade-
off; and the pattern for the shifted log-normal distribution is

the opposite. Moreover, the tradeoff curve for � = 0 coin-
cides with the diagonal line of DIC = 1� REVreserve/W in
agreement with the theory. Note that the curves do not start
from 0 revenue (and 1 dynamic-IC metric) since all the non-
linear policies return a uniform distribution over quantiles
when ✓ = 0, resulting in a positive revenue. Moreover, the
rightmost points in Figures 2 and 3 in fact correspond to the
Myerson’s auctions.

We defer the experiments with competing bids and with �
that has a large absolute value to Appendix B. The trends for
both distributions are similar to the setting without compet-
ing bids, but the curve for � = 0 deviates from the diagonal
line since the revenue is no longer linear in the bid-shading
factor �. Moreover, for a � with a large absolute value, the
dynamic-IC metric could be above 1, resulting in an incen-
tive for the buyer to raise her bids beyond its true value.
Therefore, one must be cautious with the choice of � to
balance the bid-raising and bid-shading incentives.

5.2. Ad Auction Data

In this section we evaluate the revenue-incentive tradeoffs
within our family of mechanisms over real data from the
auction logs of a major display ad exchange. Our goal here
is not to evaluate the exact auction mechanism and pricing
policies used by the exchange, but rather to validate our
theory over realistic bid distributions.3 The purpose of this

3In particular, the exchange from which the data is drawn runs
a first-price auction, but we use the bids to simulate second-price
auctions with reserves, consistent with our model so far. One
could first try to back out values from bids, but we view this as
an orthogonal problem which would not substantially alter the
experimental conclusions. To empirically evaluate the tradeoff,
what matters is the shape of the distribution; in ad auctions, bid and
value distributions are likely to have a similar shape since one is
just a rescaling of the other under the common strategy of uniform
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Figure 4: Tradeoff on training data.
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Figure 5: Tradeoff on testing data.

Figure: Real data experiment: revenue-incentive tradeoff without competing bids under non-linear policies with different �;
the dashed line corresponds to the line of DIC = 1� REVreserve/W .

evaluation is twofold. In Section 5.1, we saw that depending
on the bid distributions, higher � could lead to better or
worse tradeoffs. Therefore, we are interested in uncover-
ing the pattern that holds under realistic bid distributions.
Next, we are interested in confirming that the tradeoffs can
be measured to a useful level of accuracy in practice (i.e.,
the confidence intervals are narrow enough to distinguish
mechanisms using different values of �).

Our dataset consists of auction records of bids placed on
queries from a single publisher over two consecutive days.
We focus on a single bidder and only retain the auctions that
involve this bidder, yielding over 100K auction records in
total. The first day is used as the training set to compute
the bid quantiles and their associated revenue performance
as reserves under a second-price auction. Specifically, we
compute the (5, 10, 25, 50, 75, 90, 95)-th bid quantiles and
their counterfactual revenue. The non-linear policies from
Section 4 are then implemented based on this information,
and the revenue-incentive tradeoffs are evaluated on both
the training (same-day) data and the testing (next-day) data.
The policies take mixtures of the bid quantiles along with the
option of no reserve price. Note that our model has assumed
that bids are i.i.d. across days; this does not hold exactly in
practice, so our empirical results will clarify the extent to
which the relationships characterized in Theorem 4.2 and
Corollary 4.3 extend to future time periods.

Results assuming just a single bidder (i.e., discarding all
competing bidders in the simulation) are presented in Fig-
ure 4 and Figure 5. (In all plots, we present 95% confidence
intervals.) We observe that lower � achieve better revenue-
incentive tradeoffs, in the sense that at every revenue level,
lower � dominate higher � in terms of the DIC metric; in
particular, the exponential mechanism (� = 1) exhibits the

bidding which motivates our analysis.

worst tradeoffs. Following the intuition from Corollary 4.3,
this is because revenue increases with the reserve (and is
negatively correlated with utility) for a large portion of the
support of the empirical bid distribution. By using negative
values like � = �1, the resulting bid-raising incentives can
counteract the bid-shading incentives, as the DIC metric
initially stays quite flat even as the revenue performance
increases, as seen in Figure 4. This figure also confirms
that the power mechanism (� = 0) follows a specific linear
tradeoff curve, validating the theory. In Figure 5 we evaluate
the tradeoffs on the testing data; the trends are extremely
similar, but the power mechanism no longer tracks the pre-
dicted line because the distributions are not exactly identical
day-to-day.

Plots of the tradeoff curves when there are competing bids
are deferred to Appendix B. Again, we find that lower �
yield better tradeoffs. The trends are similar to the single-
bidder case, but because the revenue-weighting is now non-
linear the power mechanism deviates from the diagonal line.
Comparing the range of the dynamic-IC metric to the single-
bidder case, we find that the dynamic-IC metric is higher,
because the competing bids mute the bid-shading incentives
of the dynamic reserve prices.

6. Conclusions

This work provides analytical characterizations of the
revenue-incentive tradeoffs of dynamic reserve pricing poli-
cies, and introduces a novel class of policies that randomize
over bid quantiles as reserves.

For linear policies, we proved that bid-shading incentives are
directly proportional to the revenue extracted by a reserve.
For non-linear policies based on the Box-Cox transforma-
tion, we showed that an additional term is added which
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depends on the covariance between quantile weight and
quantile utility. As a result, by choosing an appropriate
weighting scheme, it is possible to counteract bid-shading
incentives with bid-raising incentives. The mechanism ex-
hibiting the best tradeoff depends on the bidder’s valuation
distribution, and in particular, on the extent to which rev-
enue increases with quantile over the distribution’s support.
For realistic distributions like the lognormal, and on an em-
pirical distribution of bids from a major ad exchange, the
exponential mechanism in fact accentuates incentives to
shade bids and significantly better tradeoffs can be achieved
with log-concave weighting schemes.

In future work, it would be interesting to consider more
general reserve policies, for example, a combination be-
tween quantile-based reserve sand constant reserves, such
as, the 20-th quantile of the bid distribution plus a con-
stant. Other reserve pricing strategies, such as anonymous
reserves, are also interesting to consider. Different strategies
may come with different revenue-incentive tradeoffs, and
it is an intriguing question to characterize the landscape of
revenue-incentive tradeoffs.
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