Heterogeneity for the Win: One-Shot Federated Clustering

A. Proofs
A.1. Proving Theorem 3.1 (Main Theorem)

Before we proceed to proving Theorem 3.1, we first establish a few preliminary results. Let 7 = (77, ..., T)) be our target

)

clustering and let T,(.Z) be the subset of points of a cluster 7). on device z. For any point, AEZ on device z, let c(AEZ)) denote

the index of the cluster it belongs to. That is,

Az('Z) e Tc((igz)) e TC(AEZ)).

Also recall the definition of matrix C, the matrix of means. Here the i-th row of C' contains the mean of the cluster which
contains data points A;, i.e. C; = ju(T¢(4,)). Our first lemma bounds how far the ‘local’ cluster mean u(Tﬁz)) can deviate
from p(7).).

Lemma 2 (Lemma 5.2 in Kumar & Kannan (2010)). Let TT(Z) be a subset of T on device z. Let u(TT(Z)) denote the mean
of the points indexed by T,gz). Then,
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Proof. Let A(*) be the sub-matrix of A on device z and let C®) be the corresponding sub-matrix of our matrix of means C'.

(T = (T, |2

Let u be an indicator vector for points in TT(Z). Observe that,

| IT1@ ) = ) || = 14 = E©) - a
< 1A® = EDu,

< |lA—Cl/|T].

Here, for the last inequality, we note that (A®) — C()) contains a subset of rows of (A — (), and therefore
|A®) —CE | < ||A - Q. O

Now consider the local clustering problem on each device z. The device has a data matrix A(*), whose rows are a subset of

A. Let Tl(z)7 TQ(Z), . ,T,gz) be subsets of 77, T, ..., T} on this device, such that no more than &k’ of them are non-empty.
Construct a matrix C'(*), of the same dimensions as A(*) where for each row of A(*), the corresponding row of C'*) contains

the mean of the local cluster the point belongs to. That is, the i-th row of C'*) contains (T ((Z:l(z))). Using this next lemma,
we bound the operator norm of the matrix (A(*) — C(%)), in terms of (4 — C). /

Lemma 3. Let Tl(z)7 TQ(Z), . T,Sz) be subsets of target cluster that reside on a device such that k' of them are non-empty.
Let A% be the corresponding n*) x d data matrix. Let C'*) be the corresponding matrix of means; that is each row

Ci(z) = “(Tf(Af))' Then,
[A®) — @ || <2V ||A-C||.

Proof. Let C®) be an n(*) x d matrix where C’i(z) = N(TC( A(_z>)). First, consider a unit vector u along the top singular
direction and observe that: l

ICO) — O = YO (W) - () )
r=1

k
< 2T
r=1

2
<(a) k/HA - CH .

2

(1) = ()

2
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Here for inequality (a) we invoke Lemma 2. Also, noting that ||A(*) — C®)|| < ||A — C|, we get,

A% — | < A% - CP|| 4 | — C|
<A+ VENA-C| <2VK||A-C|.

We prove Theorem 3.1 in four parts:

1. In the first step we show that satisfying the active separation condition is sufficient to satisfy the Awasthi-Sheffet
separation condition required for Lemma 1 (Lemma 4).

2. Next we use Lemma 4 to show that the first step of k-FED (Algorithm-1) will find local centers 952) that are close to
true centers M(Tﬁz)) on device z. We state and prove this in Lemma 5.

3. In next step, we show that the process of picking k initial centers in steps 2-6 of k-FED picks exactly one local cluster
center 97(7) for each cluster r. That is, we pick & local centers one corresponding to each target cluster. (Lemma 6)

4. Finally, we argue that with this initialization, the clustering of local cluster centers produced (71, ..., 7x) has the
property that, all local cluster centers corresponding the to the same cluster (say 7;.) will be in the same set (say 7;.).
Moreover, no local cluster center corresponding to any T, s # r will be in 7. As we argue later, this is sufficient for
the induced clustering produced by (71, . . ., 7% ) to agree with our target clustering 7 = (T, T3, . . . ) up to permutation
of labels and missclassifications incurred at the local clustering stage.

Lemma 4. Let (T, T;) be cluster pairs such that, ||j1, — pis|ly = 2¢/mo(Ay + Ag). Let T? € T, and T? < Ty be large
subsets on device z. Then,

||A(z) _ C(z)” N ||A(z) _ C(Z)H

17 = p o = eV

Proof. (Lemma 4) Using the triangle inequality, we have

11 = 1PNz = e = psllz = N = paellz = s — 112

> 2cy/mo (A, + Ay) — |A—C _ |A-C

/ngz) /’I'ng)

using the active separation assumption. Now, expanding the terms can write the left hand side as

®)
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We first only consider the term (7). According to Lemma 3, [|[A — C|| = Q&F |A*) —C(2)||. Using this we can bound () as
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&) )
Now recall that for large cluster subsets n{? > m%)n,« and thus 24/ 2%~ — 1 > 2 — — > 1. This means that we can
bound term () as,

(2) _ (z) — 0»)
9 monyr 1 Ck’/HA CH > C\/EHA C H

!
N, - ck ngz) ngz)

We get a symmetric expression for term (i7) as well. Using this in equation 5, we get the desired result:

1 = w2 > cx/@(”A ®—cO|  A® - cC ||>

N RN

O

Since Algorithm-1 is run locally on each device, it is unaffected by the inactive separation condition, as by definition,
subsets of only active cluster pairs exist on each device. This implies that Algorithm-1 solves the local clustering problem

successfully. Specifically on device z containing data from some cluster 7., 67 is not too far from u(TT(Z)). Showing this
result is our second step and we state this formally in Lemma 5 below.

Lemma 5. Let (T} (Z) ) ,T,gz)) be the subsets of (T1,...,Ty) on some device z such that no more than k' of them are

non-empty. Moreoven assume all non-empty subsets are large, i.e. r(z)\ > m%)\TTL Finally, assume that the active
separation requirement is satisfied for all active cluster pairs on z. Then, on termination of Algorithm-1, for each non-empty

TT(Z), we have

1657 — (Tl <

25 [[A®) — 09| 50\/7||A Cl
c NG c Nz
and,

A—
ny

Proof. First note that the local clustering problem with data matrix A*) and matrix of centers C'(*) satisfies the requirements
of Lemma 1. Thus it follows that,

(=) — ¢z
68 — ) < 2T

ANz
Now applying Lemma 3 gives us the first statement.
To prove the second statement, we start off with the triangle inequality:
1657 — w(T) 2 < 11687 = w(TE) |2 + () = (T2
< % [|A® - A=l
¢y N

Here for the last inequality we used Lemma 2. Now applying Lemma 3 and taking take ¢ > 100, we get
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This means that for a fixed , all the 01 received at the central server from devices z € [Z] are ‘close’ to p(T}).

The next step is to show that in the k initial centers k-FED picks in steps 2-6, there is exactly one corresponding to each
target cluster 7;. We will show later that this is sufficient for the final step of the algorithm to correctly assign local cluster
centers to the correct partition.

Lemma 6. Let T = (11, ...,Ty) be our target clustering. Assume all active cluster pairs and inactive cluster pairs satisfy
their separation requirements. Further let Ny, > %nmax. Then at the end of step 6 of k-FED, for every target cluster

T, there exists an F)gz) € M such that ng) = M(Ts(z))for some z € [Z].

Before we proceed to proving this lemma, we state and prove a lower bound on how close a local cluster center Gﬁz) can be
to some cluster mean u(7T) for s # r:

Lemma7. Let 017 = /,L(Tr(z)). The for any s # r, 2’ € [Z],
16) — 65Dy > 64/moA.
Proof. First, from the triangle inequality note that,

10 — 012 = [l — psllz — Il — 0|2 — [lpas — 02

Using Lemma 5 and our inactive separation assumption we bound the right hand side further as,

A—C
e = pisllz = llger — 0|2 — [ls — 0|2 = 104/m k/\/r m k/H ”

min

A-C
= 6'\/ mokI”ni” = 6\/m0)\,

min
as desired. O

Proof. (Lemma 6) Let M; denote the set M in step 2-6 of k-FED, after picking the first ¢ points (1 < ¢ < k). Let us denote
the point k-FED selects in iteration ¢ as 6. That is,

0; < argmax thfl(ng)).
z€[Z],i€[k]

We will show that the set M, contains ¢ points corresponding to ¢ different target clusters at every iteration ¢. This invariant
holds trivially at ¢ = 1. Assume the statement first became false at some 1 < ¢’ < k. Let the point 6y correspond to a local
cluster mean from cluster 7;.. Then there must exist some 1 < ¢ < ¢’ such that 6, also correspond to a local cluster mean

from T.. Further, there must exist some cluster s # r such that ng) ¢ My forany z € [Z].

Now by definition of dp, , (6 ), we have
g, (O) = 021]\/}21”@/ =0l

< |16y — O |2
< 10¢ — u(T, )Ilz + ||N(Tr) — Oy l2

b 4y/m k:’“ <4WA (6)

Here inequality (a) follows from the triangle inequality and (b) follows from Lemma 5.

Now consider ng) for any z. Since no other local cluster center from 7 is contained in M}, from Lemma 7 we conclude
that for every 0 € M;_1,

16) — 0]|2 = 64/moA.

But this means that dpz, , (0y) < 4y/moA < 6/moA < dpg,_, (0£Z)) leading to a contradiction based on the definition of
0. This completes our argument. O
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Now we are ready to prove our main Theorem 3.1.

Proof. From Lemma 6, we know that the set M at the end of step 6 of k-FED contains exactly one center corresponding to
each target clustering. Let the local cluster center 6, € M correspond to the cluster T).. Observe that for any z € [Z],

167 = 0rll2 < 165 — prll2 + 1w — 62

4«/771())\,

<
<

using Lemma 7. Further, for any s # r,
102 — 6r]l2 > 64/moA.

This means that for every r and z € [Z], 67 is closer to the corresponding initial center 0, than to any other initial center 6,
s # r. Let 7, be the set of local cluster centers assigned to 6,.. Then it can be seen that 7,. only contains local cluster centers
952) for all devices z, i.e. 7, contains all the device cluster centers corresponding to target cluster 7.

Now consider the definition of k-FED induced clustering (Definition 3.3), where we define
T, = {i: A% c U and 0% € 7,}.

In this case, we know that only local cluster centers corresponding to cluster 7;. is contained in 7,.. Thus our induced cluster
T becomes,

T = {i: A9 e UM},

Now from Lemma 1 we know that on each device the sets (U- fz), N~ ,E,Z)) and (Tl(z), e ,T,E,z )) only differ on at most
O(Z%)n'*). Summing this error over all devices z, we see that our induced clustering (77, ..., 7}) and the target clustering
(T1,...,Ty) differ only on O(c%)n points. Finally, if all the local points satisfy their respective proximity condition
(Definition 3.1), then no points are missclassified. This concludes our proof. O

A.2. Running Time of k-FED and Handling New Devices

We now analyze the running time of k-FED steps 2-8. Since step 1 is running Algorithm-1 on individual devices, we do not
include the running time of this step as part of our analysis. Note that with the separation assumptions in place, Algorithm-1
will converge in polynomial time. However, as observed in practise, Lloyd like methods typically only take a few iterations
to terminate.

Theorem A.1. Steps 2-8 of k-FED takes O(Zk' - k?) pairwise distance computations to terminate. Further, after the set
M in step 6 has been computed, new local cluster centers ©%) from a yet unseen device z can be correctly assigned in
O(K' - k) distance computations.

Proof. (Theorem 3.2) The proof of the first part follows from a simple step by step analysis. Step 1 can be performed in
O(1). Step 2-6 executes exactly k times. At each iteration ¢, (1 < ¢t < k), we compute the distance of all device cluster
centers, of which there are most Zk’, to the points in M;_1. Thus at iteration ¢, this can be implemented with Zk' - ¢
distance computations. Summing over all ¢, we see that steps 2-6 can run in O(Zk’ - k?) distance computations. Finally,
step 7 requires us to assign all the Zk’ device cluster centers to one of the & initial points in M. This can be implemented in
O(ZK' - k) distance computations. Thus the overall complexity in terms of pairwise distance computations is O(Zk' - k?).

The second part of the statement follows from noting that for each GSZ) e ©(%), the nearest point in set M/ must be the initial
center 6, we picked as was demonstrated in the proof of Theorem 3.1. Thus every 9$Z) e ©(%) is assigned to the correct

partition 7, as required. O
A.3. Separating Data from Mixture of Gaussian

We now prove Theorem 4.1. Recall that we are working in the setting where &’ < +/k. Our proof builds on results from
Lemma 6.3, Kumar & Kannan (2010).
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Proof. First consider an active cluster pair r, s. Based on our separation requirement, we have:

2c7/kmoomax d
7@ polylog (wmm>
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Now note the number of points from each component F. is very close to w,n, with very high probability. Here w,. is the
mixing weight of component 7 and n,. is the number of data points. Using this, with high probability we have

d
)polylog( ) )
Wmin

Further, it can be shown that | A — C|| is O (amax\/ﬁ - polylog ( —4 )) with high probability (see (Dasgupta et al., 2007)).

Wmin

e — psll2 =

We further simplify the right hand to get,

H/’LT - ,USHQ = Cy/ kmOUmaX\/ﬁ(

1
+
Ny +/Ms

”/Jf’r‘ - /~Ls||2 = ¢/ km(]amax\/ﬁ(

Thus we conclude that, with high probability

|A-cC|  |A-C|
— e = e/ .
[ — ps]l2 = e/ kmg ( i + Vi

Thus the active separation requirement is satisfied. The proof for the inactive separation condition is similar. Finally, the
proximity condition follows from the concentration properties of Gaussians. O
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B. Experimental Details
B.1. Datasets

For all experiments involving real data, we use the EMNIST, FEMNIST, and Shakespeare datasets. These datasets and
their corresponding models are available at the LEAF benchmark: https://leaf.cmu.edu/. For client selection
experiments, we manually partition a subset of FEMNIST (first 10 classes) by assigning 2 classes to each device. There
are 500 devices in total. Both the number of training samples across all devices and the number of training samples per
class within each device follow a power law. We use the natural partition of Shakespeare where each device corresponds
to a speaking role in the plays of William Shakespeare. We randomly sample 109 users from the entire dataset. For
personalization experiments, following Ghosh et al. (2020), we use a CNN-based model with one hidden layer and 200
hidden units trained with a learning rate of 0.01 and 10 local updates on each device.

B.2. Choosing k& Based on Separation

As mentioned in Section 4.2, to create our oracle clustering, we compute the quantity c,s = % for each cluster

pairs (r, s), for every candidate value of k we are considering. We construct a distribution plot of these ¢,s. An example of
such a plot for the MNIST dataset is provided in Figure 5. As can be seen here, for all values of k, the relative separation is
quite small. Thus even for this oracle clustering, the actual separation between cluster means is small. To pick a k for our
oracle clustering, we pick a fixed value ¢ (say 0.5) and then pick the value of k£ which leads to maximum fraction of cluster
pairs (r, s) to have ¢, > ¢o.

MNIST

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Distribution plot of ¢, for various values of k£ on the MNIST dataset. As can be seen, ¢,s < 1 for most cluster pairs, indicating
that the separation between them is relatively small.
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