
Heterogeneity for the Win: One-Shot Federated Clustering

A. Proofs
A.1. Proving Theorem 3.1 (Main Theorem)

Before we proceed to proving Theorem 3.1, we first establish a few preliminary results. Let T “ pT1, . . . , Tkq be our target
clustering and let T pzqr be the subset of points of a cluster Tr on device z. For any point, Apzqi on device z, let cpApzqi q denote
the index of the cluster it belongs to. That is,

A
pzq
i P T

pzq

cpA
pzq
i q

Ď T
cpA

pzq
i q

.

Also recall the definition of matrix C, the matrix of means. Here the i-th row of C contains the mean of the cluster which
contains data points Ai, i.e. Ci “ µpTcpAiqq. Our first lemma bounds how far the ‘local’ cluster mean µpT pzqr q can deviate
from µpTrq.

Lemma 2 (Lemma 5.2 in Kumar & Kannan (2010)). Let T pzqr be a subset of Tr on device z. Let µpT pzqr q denote the mean
of the points indexed by T pzqr . Then,

‖µpT pzqr q ´ µpTrq‖2 ď
‖A´ C‖
b

|T pzqr |
.

Proof. Let Apzq be the sub-matrix of A on device z and let C̃pzq be the corresponding sub-matrix of our matrix of means C.
Let u be an indicator vector for points in T pzqr . Observe that,∥∥∥ |T pzqr |pµpT pzqr q ´ µrq

∥∥∥
2
“ ‖pApzq ´ C̃pzqq ¨ u‖2

ď ‖Apzq ´ C̃pzq‖‖u‖2

ď ‖A´ C‖
c∣∣∣T pzqr

∣∣∣.
Here, for the last inequality, we note that pApzq ´ C̃pzqq contains a subset of rows of pA ´ Cq, and therefore
‖Apzq ´ C̃pzq‖ ď ‖A´ C‖.

Now consider the local clustering problem on each device z. The device has a data matrix Apzq, whose rows are a subset of
A. Let T pzq1 , T

pzq
2 , . . . , T

pzq
k be subsets of T1, T2, . . . , Tk on this device, such that no more than k1 of them are non-empty.

Construct a matrix Cpzq, of the same dimensions as Apzq where for each row of Apzq, the corresponding row of Cpzq contains
the mean of the local cluster the point belongs to. That is, the i-th row of Cpzq contains µpT pzq

cpA
pzq
i q
q. Using this next lemma,

we bound the operator norm of the matrix pApzq ´ Cpzqq, in terms of pA´ Cq.

Lemma 3. Let T pzq1 , T
pzq
2 , . . . T

pzq
k be subsets of target cluster that reside on a device such that k1 of them are non-empty.

Let Apzq be the corresponding npzq ˆ d data matrix. Let Cpzq be the corresponding matrix of means; that is each row
C
pzq
i “ µpT zcpAz

i q
q. Then,

‖Apzq ´ Cpzq‖ ď 2
?
k1‖A´ C‖ .

Proof. Let C̃pzq be an npzq ˆ d matrix where C̃pzqi “ µpT
cpA

pzq
i q
q. First, consider a unit vector u along the top singular

direction and observe that:
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Here for inequality paq we invoke Lemma 2. Also, noting that ‖Apzq ´ C̃pzq‖ ď ‖A´ C‖, we get,

‖Apzq ´ Cpzq‖ ď ‖Apzq ´ C̃pzq‖` ‖C̃pzq ´ Cpzq‖

ď p1`
?
k1q‖A´ C‖ ď 2

?
k1‖A´ C‖.

We prove Theorem 3.1 in four parts:

1. In the first step we show that satisfying the active separation condition is sufficient to satisfy the Awasthi-Sheffet
separation condition required for Lemma 1 (Lemma 4).

2. Next we use Lemma 4 to show that the first step of k-FED (Algorithm-1) will find local centers θpzqr that are close to
true centers µpT pzqr q on device z. We state and prove this in Lemma 5.

3. In next step, we show that the process of picking k initial centers in steps 2-6 of k-FED picks exactly one local cluster
center θpzqr for each cluster r. That is, we pick k local centers one corresponding to each target cluster. (Lemma 6)

4. Finally, we argue that with this initialization, the clustering of local cluster centers produced pτ1, . . . , τkq has the
property that, all local cluster centers corresponding the to the same cluster (say Tr) will be in the same set (say τr).
Moreover, no local cluster center corresponding to any Ts, s ‰ r will be in τr. As we argue later, this is sufficient for
the induced clustering produced by pτ1, . . . , τkq to agree with our target clustering T “ pT1, T2, . . . q up to permutation
of labels and missclassifications incurred at the local clustering stage.

Lemma 4. Let pTr, Tsq be cluster pairs such that, ‖µr ´ µs‖2 ě 2c
?
m0p∆r `∆sq. Let T zr Ď Tr and T zs Ď Ts be large

subsets on device z. Then,
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?
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¨

˝
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b

n
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b
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˛

‚.

Proof. (Lemma 4) Using the triangle inequality, we have

‖µpzqr ´ µpzqs ‖2 ě ‖µr ´ µs‖2 ´ ‖µpzqr ´ µr‖2 ´ ‖µs ´ µpzqs ‖2
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(5)

using the active separation assumption. Now, expanding the terms can write the left hand side as
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We first only consider the term piq. According to Lemma 3, ‖A´C‖ ě 1
2
?
k1
‖Apzq´Cpzq‖. Using this we can bound piq as
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Now recall that for large cluster subsets npzqr ě 1
m0
nr and thus 2

b

m0n
pzq
r

nr
´ 1

ck1 ě 2´ 1
ck1 ě 1. This means that we can

bound term piq as,
¨
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.

We get a symmetric expression for term piiq as well. Using this in equation 5, we get the desired result:

‖µpzqr ´ µpzqs ‖2 ě c
?
k1
ˆ

‖Apzq ´ Cpzq‖
b

n
pzq
r

`
‖Apzq ´ Cpzq‖

b

n
pzq
s

˙

.

Since Algorithm-1 is run locally on each device, it is unaffected by the inactive separation condition, as by definition,
subsets of only active cluster pairs exist on each device. This implies that Algorithm-1 solves the local clustering problem
successfully. Specifically on device z containing data from some cluster Tr, θzr is not too far from µpT

pzq
r q. Showing this

result is our second step and we state this formally in Lemma 5 below.

Lemma 5. Let pT pzq1 , . . . , T
pzq
k q be the subsets of pT1, . . . , Tkq on some device z such that no more than k1 of them are

non-empty. Moreover, assume all non-empty subsets are large, i.e. |T pzqr | ě 1
m0

|Tr|. Finally, assume that the active
separation requirement is satisfied for all active cluster pairs on z. Then, on termination of Algorithm-1, for each non-empty
T
pzq
r , we have

‖θpzqr ´ µpT pzqr q‖2 ď
25

c

‖Apzq ´ Cpzq‖
?
nzr

ď
50
?
k1

c

‖A´ C‖
?
nzr

,

and,

‖θpzqr ´ µpTrq‖2 ď 2
a

m0k1
‖A´ C‖
?
nr

ď 2
?
m0λ .

Proof. First note that the local clustering problem with data matrixApzq and matrix of centers Cpzq satisfies the requirements
of Lemma 1. Thus it follows that,

‖θpzqr ´ µpT pzqr q‖2 ď
25

c

‖Apzq ´ Cpzq‖
?
nzr

.

Now applying Lemma 3 gives us the first statement.

To prove the second statement, we start off with the triangle inequality:

‖θpzqr ´ µpTrq‖2 ď ‖θpzqr ´ µpT pzqr q‖2 ` ‖µpT pzqr q ´ µpTrq‖2

ď
25

c

‖Apzq ´ Cpzq‖
?
nzr

`
‖A´ C‖
?
nzr

.

Here for the last inequality we used Lemma 2. Now applying Lemma 3 and taking take c ě 100, we get

‖θpzqr ´ µpTrq‖2 ď
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?
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c
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?
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`
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?
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ď

ˆ
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c
`

1
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˙

?
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ď 2
?
m0λ .
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This means that for a fixed r, all the θpzqr received at the central server from devices z P rZs are ‘close’ to µpTrq.

The next step is to show that in the k initial centers k-FED picks in steps 2-6, there is exactly one corresponding to each
target cluster Ti. We will show later that this is sufficient for the final step of the algorithm to correctly assign local cluster
centers to the correct partition.

Lemma 6. Let T “ pT1, . . . , Tkq be our target clustering. Assume all active cluster pairs and inactive cluster pairs satisfy
their separation requirements. Further let nmin ě

4
c2k1nmax. Then at the end of step 6 of k-FED, for every target cluster

Tr, there exists an θpzqs PM such that θpzqs “ µpT
pzq
s q for some z P rZs.

Before we proceed to proving this lemma, we state and prove a lower bound on how close a local cluster center θpzqr can be
to some cluster mean µpTsq for s ‰ r:

Lemma 7. Let θpzqr :“ µpT
pzq
r q. The for any s ‰ r, z1 P rZs,

‖θpzqr ´ θpz
1
q

s ‖2 ě 6
?
m0λ .

Proof. First, from the triangle inequality note that,

‖θpzqr ´ θpz
1
q

s ‖2 ě ‖µr ´ µs‖2 ´ ‖µr ´ θpzqr ‖2 ´ ‖µs ´ θpz
1
q

s ‖2 .

Using Lemma 5 and our inactive separation assumption we bound the right hand side further as,

‖µr ´ µs‖2 ´ ‖µr ´ θpzqr ‖2 ´ ‖µs ´ θpz
1
q

s ‖2 ě 10
a

m0k1
‖A´ C‖
?
nmin

´ 4
a

m0k1
‖A´ C‖
?
nr

ě 6
a

m0k1
‖A´ C‖
?
nmin

ě 6
?
m0λ,

as desired.

Proof. (Lemma 6) Let Mt denote the set M in step 2-6 of k-FED, after picking the first t points p1 ď t ď kq. Let us denote
the point k-FED selects in iteration t as θt. That is,

θt Ð arg max
zPrZs,iPrks

dMt´1
pθ
pzq
i q .

We will show that the set Mt contains t points corresponding to t different target clusters at every iteration t. This invariant
holds trivially at t “ 1. Assume the statement first became false at some 1 ă t1 ď k. Let the point θt1 correspond to a local
cluster mean from cluster Tr. Then there must exist some 1 ď t2 ă t1 such that θt2 also correspond to a local cluster mean
from Tr. Further, there must exist some cluster s ‰ r such that θpzqs RMt1 for any z P rZs.

Now by definition of dMt´1pθt1q, we have

dMt´1
pθt1q “ min

θPMt´1

‖θt1 ´ θ‖2

ď ‖θt1 ´ θt2‖2

ďpaq ‖θt1 ´ µpTrq‖2 ` ‖µpTrq ´ θt2‖2

ďpbq 4
a

m0k1
‖A´ C‖
?
nr

ď 4
?
m0λ . (6)

Here inequality (a) follows from the triangle inequality and (b) follows from Lemma 5.

Now consider θpzqs for any z. Since no other local cluster center from Ts is contained in Mt, from Lemma 7 we conclude
that for every θ PMt´1,

‖θpzqs ´ θ‖2 ě 6
?
m0λ .

But this means that dMt´1pθt1q ď 4
?
m0λ ď 6

?
m0λ ď dMt´1pθ

pzq
s q leading to a contradiction based on the definition of

θt1 . This completes our argument.
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Now we are ready to prove our main Theorem 3.1.

Proof. From Lemma 6, we know that the set M at the end of step 6 of k-FED contains exactly one center corresponding to
each target clustering. Let the local cluster center θ̃r PM correspond to the cluster Tr. Observe that for any z P rZs,

‖θzr ´ θ̃r‖2 ď ‖θzr ´ µr‖2 ` ‖µr ´ θ̃r‖2

ď 4
?
m0λ,

using Lemma 7. Further, for any s ‰ r,

‖θzs ´ θ̃r‖2 ě 6
?
m0λ.

This means that for every r and z P rZs, θzr is closer to the corresponding initial center θ̃r than to any other initial center θ̃s,
s ‰ r. Let τr be the set of local cluster centers assigned to θ̃r. Then it can be seen that τr only contains local cluster centers
θ
pzq
r for all devices z, i.e. τr contains all the device cluster centers corresponding to target cluster Tr.

Now consider the definition of k-FED induced clustering (Definition 3.3), where we define

T 1r “ ti : A
pzq
i P U pzqs and θpzqs P τru.

In this case, we know that only local cluster centers corresponding to cluster Tr is contained in τr. Thus our induced cluster
T 1r becomes,

T 1r “ ti : A
pzq
i P U pzqr u.

Now from Lemma 1 we know that on each device the sets pU pzq1 , . . . , U
pzq
k1 q and pT pzq1 , . . . , T

pzq
k1 q only differ on at most

Op 1
c2 qn

pzq. Summing this error over all devices z, we see that our induced clustering pT 11, . . . , T
1
kq and the target clustering

pT1, . . . , Tkq differ only on Op 1
c2 qn points. Finally, if all the local points satisfy their respective proximity condition

(Definition 3.1), then no points are missclassified. This concludes our proof.

A.2. Running Time of k-FED and Handling New Devices

We now analyze the running time of k-FED steps 2-8. Since step 1 is running Algorithm-1 on individual devices, we do not
include the running time of this step as part of our analysis. Note that with the separation assumptions in place, Algorithm-1
will converge in polynomial time. However, as observed in practise, Lloyd like methods typically only take a few iterations
to terminate.

Theorem A.1. Steps 2-8 of k-FED takes OpZk1 ¨ k2q pairwise distance computations to terminate. Further, after the set
M in step 6 has been computed, new local cluster centers Θpzq from a yet unseen device z can be correctly assigned in
Opk1 ¨ kq distance computations.

Proof. (Theorem 3.2) The proof of the first part follows from a simple step by step analysis. Step 1 can be performed in
Op1q. Step 2-6 executes exactly k times. At each iteration t, p1 ď t ď kq, we compute the distance of all device cluster
centers, of which there are most Zk1, to the points in Mt´1. Thus at iteration t, this can be implemented with Zk1 ¨ t
distance computations. Summing over all t, we see that steps 2-6 can run in OpZk1 ¨ k2q distance computations. Finally,
step 7 requires us to assign all the Zk1 device cluster centers to one of the k initial points in M . This can be implemented in
OpZk1 ¨ kq distance computations. Thus the overall complexity in terms of pairwise distance computations is OpZk1 ¨ k2q.

The second part of the statement follows from noting that for each θpzqr P Θpzq, the nearest point in set M must be the initial
center θ̃r we picked as was demonstrated in the proof of Theorem 3.1. Thus every θpzqr P Θpzq is assigned to the correct
partition τr as required.

A.3. Separating Data from Mixture of Gaussian

We now prove Theorem 4.1. Recall that we are working in the setting where k1 ď
?
k. Our proof builds on results from

Lemma 6.3, Kumar & Kannan (2010).
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Proof. First consider an active cluster pair r, s. Based on our separation requirement, we have:

‖µr ´ µs‖2 ě
2c
?
km0σmax
?
wmin

polylog
ˆ

d

wmin

˙

ě 2c
a

km0
σmax

?
n

?
wminn

polylog
ˆ

d

wmin

˙

.

We further simplify the right hand to get,

‖µr ´ µs‖2 ě c
a

km0σmax

?
n
` 1
?
wrn

`
1

?
wsn

˘

polylog
ˆ

d

wmin

˙

.

Now note the number of points from each component Fr is very close to wrnr with very high probability. Here wr is the
mixing weight of component r and nr is the number of data points. Using this, with high probability we have

‖µr ´ µs‖2 ě c
a

km0σmax

?
n
` 1
?
nr
`

1
?
ns

˘

polylog
ˆ

d

wmin

˙

.

Further, it can be shown that ‖A´C‖ is O
´

σmax

?
n ¨ polylog

´

d
wmin

¯¯

with high probability (see (Dasgupta et al., 2007)).
Thus we conclude that, with high probability

‖µr ´ µs‖2 ě c
a

km0

ˆ

‖A´ C‖
?
nr

`
‖A´ C‖
?
ns

˙

.

Thus the active separation requirement is satisfied. The proof for the inactive separation condition is similar. Finally, the
proximity condition follows from the concentration properties of Gaussians.
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B. Experimental Details
B.1. Datasets

For all experiments involving real data, we use the EMNIST, FEMNIST, and Shakespeare datasets. These datasets and
their corresponding models are available at the LEAF benchmark: https://leaf.cmu.edu/. For client selection
experiments, we manually partition a subset of FEMNIST (first 10 classes) by assigning 2 classes to each device. There
are 500 devices in total. Both the number of training samples across all devices and the number of training samples per
class within each device follow a power law. We use the natural partition of Shakespeare where each device corresponds
to a speaking role in the plays of William Shakespeare. We randomly sample 109 users from the entire dataset. For
personalization experiments, following Ghosh et al. (2020), we use a CNN-based model with one hidden layer and 200
hidden units trained with a learning rate of 0.01 and 10 local updates on each device.

B.2. Choosing k Based on Separation

As mentioned in Section 4.2, to create our oracle clustering, we compute the quantity crs “
‖µr´µs‖

2
?
m0p∆r`∆sq

for each cluster
pairs pr, sq, for every candidate value of k we are considering. We construct a distribution plot of these crs. An example of
such a plot for the MNIST dataset is provided in Figure 5. As can be seen here, for all values of k, the relative separation is
quite small. Thus even for this oracle clustering, the actual separation between cluster means is small. To pick a k for our
oracle clustering, we pick a fixed value c0 (say 0.5) and then pick the value of k which leads to maximum fraction of cluster
pairs pr, sq to have crs ą c0.
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Figure 5. Distribution plot of crs, for various values of k on the MNIST dataset. As can be seen, crs ă 1 for most cluster pairs, indicating
that the separation between them is relatively small.

https://leaf.cmu.edu/

