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Abstract
In this work, we explore the unique challenges—
and opportunities—of unsupervised federated
learning (FL). We develop and analyze a one-shot
federated clustering scheme, k-FED, based on the
widely-used Lloyd’s method for k-means cluster-
ing. In contrast to many supervised problems,
we show that the issue of statistical heterogene-
ity in federated networks can in fact benefit our
analysis. We analyse k-FED under a center sep-
aration assumption and compare it to the best
known requirements of its centralized counterpart.
Our analysis shows that in heterogeneous regimes
where the number of clusters per device pk1q is
smaller than the total number of clusters over the
network k, pk1 ď

?
kq, we can use heterogene-

ity to our advantage—significantly weakening the
cluster separation requirements for k-FED. From
a practical viewpoint, k-FED also has many de-
sirable properties: it requires only one round of
communication, can run asynchronously, and can
handle partial participation or node/network fail-
ures. We motivate our analysis with experiments
on common FL benchmarks, and highlight the
practical utility of one-shot clustering through use-
cases in personalized FL and device sampling.

1. Introduction
Federated learning (FL) aims to perform machine learning
over large, heterogeneous networks of devices such as mo-
bile phones or wearables (McMahan et al., 2017). While
significant attention has been given to the problem of super-
vised learning in such settings, the problem of unsupervised
federated learning has been relatively unexplored (Kairouz
et al., 2019). In this work, we show that unsupervised learn-
ing presents unique opportunities for FL, specifically for the
task of clustering data that resides in a federated network.

Clustering is a crucial first step in many learning tasks.
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In the case of federated learning, clustering has found ap-
plications in client-selection (Cho et al., 2020), personal-
ization (Ghosh et al., 2020) and exploratory data analysis.
While many works have explored techniques for distributed
clustering (Section 2), most do not take into account the
unique challenges of federated learning, such as statistical
heterogeneity, systems heterogeneity, and stringent commu-
nication constraints (Li et al., 2020a)1. These challenges
can complicate analyses, reduce efficiency, and lead to prac-
tical issues with stragglers and device failures. In this work,
we study communication-efficient distributed clustering in
settings where the data is non-identically distributed across
the network (i.e., heterogeneous), and devices can join and
leave the network abruptly. For such settings, we develop
and analyse a one-shot clustering scheme, k-FED, based on
the classical Lloyd’s heuristic (Lloyd, 1982) for clustering.

The method we propose, k-FED, requires only one round of
communication with a central server. Each device, indexed
by z, solves a local kpzq-means problem and then communi-
cates its local cluster means via a message of size Opdkpzqq.
As we show in Section 3, this allows for device failures,
only requiring that there are enough devices available in the
network such that k target clusters exist in the data. More-
over, it is possible to cluster points in previously unavailable
devices via a simple recomputation at the central server.

Beyond the practical benefits of k-FED, our work is unique
in rigorously demonstrating a problem setting where possi-
ble benefits of statistical heterogeneity exist for federated
learning. In particular, in supervised learning, many works
have highlighted detrimental effects of statistical heterogene-
ity, observing that heterogeneity can lead to poor conver-
gence for federated optimization methods (McMahan et al.,
2017; Li et al., 2020b), result in unfair models (Mohri et al.,
2019), or necessitate novel forms of personalization (Smith
et al., 2017; Mansour et al., 2020). In contrast to these
works, we show that for the specific notion of heterogeneity
considered herein (provided in Definition 3.2 and motivated
by the application of clustering), heterogeneity can in fact
have measurable benefits for our approach.

1Privacy, while an important concern for many federated appli-
cations, is not the main focus of our work. However, a possible
benefit of the one-shot nature of k-FED is that it requires signif-
icantly fewer messages to be shared over the network relative to
standard iterative techniques such as distributed k-means.
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More specifically, similar to many works in clustering (Ku-
mar & Kannan (2010); Awasthi & Sheffet (2012) and refer-
ences therein), we analyse k-FED under a center-separation
assumption; that is, we assume that the mean of the clusters
are well separated. We also consider a specific notion of het-
erogeneity: given a target clustering with k clusters that we
wish to recover from the data, we assume that each device
contains data from only k1 ď

?
k of these target clusters.

For instance, for clustering data generated by a mixture of
k well separated Gaussians, we assume that each device
contains data from k1 ď

?
k component Gaussians. In this

regime, we show that our separation requirement is similar
to that of the centralized counterpart. Further, while the
centralized setting requires all pairs of cluster centers to sat-
isfy a Ωp

?
kq center separation requirement, the federated

approach can handle a large fraction of cluster pairs only
satisfying a weaker Ωpk

1
4 q separation requirement. This is

the first result we are aware of that analyzes the benefits of
heterogeneity in the context of federated clustering.

Contributions. We propose and analyze a one-shot com-
munication scheme for federated clustering. Our proposed
method, k-FED, addresses common practical concerns in
federated settings, such as high communication costs, strag-
glers, and device failures. Theoretically, we show that k-
FED performs similarly to centralized clustering in regimes
where each device only has data from at most

?
k clusters

with a similar Ωp
?
kq center separation requirement. More-

over, in contrast to the centralized setting, we show that a
large number of cluster pairs need only a Ωpk

1
4 q weaker sep-

aration assumption in heterogeneous networks, thus allow-
ing a broader class of problems to be solved in this setting
compared with centralized clustering. We demonstrate our
method through experiments on common FL benchmarks,
and explore the applicability of k-FED to problems in per-
sonalized federated learning and device sampling. Our work
highlights that heterogeneity can have distinct benefits for a
subset of problems in federated learning.

2. Background and Related Work
Centralized Clustering. Clustering is one of the most
widely-used unsupervised learning tasks, and has been ex-
tensively studied in both centralized and distributed settings.
Although a variety of clustering methods exist, Lloyd’s
heuristic (Lloyd, 1982) remains popular due in part to its
simplicity. In Lloyd’s method, we start with an initial set of
k centers. We then assign each point to its nearest center and
reassign the centers to be the mean of all the points assigned
to it, continuing this process till termination. While it is easy
to show that this method terminates, it is also known that this
process can take superpolynomial time to converge (Arthur
& Vassilvitskii, 2006). However, under suitable assumptions
and careful choice of the initial centers, it can be shown to

converge in polynomial time (Arthur & Vassilvitskii, 2006;
Ostrovsky et al., 2013; Kumar & Kannan, 2010; Awasthi &
Sheffet, 2012).

The method we propose, k-FED (Section 3.2), is a simple,
communication-efficient distributed variant of these classi-
cal techniques. k-FED runs a variant of Lloyd’s method
for k-means clustering locally on each device, and then per-
forms one round of communication to aggregate and assign
clusters. Our work builds on the analysis of a variant of
Lloyd’s algorithm developed by Kumar & Kannan (2010)
and later improved in Awasthi & Sheffet (2012) for the
problem of clustering data from mixture distributions and
other related results (e.g., McSherry, 2001; Ostrovsky et al.,
2013). These works develop a deterministic framework
with no generative assumptions on the data. Our analysis
follows this framework and does not make any generative
assumptions on the data.

Parallel and Distributed Clustering. Many works have
explored parallel or distributed implementations of cen-
tralized clustering techniques (Dhillon & Modha, 2002;
Tasoulis & Vrahatis, 2004; Datta et al., 2005; Bahmani et al.,
2012; Xu et al., 1999). Unlike the one-shot communication
scheme explored herein, these methods are typically direct
parallel implementations of methods such as Lloyd’s heuris-
tic or DBSCAN (Ester et al., 1996), and require numerous
rounds of communication. Another line of work has consid-
ered communication-efficient distributed clustering variants
that require only one or two rounds of communication (e.g.,
Kargupta et al., 2001; Januzaj et al., 2004; Feldman et al.,
2012; Balcan et al., 2013; Bateni et al., 2014; Bachem et al.,
2018). These works are mostly empirical, in that there are
no provable guarantees on the approximation quality of
the distributed schemes; the works of Balcan et al. (2013);
Bateni et al. (2014); Bachem et al. (2018) differ by provid-
ing communication-efficient distributed coreset methods for
clustering, along with provable approximation guarantees.
However, these works do not explore the federated setting
or potential benefits of heterogeneity.

Federated Clustering. Several works have explored clus-
tering in the context of supervised FL as a way to better
model non-IID data (Smith et al., 2017; Ghosh et al., 2019;
2020; Sattler et al., 2020). These works differ from our own
by clustering specifically in terms of devices, focusing on
the downstream supervised learning task, and using either
iterative (Smith et al., 2017; Ghosh et al., 2020; Sattler et al.,
2020) or centralized (Ghosh et al., 2019) clustering schemes.
Though not the main of focus of our work, in Section 4 we
demonstrate the applicability of one-shot clustering by show-
ing how k-FED can be used as a simple pre-processing step
to deliver personalized federated learning—achieving sim-
ilar or superior performance relative to the recent iterative
approach for clustered FL proposed in Ghosh et al. (2020).
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More recently, a distributed matrix factorization based clus-
tering approach was explored in Wang & Chang (2020) for
the purposes of unsupervised learning. However, while the
authors consider the impact of statistical heterogeneity on
their convergence guarantees, the focus is not on one-shot
clustering or on showing distinct benefits of heterogeneity
in their analyses.

3. k-FED: Preliminaries and Main Results
In this section, we begin by discussing some preliminar-
ies and existing results in clustering related to Lloyd-type
methods. In Section 3.1, we present the deterministic frame-
work of Awasthi & Sheffet (2012) for centralized clustering,
which we build upon. We present our method k-FED and
state our theoretical results in Section 3.2. We provide de-
tailed proofs in Appendix A.

3.1. Centralized k-means

In the standard (centralized) k-means problem, we are given
a matrix A P Rnˆd where each row Ai is a data point in Rd.
We are also given a fixed positive integer k ď n, and our
objective is to partition the data points into k disjoint par-
titions, T “ pT1, . . . , Tkq, so as to minimize the k-means
cost:

φpT q “
k
ÿ

j“1

ÿ

iPTj

‖Ai ´ µpTjq‖2
2 . (1)

Here we use µpSq as an operator to indicate the mean of
the points indexed by S, i.e., µpSq “ 1

|S|
ř

iPS Ai. To
ease notation, we simplify this as µr :“ µpTrq, when Tr is
unambiguous.

While the k-means problem as stated here does not spec-
ify any generative model for the data points Ai, a popu-
lar setting to consider is when the data is sampled from a
mixture of k-distributions in d-dimensions (k ! d). For
instance, we could imagine the data points as being sampled
from a mixture of k Gaussian distributions. This genera-
tive model also introduces a notion of a target clustering,
T “ pT1, . . . , Tkq where the set Ti contains all points gen-
erated by the i-th component distribution. Many distribution
dependent results are known for the problem of clustering
distributions (see Kumar & Kannan (2010)). In general,
they can be stated as: If the means of the distributions are
polypkq standard deviations apart, then we can cluster the
data in polynomial time. Kumar & Kannan (2010) introduce
a deterministic (distribution independent) framework that
encompasses many of these known results. This work was
later simplified and improved by Awasthi & Sheffet (2012).
We state the main results of this framework here, after stat-
ing the notation we use. We emphasis that in our analysis
we make no assumptions on how the data is generated; all
relevant quantities only depend on the provided data.

Algorithm 1 Local kpzq-means (Awasthi & Sheffet, 2012)

1: Input: On device indexed by z, the matrix of data
points Apzq, integer kpzq;

2: Project Apzq onto the subspace spanned by the top
kpzq singular vectors to get Âpzq. Run any standard
10-approximation algorithm on the projected data and
estimate kpzq centers (ν1, ν2, . . . , νkpzq ).

3: Set

Sr Ð ti : ‖Âpzqi ´νr‖2 ď
1

3
‖Âpzqi ´νs‖2, for every su

and θpzqr Ð µpSrq
4: Run Lloyd steps until convergence

U pzqr Ð ti : ‖Apzqi ´ θpzqr ‖2 ď ‖Apzqi ´ θpzqs ‖2,@su

and θpzqr Ð µpU
pzq
r q.

5: Return: Cluster assignments pU pzq1 , U
pzq
2 , . . . , U

pzq

kpzq
q

and their means Θpzq “ pθ
pzq
1 , . . . , θkpzqq.

Notation. We now introduce several definitions and no-
tations that will be used throughout the paper. Let ‖A‖
denote the spectral norm of a matrix A, defined as ‖A‖ “
maxu:‖u‖2“1‖Au‖2, and let ‖Ai‖2 denote the `2 norm of a
vector Ai. For consistency, we index individual rows of A
with i and j. Moreover, when a target clustering T1, . . . , Tk
is fixed, we index clusters with r, s, e.g., Ar is the matrix
of points indexed by Tr. For notational convenience, we
let cpAiq to denote the cluster index for data point Ai such
that, Ai P TcpAiq. For some set of points M , and another
point say x, let dM pxq denote the distance of x to the set
M , defined as dM pxq “ minyPM‖x ´ y‖2. Finally, let C
be a nˆ d matrix with each row Ci “ µcpAiq. For cluster
Tr with nr “ |Tr|, we define

∆̃r :“
?
k
‖A´ C‖
?
nr

. (2)

Here the quantity ‖A´ C‖{?nr can be thought of as a de-
terministic analogue of the standard deviation; it measures
the maximum average variance along any direction. Thus
instead of reasoning about the separation between two clus-
ters Tr and Ts in terms of the standard deviation, we will
use p∆̃r ` ∆̃sq. In particular, we say that the two clusters
Tr and Ts are well separated if for large enough constant c,
their means satisfy:

‖µr ´ µs‖2 ě cp∆̃r ` ∆̃sq . (3)

Again, we can interpret this as saying that two clusters
are well separated if their means are c-standard-deviations
apart.2 Using the center separation assumption in (3),

2Any c ě 100 is sufficient for our arguments (see Lemma 5).
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Awasthi & Sheffet (2012) show that for a target cluster-
ing T1, T2, . . . , Tk satisfying the separation assumption, the
variant of Lloyd’s algorithm presented in Algorithm-1 when
applied to the centralized clustering problem correctly clus-
ters all but a small fraction of the data points. We state their
result formally in Lemma 1, but before that we define a prox-
imity condition, that will be used to precisely characterize
the misclassified points.

Definition 3.1. A point Ai for some i P Ts is said to satisfy
the proximity condition, if for every r ‰ s, the projection
of Ai onto the line connecting µr and µs, denoted by Āi
satisfies

∥∥Āi ´ µr∥∥2
´
∥∥Āi ´ µs∥∥2

ě

ˆ

1
?
nr
`

1
?
ns

˙

‖A´ C‖.

Thus a point Ai for i P Ts satisfies the proximity condition
if its projection on the line connecting µr and µs is closer
to µs by ‖A´ C‖p 1?

nr
` 1?

ns
q. We refer to points that do

not satisfy the proximity condition as ‘bad points’. We now
state the main result from Awasthi & Sheffet (2012) in the
following lemma.

Lemma 1 (Awasthi-Sheffet, 2011). Let T “ pT1, . . . , Tkq
be the target clustering. Assume that each pair of clusters Tr
and Ts are well separated. Then, after step 2 of Algorithm-1,
for every r, it holds that ‖µpSrq ´ µr‖2 ď

25
c

1?
nr

‖A´ C‖.
Moreover, if the number of bad points is εn, then (a) the
clustering tU1, U2, . . . , Uku misclassifies no more than pε`
Op1qc´4qn points and (b) ε ă Oppc´ 1?

k
q´2q. Finally, if

ε “ 0 then all points are correctly assigned.

When we say misclassify, we mean with respect to T and up
to a permutation of labels. Lemma 1 tells us that the cluster
means, µpSrq, are not very far away from the target cluster
means, µr. Note that there are no distribution dependent
terms in this statement; all relevant quantities are defined in
terms of the data matrix A and T .

3.2. k-FED: Method and Main Result

We now turn our attention to clustering data in a federated
network. In our setting, we assume that all the devices in
the network can communicate with a central server. Our
clustering method k-FED, described in Algorithm 2, can be
thought of as working in two stages. In the first stage, each
device solves a local clustering subproblem and computes
the cluster means for this subproblem. In the second stage,
the central server accumulates and aggregates the results to
compute the final clustering.

Notation. LetA be an nˆd data matrix of all the data points
in our network. We index individual devices by z P rZs and
thus, we denote the data-matrix for any particular device by
Apzq P Rnpzqˆd, where npzq is the number of data points on

the device. Let nmin “ minz n
pzq. Note that Apzq is some

subset of rows of A. Let T “ pT1, . . . , Tkq be a clustering
of all the data, referred to as a target clustering. For a
fixed T , let T pzq “ pT pzq1 , T

pzq
2 , . . . , T

pzq
k q be subsets of our

target clustering that reside on a device z. Note that some
T
pzq
r could be empty. Let kpzq be the number of non-empty

subsets on device z and let k1 “ maxz k
pzq. Our notion of

heterogeneity is formally defined based on the value of k1,
as described below.

Definition 3.2 (Heterogeneity of Clustering). In the con-
text of clustering, we say that a federated network with
sufficient data is heterogeneous if k1 ď

?
k. The lower the

ratio between k1 and
?
k, the more heterogeneity exists in

the network.

Intuitively, this definition of heterogeneity states that—in
contrast to the data from the k total clusters being parti-
tioned in an IID fashion across the network—the data are
partitioned in an non-IID fashion, such that only data from
a small number of clusters (at most k1) exists on each de-
vice. Such non-IID partitioning is reasonable to expect in
heterogeneous federated networks with a large number of
clusters, since the distribution of data on each device may
differ, and it is not possible to actively re-distribute data
across the network. For instance, consider identifying in-
terests of mobile phone users based on the interaction data
on an application. Here the interaction data is generated by
the user on their particular device, and will reflect the tastes
of individual. While the total number of ‘tastes’ (clusters)
over the entire network could be quite large, a typical user
will be interested in only a small number of them. With this
definition in mind, we next describe our one-shot clustering
method, k-FED, and analyze it in heterogeneous regimes.

Method Description. Similar to the centralized case (Sec-
tion 3.1), let Cpzq be a npzq ˆ d matrix of the local cluster
means, i.e. of T pzq. Consider a non-empty susbset T pzqr of
cluster Tr on some device and let npzqr “ |T pzqr |. We assume
that there is a constant m0 ą 1, such that npzqr ě 1

m0
nr

for all r. We will use this quantity to ensure that individual
devices have ‘enough’ points. Let,

∆r “ k1
‖A´ C‖
?
nr

, and λ “
?
k1
ˆ

‖A´ C‖
?
nmin

˙

. (4)

In the first step of k-FED (Algorithm-2), each (available)
device z P rZs runs Algorithm-1 locally and solves a local
clustering problem with their local dataset Apzq and param-
eter kpzq. We assume that kpzq is known. This stage outputs
device cluster centers Θpzq “ pθ

pzq
1 , . . . , θ

pzq

kpzq
q and clus-

ter assignments, U pzq1 , . . . , U
pzq

kpzq
for each device z. At this

stage, note that even though each device has classified its
own points into clusters, we do not yet have a clustering for
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Algorithm 2 k-FED

1: On each device z P rZs, run Algorithm-1 with local
data Apzq and kpzq and obtain device cluster centers
Θpzq “ pθ

pzq
1 , . . . , θ

pzq

kpzq
q at the central node.

2: Pick any z P rZs and let M Ð Θpzq.
3: repeat
4: Let θ̄ Ð arg maxzPrZs,iPrks dM pθ

z
i q. That is, the

farthest θpzqi from the set M .
5: M ÐM Y tθ̄u.
6: until there are k points in M , i.e. |M | “ k

7: Run one round of Lloyd’s heuristic to cluster points θpzqi ,
z P rZs, i P rks into k sets/clusters, pτ1, τ2, . . . , τkq.
Use points in M as initial centers.

8: Return: the clustering pτ1, τ2, . . . , τkq of the device
cluster centers and the corresponding k-FED induced
clustering (Definition 3.3).

points across devices. The central server attempts to create
this clustering by aggregating the device cluster centers and
separating them into k sets, τ1, . . . , τk. These sets induce a
clustering of the data on the network as defined here:

Definition 3.3 (k-FED induced clustering). Let
τ1, τ2, . . . , τk be the clustering of device centers re-
turned by Algorithm 2. Define,

T 1r “ ti : A
pzq
i P U pzqs and θpzqs P τr, z P rZs, s P rk

pzqsu.

Then, T 1 “ pT 11, . . . , T
1
kq form a disjoint partition of the

entire data, called the k-FED induced clustering.

For our analysis comparing the quality of the k-FED in-
duced clustering, T 1, to our target clustering T , we require
two different separation assumptions. We refer to them as
active and inactive separation and introduce them through
the following two definitions.

Definition 3.4 (Active/Inactive cluster pairs). A pair of clus-
ters pTr, Tsq are said to be an active pair if there exists at
least one device that contains data points from both Tr and
Ts. If no device has data points from both clusters Tr and
Ts, we refer to the cluster pair pTr, Tsq as an inactive pair.

Definition 3.5. We say that two clusters Tr and Ts satis-
fies the active separation requirement if, ‖µr ´ µs‖2 ě

2c
?
m0p∆r `∆sq, for some large enough constant c. Sim-

ilarly, we say that they satisfy the inactive separation re-
quirement if ‖µr ´ µs‖2 ě 10

?
m0pλr ` λsq.

Intuitively, these notions capture the difficulty in clustering
two different types of clusters pairs—active and inactive
cluster pairs. If no device has data from both Tr and Ts
(i.e. an inactive pair), then the clustering sub-problems
individual devices have to solve is easier since they never
involve data from both of these clusters simultaneously.

Thus the separation requirement for inactive cluster pairs
is weaker than that for an active cluster pair. We now state
our main theorem, which characterizes the performance of
k-FED. We provide a detailed proof in Appendix A.

Theorem 3.1 (Main theorem). Let T “ pT1, T2, . . . , Tkq
be a fixed target clustering of the data on a federated net-
work. Let m0 ą 1 be such that, |T pzqr | ě 1

m0
|Tr| for all r, s

and for all z P rZs. Assume that each active cluster pairs
Tr and Ts satisfy the active separation requirement, i.e.,

‖µpTrq ´ µpTsq‖2 ě c
?
m0p∆r `∆sq.

Further, assume that for each inactive cluster pairs Tr, Ts,

‖µpTrq ´ µpTsq‖2 ě 10
?
m0λ .

Then, at termination of k-FED all but Op 1
c2 qn points are

correctly classified. Moreover, if for each device z, the data
points Apzq satisfy the proximity condition (Definition 3.1)
for its local problem, then all points are classified correctly.

As before, by classified we mean that the clustering T 1
produced by k-FED and T agree on all but Op 1

c2 qn points,
up to permutation of labels of T . Note that when k1 « k, our
active separation requirement is stricter than that required
in centralized clustering pΩpkq vs Ωp

?
kqq. Further, as one

would expect, as the number of points per cluster on each
device decreases, the local clustering becomes harder. This
is highlighted by our adverse dependency on

?
m0.

However, in contrast to the general distributed learning
framework where each device typically has a random subset
of the data, the data residing on the devices in federated
networks are typically generated locally and thus the parti-
tion of data among the devices is non-identically distributed.
Specifically, in practice, the number of subsets of target clus-
ters that reside on a device may be much smaller than the
total number of clusters. Thus, as outlined in Definition 3.2,
we look at the cases where k1 ď

?
k. Observe that in such

settings, our active separation requirement reduces to that of
the centralized k-means problem (with an additional

?
m0

penalty) and our inactive separation requirement weakens
to k1{4. We state this formally in Corollary 1.1.

Corollary 1.1. Assuming k1 ď
?
k, an active cluster pair

pTr, Tsq satisfies the active separation requirement if

‖µr ´ µs‖2 ě c
a

m0k

ˆ

‖A´ C‖
?
nr

`
‖A´ C‖
?
ns

˙

“ c
?
m0p∆r `∆sq.

Similarly, an inactive cluster pair pTr, Tsq satisfies the inac-
tive separation requirement if

‖µr ´ µs‖2 ě 10
?
m0k

1
4

ˆ

‖A´ C‖
?
nr

`
‖A´ C‖
?
ns

˙

.
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Thus in this setting of k1 ă
?
k, k-FED recovers the target

partitions in only one round of communication. Moreover,
inactive cluster pairs need only satisfy our Ωpk

1
4 q separa-

tion requirement as opposed to the Ωp
?
kq separation that

all cluster pairs need to satisfy in the centralized setting
for Lemma 1 to hold. This highlights that there exists a
benefit of heterogeneity in the context of running k-FED
over federated networks.

Practical benefits of k-FED. Finally, we highlight sev-
eral practical benefits of the k-FED method:

• One-shot: k-FED only requires one round of commu-
nication for each device: one outgoing message to send
the local clustering results and one incoming message
to receive cluster identity information.

• No network-wide synchronization: Classical parallel
implementations of Lloyd’s heuristic and variants (e.g.,
Dhillon & Modha, 2002), require a network wide syn-
chronization/initialization step. Unlike these methods,
each device in k-FED works independently does not
require an initialization/synchronization step.

• New devices/Device Failures: Assuming we have al-
ready performed clustering on the current network, for
any new device entering the network, either from a
previous failure or as a new participant, computing
the clustering information can be done without involv-
ing any other device in the network. As we show in
Theorem 3.2 (below), simply assigning any new local
cluster center θpzqi from the new device z, to the nearest
device cluster mean in M sufficient. The central server
only has to maintain k cluster means µpτ1q, . . . , µpτkq
to perform this update.

Theorem 3.2. Steps 2-8 of k-FED take OpZk1 ¨ k2q pair-
wise distance computations to terminate. Further, after
the set M in Step 6 has been computed, new local cluster
centers Θpzq from a yet unseen device z can be correctly
assigned in Opk1 ¨ kq distance computations.

As we show in Section 4, these properties of k-FED make it
an ideal candidate for being used as an inexpensive heuristic
for clustering in federated networks, either for data explo-
ration or as part of a preprocessing step for another algo-
rithm, even in settings where the separation requirements
are not formally satisfied.

4. Applications and Experiments
We now present experimental evaluation of k-FED. We
first specialize the theory to the special case where data
is drawn from a mixture of k Gaussians in Section 4.1 to
validate our theory on synthetic data. In Section 4.2, we

evaluate k-FED on real datasets—presenting experimental
evidence that highlights the benefit of heterogeneity and
the communication efficiency of k-FED. We further present
two applications of k-FED, in client selection as well as
personalization. The dataset details for each experiment
can be found in the corresponding section. Implementation
of k-FED and experimental setup details can be found at:
http://github.com/metastableB/kfed/.

4.1. Separating Mixture of Gaussians

We first specialize our theorem to the case of separating data
generated from a mixture of k Gaussians F1, F2, . . . , Fk.
Let µr “ µpFrq be the mean of the mixture component Fr
and let w1, w2, . . . , wk be the mixing weights. Finally, let
wmin “ minr wr be the minimum mixing weight. Let σmax

be the maximum variance along any direction among all
the component distributions. Assume this data resides over
our devices such that no single device has data from more
than k1 ă

?
k components. We state the following theo-

rem (proved in Appendix A) that specifies the conditions
required for this setup to satisfy our separation assumptions:

Theorem 4.1. Let the total number of data pints, n “

poly
´

d
wmin

¯

. Then any active cluster pairs r, s satisfy the
active separation requirement with high probability if;

‖µr ´ µs‖2 ě
c
?
km0σmax
?
wmin

polylog
ˆ

d

wmin

˙

.

Further, an inactive cluster pairs r1, s1 satisfy the inactive
separation requirement with high probability if

‖µr1 ´ µs1‖2 ě
c
?
m0k

1
4σmax

?
wmin

polylog
ˆ

d

wmin

˙

.

Finally, with this separation in place, all points satisfy the
proximity condition with high probability.

Concretely, in this setup k-FED recovers the target cluster-
ing exactly with high probability. To empirically evaluate
our theory, we instantiate an simplified instance of the above
setup as follows:

Setup. Again consider the Gaussian components
F1, . . . , Fk, and define the set of integersGi “ tp | pi´1qˆ?
k ď p ď iˆ

?
ku. These setsGi thus can be used to index

the Gaussian components pF
pi´1q

?
k, . . . , Fi

?
kq. For each

Gi, construct a set of data points Di by sampling polypdkq
samples from each component Fp for p P Gi. Thus the
set Di contains

?
k ¨ polypdkq samples pwr “ 1

k ,@rq. Pick
m0 and for each set of data points Di, distribute the data
among m0 devices such that each device receives exactly

1
m0
¨polypdkq samples. We now run k-FED on this setup and

measure the quality of the clustering averaged over 10 runs,
(shown in Table 1). As one would expect, the clustering

http://github.com/metastableB/kfed/
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Table 1. Clustering accuracy for clustering a mixture of Gaussians.
Here for all instances we choose k1 “

?
k. We can see that the

one-shot clustering produced by k-FED agrees with the target
clustering with high accuracy, particularly when k is relatively
small compared to d.

Parameters Accuracy

pd “ 100, k “ 16,m0 “ 5, c “ 100q 100.00˘ 0.00
pd “ 100, k “ 64,m0 “ 5, c “ 100q 98.82˘ 0.70
pd “ 300, k “ 64,m0 “ 5, c “ 100q 99.27˘ 0.73
pd “ 300, k “ 100,m0 “ 5, c “ 100q 98.40˘ 0.80
pd “ 300, k “ 16,m0 “ 5, c “ 100q 100.00˘ 0.00
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90
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100
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cy

(d=100, k=64,m0=10)
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Figure 1. Impact of the separation constant c on the clustering ac-
curacy when clustering a mixture of Gaussians. Even for relatively
small values of c, for the case of data generated from a mixture
of Gaussians, k-FED can recover highly accurate clustering with
decreasing variance across runs.

produced by k-FED agrees strongly with the target cluster-
ing. Note that by construction all devices with data from
the same set Gi contain data from the same set of Gaussian
components. Further, devices with data from different sets
Gi have no common Gaussian component. Thus all cluster
pairs within the same set Gi are active cluster pairs and
there are

?
k
`

?
k

2

˘

such pairs. Moreover, any pair pr, sq such
that r P Gi, s P Gj i ‰ j form an inactive cluster pair and
there are

`

k
2

˘

´
?
k
`

?
k

2

˘

“ Opk2q such pairs. These need
only satisfy the weaker inactive separation requirement.

Note that while we prescribe c ě 100 for our arguments to
hold, Figure 1 demonstrates that clustering can be recovered
even in settings where c is much smaller.

4.2. Empirical Evaluation on Real Data

In this section, we empirically explore k-FED and the re-
lated analyses from Section 3. First, we validate our theo-
retical results, showing that clustering over structured (het-
erogeneous) partitions can improve clustering performance
relative to clustering over random, IID partitioned data. Sec-
ond, we explore the effect of one-shot clustering relative to
more communication-intensive baselines. Finally, we inves-
tigate practical applications of one-shot clustering in terms
of client sampling and personalized federated learning.

Figure 2. The k-means cost under structured partitions (φpk1q) is
closer to the cost of oracle clustering (φ˚) than that under random
partitions (φpkq). As heterogeneity increases (k1 decreases), the
benefits of structured partitions are becoming more significant,
with φpk1q ´ φ˚ ! φpkq ´ φ˚.

4.2.1. PROPERTIES OF k-FED

Benefits of Heterogeneity (Def. 3.2). We compare the
performance of k-FED on two different partitions of data
among devices: (i) one with IID random partitions, and
(ii) another with structured partitions. To generate the un-
derlying structured partition for this experiment we use the
following heuristic. First, we cluster all the data into k
clusters for a range of values of k. For each k, we take the
clustering we have as the target clustering T , and construct
the data matrix A and the matrix of centers C. Finally, for
each pair of cluster means µr, µs, we compute the quan-
tity ‖µr´µs‖

2
?
m0p∆r`∆sq

, the ratio of the actual separation of the
cluster mean to the required active separation. We pick a
value of k at which a large number of clusters are reason-
ably well separated (see Appendix B, Figure 5). We call
this our oracle clustering. Now to generate the IID partition
for (i), we randomly distribute this data among Z devices.
To generate the structured partition for (ii), we divide the
data among Z devices such that each device receives only
data from a random subset of no more than k1 clusters. For
each value of k1, we cluster the data for both cases over the
devices using k-FED and compute the k-means cost. Let
φ˚ denotes the k-means cost of the original oracle cluster-
ing. Let φpk1q denote the k-means cost when k1 clusters
are assigned to each device. Figure 2 presents the relative
cost ratio between the cost change in structured partitions
(φpk1q ´ φ˚) and random partitions (φpkq ´ φ˚).

We perform this experiment on the FEMNIST and Shake-
speare datasets (Caldas et al., 2018) (see Appendix B for
details). It can be seen from the results plotted in Figure 2
that clustering on structured splits achieves a cost closer to
that of the oracle partition compared to the cost achieved
on the IID random partition. We note that the separation
achieved in real datasets is much smaller than required even
with this careful construction (Appendix B). Even still, our
experiments demonstrate that heterogeneity can benefit fed-
erated clustering on common benchmarks.
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Communication-Efficiency. One advantage of the pro-
posed method is that it requires only a single round of
communication. Given this, it is natural to wonder how
the performance of k-FED would compare with other, more
communication-intensive clustering baselines. In particular,
a common way to solve k-means in distributed settings is to
simply parallelize the cluster assignment and cluster mean
calculations at each step. Here, we show that for different
partitions of the dataset with multiple values of k1, our one-
shot method k-FED is able to produce similar clustering
outputs (in terms of the k-means cost; lower is better) as
naive distributed k-means, which requires multiple commu-
nication rounds. Here we use the same oracle clustering as
the previous experiment to construct our device data.

Figure 3. k-FED (using just one communication round) is able can
provide similar clustering quality as naive distributed k-means.

4.2.2. APPLICATIONS OF k-FED

Personalized FL. Compared with fitting a single global
model to data across all device, jointly learning personal-
ized (separate but related) models can boost the effective
sample size while adapting to the heterogeneity in federated
networks (e.g., Smith et al., 2017; Mansour et al., 2020).

Ghosh et al. (2020) recently proposed an algorithm to learn
models over federated networks where devices are parti-
tioned into clusters when the clustering information is un-
available. Consider a supervised learning problem that each
cluster of devices want to solve and assume the number of
clusters k is known. Their method, the Iterative Federated
Clustering Algorithm (IFCA), in its first step initializes k
models pm1, . . . ,mkq, one for each cluster. At the start
of each round, all k models are sent to the devices. Each
device picks the model that minimizes a loss function on
its locally available data. The device can be configured to
now either compute and transmit the gradient of the loss
function of this model or it can perform a few model updates
locally and send the updated model to the central server. As
the last step of the round, for each model mi i P rks, all
the devices that picked this model are identified. All these
devices are assigned cluster id i. Model mi then is updated
by either model averaging or gradient averaging using the
information sent by devices in cluster i.

We instantiate IFCA on the problem of learning personalized
models for clusters. As in (Ghosh et al., 2020), we use the

Table 2. Test accuracy of rotated MNIST on three methods. Train-
ing personalized models based on the clustering information output
by k-FED achieves the same performance of IFCA, without the
high computation and communication overhead of IFCA when
k1 “ 1. For k1 “ 2, the performance of k-FED degrades much
less when compared to that of IFCA.

Global IFCA k-FED

100 devices (k1 “ 1) 95.0 98.0 98.0
200 devices (k1 “ 1) 94.5 97.2 97.8

100 devices (k1 “ 2) 95.3 95.6 97.1
200 devices (k1 “ 2) 94.5 95.1 96.4

MNIST dataset for this experiment. We construct k “ 4
clusters by 0, 90, 180 and 270 degree rotations and distribute
them among devices. Note that in the setup for IFCA, each
device only contains data from a single cluster (since we are
clustering devices and not individual data points). Thus we
set k1 “ 1 and compare IFCA with a simple k-FED based
method: We first perform one-shot clustering to obtain an
initial clustering and then we use FedAvg (McMahan et al.,
2017) to learn one model per cluster. As a baseline, we also
learn a single global model and include it for comparison.
As can be seen from the test accuracies in Table 2 (k1 “ 1),
k-FED is competitive with IFCA. Moreover, k-FED has
the additional advantage that once the cluster identities have
been assigned, we only need to transmit one model instead
of the k models that are transmitted with IFCA.

Since k-FED clusters data, the k-FED + FedAvg approach
can also handle cases where there are data from multiple
clusters on the same device. Table 2 (k1 “

?
k “ 2) shows

the test accuracy on such a partition. Here we observe the
performance of IFCA degrade when compared to k-FED.

Client Selection. Finally, we demonstrate that the cluster-
ing information produced by k-FED is a useful prior for
client selection applications (Cho et al., 2020). In prac-
tice, cross-device federated optimization algorithms need to
tolerate partial device participation (Kairouz et al., 2019).
Intuitively, incorporating information from ‘representative’
devices at each communication round may speed up the
convergence of learning tasks over federated networks as
opposed to randomly sampling devices. When randomly
sampling, similar and potentially redundant clients can be
selected. A recent device selection method proposes to addi-
tionally select the devices with large training losses among
those randomly-selected subset of devices (Cho et al., 2020)
to help with convergence speed. We combine k-FED with
this approach by further filtering out the devices coming
from the same clusters. Note that k-FED does not add sig-
nificant additional overhead to the baseline algorithm as it
only requires running one-shot clustering before training.
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The results are shown in Figure 4. We see that leveraging the
underlying structure learnt by k-FED can boost convergence
on these realistic federated benchmarks.

Figure 4. Additional clustering information provided by k-FED
can help achieve faster convergence than recent client selection
techniques pow-d (Cho et al., 2020).

Similar to Cho et al. (2020), we also observe that for the
experiments in Figure 4, the variance of test performance
across all devices has been reduced using client selection
strategies favoring more informative (potentially more un-
derrepresented) clients compared with that of random selec-
tion. For instance, on FEMNIST, the variance of final test
accuracies is reduced by 35% when using k-fed combined
with pow-d instead of random selection. This may be useful
in scenarios where we wish to impose notions fairness for
federated learning (Mohri et al., 2019; Li et al., 2020c).

5. Conclusion
In this work, we provide an example of how heterogeneity
in federated networks can be beneficial, by rigorously an-
alyzing the effects of heterogeneity on a simple, one-shot
variant of Lloyd’s algorithm for distributed clustering. Our
proposed method, k-FED, addresses common practical con-
cerns in federated settings, such as high communication
costs, stragglers, and device failures. We believe that other,
specific notions of heterogeneity—together with careful
analyses—may provide benefits for a plethora of other prob-
lems in federated learning, which is an interesting direction
of future work.
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