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In Section A, we provide the detailed derivation of the Evidence Lower Bound (ELBO) of our variational random features
for kernel continual learning. In Section B, we illustrate our proposed model in detail, explaining each part. Moreover, for all
kernels, e.g., Linear, Polynomial, and Radial Basis Function, we discuss how the main architecture is changed accordingly.
In Section C, all hyperparamters are listed in a table in order to reproduce the paper results. Finally, in Section D, we include
additional ablation results on miniImageNet for the size of inference memory and number of Random Bases.

A. Derivation of Evidence Lower Bound
Our proposed objective in equation 10 is derived as follows:
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By applying Jensen’s inequality, we have
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B. Model Details
We provide the computational graph of our kernel continual learning with variational random features in Figure B.1. Our
method consists of three networks. hθ is the backbone network shared across different tasks to extract general features. fφ
and fγ are two amortized networks to estimate the posterior and prior distributions over ω. q and p refer to posterior and
prior distributions. rx are features extracted over samples drawn from D\C. These features are l2-normalized as well as
average pooled over samples in the batch.

On the left, we show the posterior and the priors generated in the sequence of tasks. On the right, the inference model is
depicted. To predict a label for a given query sample, first, the input images and its corresponding coreset are forwarded
through hθ and their features are computed: rtx and rtc. Next, we feed rtc through fφ and estimate the posterior distribution
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over qφ(ω | Ct). Then, we create the random Fourier bases ωt by drawing samples from estimated posterior distribution.
Having random bases for the current task t, ωt, as well as rtx and rtc, random Fourier features related the query input ψ(rtx)
and coreset data ψ(rtc) are estimated. Each kernel, K and K̃, is estimated using its corresponding random Fourier features
and k (x,x′)=ψ(x)ψ(x′)>. Based on Eq. (5) in the main manuscript, these two estimated kernels are used to predict the
output labels for given query samples.
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Figure B.1. Kernel continual learning model with variational random features.

Note that for the variant of our variational random features with an uninformative prior. the prior network is removed and
the prior is set to a standard Gaussian distribution. In addition, by using linear, polynomial, and radial basis function kernels,
neither the prior network nor the posterior network is used.

C. Hyperparameters
We provide the detailed hyperparameter settings in Table C.1, which are used to to generate Figure 7 and Table 3 in the main
paper for each dataset.

Table C.1. Hyperparameters used to generate results in Figure 7 and Table 3.

Method Permuted MNIST Rotated MNIST Split CIFAR100 Split miniImageNet

Batch Size 10 10 10 10
Learning Rate (LR) 0.1 0.1 0.3 0.3
LR Decay Factor 0.8 0.8 0.95 0.95
Momentum 0.8 0.8 0.8 0.8
Dropout 0.5 0.5 0.02 0.02
Coreset Size 20 20 20 30
Number of Bases 1024 1024 2048 2048
Number of Tasks 20 20 20 20
Tau 0.01 0.01 0.01 0.01

D. Additional ablation results on miniImageNet
We provide additional ablation results on the miniImageNet dataset. We report the influence of the inference memory
and the number of Random bases. Figure D.2 shows increasing the coreset size from 1 to 20, improves average accuracy
consistently. It saturates between 20 to 40. By enlarging the coreset size to 50, model performance increases again. In Table
3 in the main paper the results related to miniImageNet are reported based on a coreset size of 30. Figure D.3 highlights how
the number of random bases affects the average accuracy. Consistent with the findings in other datasets, the performance



Kernel Continual Learning

1 2 5 10 20 30 40 50
Coreset Size

20

30

40

50

6060

A
cc

ur
ac

y

miniImageNet

Figure D.2. How much inference memory? Enlarging the
coreset size of the VRF kernel leads to improvement of perfor-
mance on miniImageNet benchmark dataset. Coreset size 30
is chosen for conducting experiment in the main paper.
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Figure D.3. How many Random Bases? In general, a larger
number of random Fourier bases consistently improves per-
formance on miniImageNet benchmark dataset. In the main
paper, number of bases is set to be 2048.

increases with a larger number of random Fourier bases. Since miniImageNet is a challenging benchmark, we choose 2048
as the number of bases for all remaining experiments in the main paper.


