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Abstract

This paper introduces kernel continual learning, a
simple but effective variant of continual learning
that leverages the non-parametric nature of ker-
nel methods to tackle catastrophic forgetting. We
deploy an episodic memory unit that stores a sub-
set of samples for each task to learn task-specific
classifiers based on kernel ridge regression. This
does not require memory replay and systemati-
cally avoids task interference in the classifiers.
We further introduce variational random features
to learn a data-driven kernel for each task. To do
so, we formulate kernel continual learning as a
variational inference problem, where a random
Fourier basis is incorporated as the latent variable.
The variational posterior distribution over the ran-
dom Fourier basis is inferred from the coreset of
each task. In this way, we are able to generate
more informative kernels specific to each task,
and, more importantly, the coreset size can be
reduced to achieve more compact memory, result-
ing in more efficient continual learning based on
episodic memory. Extensive evaluation on four
benchmarks demonstrates the effectiveness and
promise of kernels for continual learning.

1. Introduction

Despite the promise of artificially intelligent agents (Le-
Cun et al., 2015; Schmidhuber, 2015), they are known to
suffer from catastrophic forgetting when learning over non-
stationary data distributions (McCloskey & Cohen, 1989;
Goodfellow et al., 2014). Continual learning (Ring, 1998;
Lopez-Paz & Ranzato, 2017; Nguyen et al., 2018), also
known as life-long learning, was introduced to deal with
catastrophic forgetting. In this framework, agent continu-
ally learns to solve a sequence of non-stationary tasks by
accommodating new information, while remaining able to
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complete previously experienced tasks with minimal perfor-
mance degradation. The fundamental challenge in continual
learning is catastrophic forgetting, which is caused by the
interference among tasks from heterogeneous data distribu-
tions (Lange et al., 2019).

Task interference is almost unavoidable when model pa-
rameters, like the feature extractor and the classifier, are
shared by all tasks. At the same time, it is practically infea-
sible to keep a separate set of model parameters for each
individual task when learning with an arbitrarily long se-
quence of tasks (Hadsell et al., 2020). Moreover, knowledge
tends to be shared and transferred across tasks more in the
lower layers than higher layers of deep neural networks (Ra-
masesh et al., 2021). This has motivated the development
of non-parametric classifiers that automatically avoid task
interference without sharing any parameters across tasks.
Kernel methods (Scholkopf & Smola, 2002) provide a well-
suited tool for this due to their non-parametric nature, and
have proven to be a powerful technique in machine learn-
ing (Cristianini et al., 2000; Smola & Scholkopf, 2004;
Rahimi & Recht, 2007; Sinha & Duchi, 2016). Kernels have
been shown to be effective for incremental and multi-task
learning with support vector machines (Diehl & Cauwen-
berghs, 2003; Pentina & Ben-David, 2015). Recently, they
have also been demonstrated to be strong learners in tandem
with deep neural networks (Wilson et al., 2016a;b; Tossou
et al., 2019), especially when learning from limited data
(Zhen et al., 2020; Patacchiola et al., 2020). Inspired by
the success of kernels in machine learning, we introduce
task-specific classifiers based on kernels by decoupling the
feature extractor from the classifier for continual learning.

In this paper, we propose kernel continual learning to deal
with catastrophic forgetting in continual learning. Specifi-
cally, we propose to learn non-parametric classifiers based
on kernel ridge regression. To do so, we deploy an episodic
memory unit to store a subset of samples from the training
data for each task, which we refer to as ‘the coreset’, and
learn the classifier based on the kernel ridge regression. Ker-
nels provide several benefits. First, the direct interference
of classifiers is naturally avoided as kernels are established
in a non-parametric way for each task and no classifier pa-
rameters are shared across tasks. Moreover, in contrast to
existing memory replay methods, e.g., (Kirkpatrick et al.,
2017; Chaudhry et al., 2019a), our kernel continual learning
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Figure 1. Overview of kernel continual learning with variational random features. For each task ¢, we use the coreset C; to infer the
random Fourier basis, which generates kernel matrix X ¢. The classifier for this task is constructed based on kernel ridge regression using
K:. he denotes the feature extraction network, parameterized by 6, which is shared and updated when training on the task sequence. fs is
the inference network, parameterized with ¢ for random Fourier bases, which is also shared across tasks and updated throughout learning.
Memory M stores the coreset from each task and is used for inference only. he and f4 are jointly learned end-to-end.

does not need to replay data from previous tasks when train-
ing the current task, which avoids task interference while
enabling more efficient optimization. In order to achieve
adaptive kernels for each task, we further introduce random
Fourier features to learn kernels in a data-driven manner.
Specifically, we formulate kernel continual learning with
random Fourier features as a variational inference problem,
where the random Fourier basis is treated as a latent variable.
The variational inference formulation naturally induces a
regularization term that encourages the model to learn adap-
tive kernels for each task from the coreset only. As a direct
result, we are able to achieve more compact memory, which
reduces the storage overhead.

We perform experiments on four benchmark datasets: Ro-
tated MNIST, Permuted MNIST, Split CIFAR100 and mini-
ImageNet. The results demonstrate the effectiveness and
promise of kernel continual learning, which delivers state-
of-the-art performance on all benchmarks.

2. Related Works

A fundamental problem in continual learning is catastrophic
forgetting. Existing methods differ in the way they deal with
this. We will briefly review them in terms of regularization,
dynamic architectures and experience replay. For a more
extensive overview we refer readers to the reviews by Parisi
et al. (2018) and Lange et al. (2019).

Regularization methods (Kirkpatrick et al., 2017; Aljundi
et al., 2018; Lee et al., 2017; Zenke et al., 2017; Kolouri

et al., 2019) determine the importance of each model’s pa-
rameter for each task, which prevents the parameters from
being updated for new tasks. Kirkpatrick et al. (2017),
for example, specify the performance of each weight with
a Fisher information matrix. Alternatively, Aljundi et al.
(2018), determine parameter importance by the gradient
magnitude. Naturally, these methods can also be explored
from the perspective of Bayesian optimization (Nguyen
et al., 2018; Titsias et al., 2020; Schwarz et al., 2018;
Ebrahimi et al., 2020; Ritter et al., 2018). For instance,
Nguyen et al. (2018) introduce a regularization technique to
protect their model against forgetting. Bayesian or not, all
these methods address catastrophic forgetting by adding a
regularization term to the main loss function. As shown by
Lange et al. (2019), the penalty terms proposed in such al-
gorithms are unable to prevent drifting in the loss landscape
of previous tasks. While alleviating forgetting, the penalty
term also unavoidably prevents the plasticity to absorb new
information from future tasks learned over a long timescale
(Hadsell et al., 2020).

Dynamic architectures (Rusu et al., 2016; Yoon et al., 2018;
Jerfel et al., 2019; Li et al., 2019) allocate a subset of the
model parameters for each task. This is achieved by a gat-
ing mechanism (Wortsman et al., 2020; Masse et al., 2018),
or by incrementally adding new parameters to the model
(Rusu et al., 2016). Incremental learning and pruning is
another possibility (Mallya & Lazebnik, 2018). Given an
over-parameterized model with the ability to learn quite a
few tasks, Mallya & Lazebnik (2018) achieve model ex-
pansion by pruning the parameters not contributing to the
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performance of the current task, while keeping them avail-
able for future tasks. These methods are preferred when
there is no memory usage constraint and the final model
performance is prioritized. They offer an effective way
to avoid task interference and catastrophic forgetting, but
suffer from potentially unbounded model expansion and
prevent positive knowledge transfer across tasks.

Experience replay methods (Lange et al., 2019) assume it is
possible to access data from previous tasks by having a fixed-
size memory or a generative model able to produce samples
from old tasks (Lopez-Paz & Ranzato, 2017; Riemer et al.,
2019; Rios & Itti, 2018; Shin et al., 2017; Zhang et al.,
2019). Rebuffi et al. (2017) introduce a model augmented
with fixed-size memory, which accumulates samples in the
proximity of each class center. Chaudhry et al. (2019b)
propose another memory-based model by exploiting a reser-
voir sampling strategy in the raw input data selection phase.
Rather than storing the original samples, Chaudhry et al.
(2019a) accumulate the parameter gradients during task
learning. Shin et al. (2017) incorporate a generative model
into a continual learning model to alleviate catastrophic
forgetting by producing samples from previous tasks and
retraining the model using data from both previous tasks
and the current one. These papers assume that an extra
neural network, such as a generative model, or a memory
unit is available. Otherwise, these methods cannot be ex-
ploited. Replay-based methods benefit from a memory unit
to retrain their model over previous tasks. In contrast, our
proposed method only uses memory to store data as a task
identifier proxy at inference time without the need of replay
for training, which mitigates the optimization cost.

3. Kernel Continual Learning
3.1. Problem Statement

In the traditional supervised learning setting, a model or
agent f is learned to map input data from the input space
to its target in the corresponding output space: X +— ),
where samples X € X" are assumed to be drawn from the
same data distribution. In the case of the image classification
problem, X are the images and Y™ are associated class labels.
Instead of solving a single task, continual learning aims to
solve a sequence of different tasks, 71,715, - - -T;,, from non-
stationary data distributions, where n stands for the number
of tasks, and each of which is an individual classification
problem. A continual learner is required to continually solve
each ¢ of those tasks once being trained on its labeled data,
while remaining able to solve previous tasks with no or
limited access to their data.

Generally, a continual learning model based on a neural
network is comprised of a feature extractor hy and a classi-
fier f.. The feature extractor is a convolutional architecture

found before the last fully connected layer, which is shared
across tasks. The classifier is the last fully connected layer.
We propose to learn a task-specific, non-parametric classifier
based on kernel ridge regression.

We consider learning the model on the current task ¢. Given
its training data D, we choose uniformly a subset of data
between existing classes in current task ¢, which is called
the coreset dataset (Nguyen et al., 2018) and denoted as:
Ct:(xi,yi)ﬁv;‘l. We construct the classifier f. based on
kernel ridge regression on the coreset. Assume we have
the classifier with weight w, and the loss function of kernel
ridge regression takes the following form:

Lroelw) = 3 Sy~ W) + pAIWIP, ()

i

where A is the weight decay parameter. Based on the Repre-
senter theorem (Scholkopf et al., 2001), we have:

Ne
w = 2() = 3 aik(, v(x)), @

where k(-, -) is the kernel function. Then « can be calculated
in a closed form:

o =Y +K) !, 3)

where a'=[ay, - , a4, -+ ,an,]| and X is considered to be
a learnable hyperparameter. The }C € RN<*Ne matrix for
each task is computed as k(x;,x;)=1(x;)1(x;) . Here,
1(x;) is the feature map of x; € C;, which can be obtained
from the feature extractor hy.

To jointly learn the feature extractor hy, we minimize the
overal loss function over samples from the remaining set:

ST L W), y). )

(x',y")ED\Cy

Here, we choose L£(-) to be the cross-entropy loss function
and the predicted output ' is computed by

¥ = 2 ($(x')) = Softmax(ak), )

where K=1(X)y(x')7, ¢(X) denotes the feature maps
of samples in the coreset, and Softmax(-) is the softmax
function applied to the output of the kernel ridge regression.

In principle, we can use any (semi-)positive definite kernel,
e.g., a radial basis function (RBF) kernel or a dot product
linear kernel to construct the classifier. However, none of
those kernels are task specific, potentially suffering from
suboptimal performance, especially with limited data. More-
over, we would require a relatively large coreset to obtain
informative and discriminative kernels for satisfactory per-
formance. To address this, we further introduce random



Kernel Continual Learning

Fourier features to learn data-driven kernels, which have
previously demonstrated success in regular learning tasks
(Bach et al., 2004; Sinha & Duchi, 2016; Carratino et al.,
2018; Zhen et al., 2020). Data-driven kernels using random
Fourier features provides an appealing technique to learn
strong classifiers with a relatively small memory footprint
for continual learning based on episodic memory.

3.2. Variational Random Features

One of the key ingredients when finding a mapping func-
tion in non-parametric approaches, such as kernel ridge
regression, is the kernel function. Rahimi & Recht (2007)
introduced an algorithm to approximate translation-invariant
kernels using explicit feature maps, which is theoretically
underpinned by Bochner’s theorem (Rudin, 1962).

Theorem 1 (Bochner’s Theorem) A continuous, real val-
ued, symmetric and shift-invariant function k (x,x’) =
k(x — x') on RY is a positive definite kernel if and only
if it is the Fourier transform p(w) of a positive finite mea-
sure such that:

) = [ 670 ple) = B [ ) ()]
where (,(x) = el X,

(6)

With a sufficient number of samples w drawn from p(w),
we can achieve an unbiased estimation of k (x,x’) by
Cuw (%) Cw (x)* (Rahimi & Recht, 2007).

Based on Theorem 1, we draw D sets of samples: {w;}2 ;
and {b;}2 ; from a normal distribution and uniform distri-
bution (with a range of [0, 27]), respectively, and construct
the random Fourier features (RFFs) for each data point x
using the formula:

L , COS (ng-i-bp)} .

P(x) = NG [
@)

Having the random Fourier features, we calculate the kernel
matrix by k (x,x’) = (x)p(x") .

cos (wlTx—i—bl) o

Traditionally the shift-invariant kernel is constructed based
on random Fourier features, where the Fourier basis is drawn
from a Gaussian distribution transformed from a pre-defined
kernel. This results in kernels that are agnostic to the task.
In continual learning, however, tasks are provided sequen-
tially from non-stationary data distributions, which makes it
suboptimal to share the same kernel function across tasks.
To address this problem, we propose to learn task-specific
kernels in a data-driven manner. This is even more appealing
in continual learning as we would like to learn informative
kernels using a coreset of a minimum size. We formulate
it as a variational inference problem, where we treat the
random basis w as a latent variable.

Evidence Lower Bound From the probabilistic perspec-
tive, we would like to maximize the following conditional
predictive log-likelihood for the current task ¢:

max E
p

(x,¥)€D:\Cy

lnp(Y‘Xv Dt\ct)a (8)

which amounts to making maximally accurate predictions
on x based on D;\C;.

By introducing the random Fourier basis w into Eq. (8),
which is treated as a latent variable, we have:

max Z ln/p(y|x,w,Dt\Ct)pw(w\Dt\Ct)dw.
(%,¥)€D:\Ct
&)

The intuition is that we can use data to infer the distribution
over the latent variable w whose prior is conditioned on the
data. We combine the data and w to generate kernels to clas-
sify x based on kernel ridge regression. We can also simply
place an uninformative prior of a standard Gaussian distri-
bution over the latent variable w, which will be investigated
in our experiments.

It is intractable to directly solve for the true posterior
p(w|x,y,D:\Ct) over w. We therefore introduce a vari-
ational posterior g4(w|C;) conditioned solely on the coreset
C; because the coreset will be stored as episodic memory
for the inference of each corresponding task.

By incorporating the variational posterior into Eq. (9) and ap-
plying Jensen’s inequality, we establish the evidence lower
bound (ELBO) as follows:

In p(y[x, D \Ct) > B, (wic,) [ Inp(ylx, w, D\Cy)]
— DxL[gs(@|Co)|lpy (w|DAC)] - (10)
= LELBO-

Therefore, maximizing the ELBO amounts to maximizing
the conditional log-likelihood in Eq. (8). The detailed deriva-
tion is provided in the supplementary materials.

Empirical Objective Function In the continual learning
setting, we would like the model to be able to make predic-
tions based solely on the coreset C; stored in the memory.
That is, the conditional log-likelihood should be conditioned
on the coreset only. Based on the ELBO in Eq. (10) we es-
tablish the following empirical objective function which, is
minimized by our overall training procedure:
L

T
Lopo=73[ 3 73 [malybew®,c)]

t=1 (x,y)€D:\C: (=1

~ Di [as(@[C) p4 (wID\C) |,

=

(an
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where, in the first term, we employ the Monte Carlo method
to draw samples from the variational posterior ¢(w|C;) to
estimate the log-likelihood, and L is the number of Monte
Carlo samples. In the second term, the conditional prior
serves as a regularizer that ensures the inferred random
Fourier basis will always be relevant to the current task.
Minimizing the Kullback Leibler (KL) divergence forces
the distribution of random Fourier bases, as inferred from
the coreset, to be close to the one from the training set.
Moreover, the KL term enables us to generate informative
kernels adapted to each task using relatively small memory.

In practice, the conditional distributions g4(w|C;) and
Py (w|D\Cy) are assumed to be Gaussian. We imple-
ment them by using the amortization technique (Kingma
& Welling, 2014). That is, we use multilayer perceptrons
to generate the distribution parameters, ;o and o, by tak-
ing the conditions as input. In our experiments, we deploy
two separate amortization networks, referred to as the infer-
ence network f, for the variational posterior and the prior
network f, for the prior. In addition, to demonstrate the
effectiveness of data-driven kernels, we also implement a
variant of variational random features by replacing the con-
ditional prior in Eq. (11) with an uninformative one, i.e.,
an isotropic Gaussian distribution A/(0,I). In this case, ker-
nels are also learned in a data-driven way from the coreset
without being regulated by the training data from the task.

4. Experiments

We conduct our experiments on four benchmark datasets for
continual learning. We perform thorough ablation studies
to demonstrate the effectiveness of kernels for continual
learning as well as the benefit of variational random features
in learning data-driven kernels.

4.1. Datasets

Permuted MNIST Following (Kirkpatrick et al., 2017),
we generate 20 different MNIST datasets. Each dataset is
created by a special pixel permutation of the input images,
without changing their corresponding labels. Each dataset
has its own permutation by owning a random seed.

Rotated MNIST Similar to Permuted MNIST, Rotated
MNIST has 20 tasks (Mirzadeh et al., 2020). Each task’s
dataset is a specific random rotation of the original MNIST
dataset, e.g., the dataset for task 1, task 2, and task 3 are
the original MNIST dataset, a 10-degree rotation, and a
20-degree rotation, respectively. In other words, each task’s
dataset is a 10-degree rotation of the previous task’s dataset.

Split CIFAR100 Zenke et al. (2017) created this benchmark
by dividing the CIFAR100 dataset into 20 sections. Each
section represents 5 out of 100 labels (without replacement)
from CIFAR100. Hence, it contains 20 tasks and each task

is a b-way classification problem.

Split minilmageNet Similar to Split CIFAR100, the
minilmageNet benchmark (Vinyals et al., 2016) contains
100 classes, and is a subset of the original ImageNet
dataset (Russakovsky et al., 2015). It has 20 disjoint tasks,
each of which task contains 5 classes.

4.2. Evaluation Metrics

We follow the common conventions in continual learning
(Chaudhry et al., 2018; Mirzadeh et al., 2020), and report
the average accuracy and average forgetting metrics.

Average Accuracy This score shows the model accuracy
after training over ¢ consecutive tasks are finished. It is
formulated as follows:

t
1
A= ¥§a“” (12)

where a; ; refers to the model performance on task 7 after
being trained on task ¢.

Average Forgetting This metric measures the decline in ac-
curacy for each task, according to the highest accuracy and
the final accuracy reached after model training is finished.
It is formulated as follows:

T-1

F=_— Z maxy, r—1(ac; —ar;). (13)

i=1

Taken together, the two metrics allow us to asses how well
a continual learner achieves its classification target while
overcoming forgetting.

4.3. Implementation Details

Our kernel continual learning contains three networks: a
shared backbone hy, a posterior network f4, and a prior
network f.. An overview of our implementation is provided
in the supplementary materials. For the Permuted MNIST
and Rotated MNIST benchmarks, hy contains only two
hidden layers, each of which has 256 neurons, followed by
a ReLU activation function. For Split CIFAR100, we use a
ResNet18 architecture similar to Mirzadeh et al. (2020), and
for minilmageNet, we have a ResNet18 similar to Chaudhry
et al. (2020). With regard to the f, and f, networks, we
adopt three hidden layers followed by an ELU activation
function (Gordon et al., 2019). The number of neurons in
each layer depends on the benchmark. On Permuted MNIST
and Rotated MNIST, there are 256 neurons per layer, and
we use 160 and 512 for Split CIFAR100 and minilmageNet,
respectively. For fair comparisons, the model is trained for
only one epoch per task, that is, each sample in the dataset
is observed only once. The batch size is set to 10. Other
optimization techniques, such as weight-decay, learning rate
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Figure 2. Effectiveness of kernels. Accuracy of kernel continual learning by variational random features for the first five tasks on three
benchmarks. Note the limited decline in accuracy as the number of tasks increase.

decay, and dropout are set to the same values as in (Mirzadeh
et al., 2020). The model is implemented in Pytorch (Paszke
et al., 2019). All our code will be released. !

4.4. Results

We first provide a set of ablation studies for our proposed
method. Then, the performance of our method is compared
against other continual learning methods (see the supple-
mentary materials for more details about each ablation).

Effectiveness of kernels To demonstrate the effectiveness
of kernels for continual learning, we establish classifiers
based on kernel ridge regression using commonly used lin-
ear, polynomial, radial basis function (RBF) kernels, and
our proposed variational random Fourier features. We report
results on Split CIFAR100, where we sample five different
random seeds. For each random seed, the model is trained
over different kernels. Finally, the result for each kernel
is estimated by averaging over the corresponding random
seeds. For fair comparison, all kernels are computed using
the same coreset of size 20.

The results are shown in Table 1. All kernels perform well:
the radial basis function (RBF) obtains a modest average
accuracy in comparison to other basic kernels such as the
linear and polynomial kernels. The linear and polynomial
kernels perform similarly. The kernels obtained from varia-
tional random features (VRFs) achieve the best performance
in comparison to other kernels, and they work better than its
uninformative counterpart. This emphasizes that the prior
incorporated in VRFs is more informative because its prior
is data-driven.

Regarding VRFs, Figure 2 demonstrates the change of each
task’s accuracy on Permuted MNIST, Rotated MNIST and
Split CIFAR100. It is also worth mentioning that the clas-
sifiers based on those kernels are non-parametric, enabling
them to systematically avoid task interference in classifiers.

"https://github.com/mmderakhshani/KCL

Table 1. Effectiveness of kernels on Split CIFAR100. All kernels
perform well, but the simple linear kernel performs better than the
RBF kernel. The adaptive kernels based on the random Fourier
features achieve the best performance, indicating the advantage of
data-driven kernels.

Split CIFAR100
Kernel Accuracy  Forgetting
RBF 56.86 +1.67  0.03 +0.008
Linear 60.88 064 0.05 +0.007
Polynomial 60.96 £1.19  0.03 +0.004
VRF (uninformative prior) 62.46 £093 0.05 + 0.004
VRF 62.70 £ 089  0.06 + 0.008

Thanks to the non-parametric nature of the classifiers based
on kernels, our method is flexible and able to naturally deal
with a more challenging setting under a different numbers
of classes (which we refer to as ‘varied ways’). To demon-
strate this, we conduct experiments with a varying number
of classes in each task using VRFs. The results on Split
CIFAR100 and Split minilMageNet are shown in Table 2.
Kernel continual learning results in slightly lower accuracy
on Split CIFAR100, but leads to an improvement over the
traditional fixed ways evaluation on Split minilmageNet.

Influence of Number of Tasks Next we ablate the robust-
ness of our proposal when the number of tasks increase. We
report results with three different coreset sizes on Split CI-
FAR100 and Split minilmageNet in Figure 3 (a) and (b). As
can be seen, our method achieves increasingly better per-
formance as the number of tasks increases, indicating that
knowledge is transferred forward from previous tasks to fu-
ture tasks. The observed positive transfer is likely due to the
shared parameters in the feature extractors and amortization
networks, as they allow knowledge to be transferred across
tasks. We again show a comparison between variational ran-
dom features and a predefined RBF kernel in Figure 3 (c).
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on all benchmarks. With the relatively small
number of 256 bases, our variational random

dom features for kernel continual learning.

Table 2. Effectiveness of VRF kernel for variable-way scenario
on Split CIFAR100 and Split minilmageNet. In this scenario,
instead of covering a fixed number of five classes per task from
Split CIFAR100 and Split minilmageNet, a task is able to cover
a more flexible number of classes in the range [3, 15]. By doing
so, the experimental setting is more realistic. Even in this case,
our proposed method is effective, as indicated by the performance
improvement of minilmageNet.

Split CIFAR100 Split minilmageNet
Accuracy  Forgetting Accuracy  Forgetting
Fixed Ways  64.02 0.05 51.89 0.06
Varied Ways  61.00+ 180 0.05+001  53.90+295 0.05+0.01

The performance for variational random features increases
faster than the RBF kernel when observing more tasks. This
might be due to the amortization network shared among
tasks, which enables knowledge to be transferred across
tasks as well, indicating the benefit of learning data-driven

features can deliver good performance.

Table 3. How much inference memory? Increasing the coreset
size has only a minimal impact on time complexity at inference.

Split CIFAR100
5 10 20 40
0.0017 0.0017 0.0017 0.0018

Time (s)

kernels by our variational random features.

Memory benefit of Variational Random Features To
further demonstrate the memory benefit of data-driven ker-
nel learning, we compare variational random features with
a predefined RBF kernel in Figure 4. We consider five dif-
ferent coreset sizes. Variational random features exceed
the RBF kernel consistently. For instance, With a smaller
coreset size of 20, variational random features can achieve
similar performance to the RBF kernel with a larger coreset
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Figure 7. Comparison between the state of the art and our kernel continual learning by variational random features over 20 consecutive
tasks, in terms of average accuracy. Our model consistently performs better than other methods with less accuracy drop on Rotated and
Permuted MNIST and, further, the performance even starts to increase when observing more tasks on the challenging Split CIFAR100

dataset.

Table 4. How may Random Bases? Increasing the number of
Random Bases leads to an increased time complexity at inference.

Split CIFAR100
256 512 1024 2048
0.0014 0.0015 0.0015 0.0017

Time (s)

size of 40. This demonstrates that learning task-specific
kernels in a data driven way enables us to use less memory
than with a pre-defined kernel.

How much inference memory? Since kernel continual
learning does not need to replay and only uses memory for
inference, the coreset size plays a crucial role. We therefore
ablate its influence on Rotated MNIST, Permuted MNIST,
and Split CIFAR100 by varying the coreset size as 1, 2, 5,
10, 20, 30, 40, and 50. Here, the number of random bases
is set to 1024 for Rotated MNIST and Permuted MNIST,
and 2048 for Split CIFAR100. The results in Figure 5 show
that increasing the coreset size from 1 to 5 results in a steep
accuracy increase for all datasets. This continues depending
on the difficulty of the dataset. For Split CIFAR100, the
results start to saturate after a coreset size of 20. This is
expected as increasing the number of samples in a coreset
allows us to better infer the random Fourier bases with more
data from the task, therefore resulting in more representa-
tive and descriptive kernels. In the remaining experiments
we use a coreset size of 20 for Rotated MNIST, Permuted
MNIST and Split CIFAR100, and a coreset size of 30 for
minilmageNet (see supplementary materials). We also ab-
late the effect of the coreset size on time complexity in
Table 3. Indeed, it shows that increasing the coreset size
only comes with a limited cost increase at inference time.

How many Random Bases? When approximating VRF
kernels the number of random Fourier bases is a important

hyperparameter. In principle, a larger number of random
Fourier bases should yield a better approximation of kernels,
leading to better classification accuracy. Here, we investi-
gate its effect on the continual learning accuracy. Results
with different numbers of bases are shown in Figure 6 on
Rotated MNIST, Permutated MINST and Split CIFAR100.
As expected, the performance increases with a larger num-
ber of random Fourier bases, but with a relatively small
number of 256 bases, our method already performs well
on all datasets. Table 4 further shows the impact of the
number of random bases on time complexity. It highlights
that increasing the number of random bases comes with an
increasing computation time for the model at inference time.

Comparison to the state-of-the-art We compare kernel
continual learning with alternative methods on the four
benchmarks. The accuracy and forgetting scores in Table 5
for Rotated MNIST, Permuted MNIST and Split CIFAR100
are all adopted from (Mirzadeh et al., 2020), and results for
minilmageNet are from (Chaudhry et al., 2020). The “if”
column indicates whether a model utilizes memory and if so,
the “when” column denotes whether the memory data are
used during training time or test time. Our method achieves
better performance in terms of average accuracy and average
forgetting. Moreover, compared to memory-based methods
such as A-GEM (Chaudhry et al., 2019a) and ER-Reservoir
(Chaudhry et al., 2019b), which replay over previous tasks
(when = Train), kernel continual learning does not require
replay, enabling our method to be efficient during train-
ing time. Further, for the most challenging minilmageNet
dataset, kernel continual learning also performs better than
other methods, both in terms of accuracy and forgetting.
In Figure 7, we compare our kernel continual learning by
variational random features with other methods in terms of
average accuracy over 20 consecutive tasks. Our method
performs consistently better. It is worth noting that on the
relatively challenging Split CIFAR100 dataset, the accuracy
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Table 5. Comparison to the state-of-the-art. Results for other methods on Permuted MNIST, Rotated MNIST and Split CIFAR100 are
adopted from Mirzadeh et al. (2020). For Split minilmageNet results are from Chaudhry et al. (2020).We include columns denoting if and

when memory is used. In all cases, kernel continual learning is best.

Method Memory Permuted MNIST Rotated MNIST Split CIFAR100 Split minilmageNet
If When Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting Accuracy Forgetting
Lower Bound: Naive-SGD (Mirzadeh et al., 2020) X 4444246  0.53+003 46.3+137  0.52+001 404 +28  0.31+002  36.1+131  0.24+003
EWC (Kirkpatrick et al., 2017) X - 70.7+174  0.23+001  48.5+124  0.48+001  42.7+180  0.28+003 34.8+23¢ 0.24 +o004
AGEM (Chaudhry et al., 2019a) v Train  65.7+051  0.29+001 55.3+147  0.42+001 50.7+232  0.19+004 42.3+142  0.17+001
ER-Reservoir (Chaudhry et al., 2019b) v Train 7244042  0.16+001 69.2+1.10  0.21+001 46.9+076  0.21+003 49.8+292  0.12+001
Stable SGD (Mirzadeh et al., 2020) X - 80.1+0.51 0.09-+0.01 70.8+0.78 0.10+0.02 59.9+1.81 0.08+0.01 - -
Kernel Continual Learning v Test 855+:078 0.02:000 81.8+to60  0.01+000  62.7+08  0.06+001  53.3:057  0.04=0.00
Upper Bound: multi-task learning (Mirzadeh et al., 2020) X 86.5+0.21 0.0 87.3+047 0.0 64.8+0.72 0.0 65.1 0.0

of our method drops a bit at the beginning but starts to in-
crease when observing more tasks. This indicates a positive
forward transfer from previous tasks to future tasks. All
hyperparameters for reproducing the results in Figure 7 and
Table 5 are provided in the supplementary materials.

5. Conclusion

In this paper, we introduce kernel continual learning, a
simple but effective variation of continual learning with
kernel-based classifiers. To mitigate catastrophic forgetting,
instead of using shared classifiers across tasks, we propose
to learn task-specific classifiers based on kernel ridge regres-
sion. Specifically, we deploy an episodic memory unit to
store a subset of training samples for each task, which is
referred to as the coreset. We formulate kernel learning as
a variational inference problem by treating random Fourier
bases as the latent variable to be inferred from the coreset.
By doing so, we are able to generate an adaptive kernel
for each task while requiring a relatively small memory
size. We conduct extensive experiments on four benchmark
datasets for continual learning. Our thorough ablation stud-
ies demonstrate the effectiveness of kernels for continual
learning and the benefits of variational random features in
learning data-driven kernels for continual learning. Our
kernel continual learning already achieves state-of-the-art
performance on all benchmarks, while opening up many
other possible connections between kernel methods and
continual learning.
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