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Abstract

We consider the problem of optimizing hybrid
structures (mixture of discrete and continuous in-
put variables) via expensive black-box function
evaluations. This problem arises in many real-
world applications. For example, in materials
design optimization via lab experiments, discrete
and continuous variables correspond to the pres-
ence/absence of primitive elements and their rel-
ative concentrations respectively. The key chal-
lenge is to accurately model the complex interac-
tions between discrete and continuous variables.
In this paper, we propose a novel approach re-
ferred as Hybrid Bayesian Optimization (HyBO)
by utilizing diffusion kernels, which are naturally
defined over continuous and discrete variables.
We develop a principled approach for construct-
ing diffusion kernels over hybrid spaces by utiliz-
ing the additive kernel formulation, which allows
additive interactions of all orders in a tractable
manner. We theoretically analyze the modeling
strength of additive hybrid kernels and prove that
it has the universal approximation property. Our
experiments on synthetic and six diverse real-
world benchmarks show that HyBO significantly
outperforms the state-of-the-art methods.

1. Introduction

A large number of science and engineering applications in-
volve optimizing hybrid spaces (mixture of discrete and con-
tinuous input variables) guided by expensive black-box func-
tion evaluations. For example, in materials design optimiza-
tion, discrete variables correspond to the presence/absence
of primitive elements and continuous variables correspond
to their relative concentrations, and evaluation of each de-
sign involves performing an expensive physical lab experi-
ment. A popular and effective framework for optimizing ex-
pensive black-box functions is Bayesian optimization (BO)
(Shabhriari et al., 2016; Frazier, 2018; Greenhill et al., 2020;
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Belakaria et al., 2019; Zhou et al., 2020; Belakaria et al.,
2020e;c;a;f). The key idea behind BO is to learn a surrogate
statistical model and intelligently select the sequence of in-
puts for evaluation to approximately optimize the unknown
objective. Gaussian process (GP) (Rasmussen & Williams,
2006) is the most popular choice for learning statistical mod-
els. GPs allow to incorporate domain knowledge about the
problem in the form of a kernel over the input space and
provide good uncertainty quantification. GPs have been
successfully applied for both continuous (Shahriari et al.,
2016; Belakaria et al., 2020b;d) and discrete spaces (Oh
et al., 2019; Deshwal et al., 2021; Roustant et al., 2020).
However, as we discuss in the related work section, there is
very limited work on BO methods to optimize hybrid spaces
(Hutter et al., 2010; 2011; Bergstra et al., 2011; Daxberger
et al., 2020; Ru et al., 2020). Most of them employ non-
GP based surrogate models as it is challenging to define
a generic kernel over hybrid spaces that can account for
complex interactions between variables.

To precisely fill this gap in our knowledge, we propose a
novel approch referred as Hybrid Bayesian Optimization
(HyBO). HyBO builds GP based surrogate models using dif-
fusion kernels, which are naturally defined over continuous
(Kondor & Vert, 2004) and discrete spaces (Kondor & Laf-
ferty, 2002). We develop a principled approach to construct
diffusion kernels over hybrid spaces. This approach em-
ploys the general formulation of additive Gaussian process
kernels (Duvenaud et al., 2011) to define additive hybrid
diffusion kernels. The key idea is to assign a base kernel for
each discrete/continuous variable and construct an overall
kernel by summing over all possible orders of interaction
between these kernels. This construction procedure has
two advantages: 1) Allows to leverage existing kernels for
continuous and discrete spaces; and 2) Can automatically
identify the strength of different orders of interaction in a
data-driven manner for a given application.

A key question about the modeling strength of this hybrid
diffusion kernel is whether given sufficient data, can it
approximate any black-box function defined over hybrid
spaces. This question has been studied in the past in terms
of a property called universality of a kernel (Steinwart, 2001;
Micchelli et al., 2006; Sriperumbudur et al., 2011; Mania
et al., 2018). We prove that the proposed hybrid diffusion
kernel has universal approximation property by composing
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a known result for continuous diffusion kernels with a novel
result for discrete diffusion kernels. Our theoretical results
have broader significance going beyond the BO literature.

Our experiments on diverse synthetic benchmarks and real-
world applications show that HyBO performs significantly
better than state-of-the-art methods. We also empirically
demonstrate that superiority of HyBO’s performance is due
to better surrogate model resulting from the proposed addi-
tive hybrid diffusion kernel.

Contributions. The key contribution of this paper is the de-
velopment and evaluation of the HyBO approach to perform
BO over hybrid spaces. Specific list includes:

* Development of a principled approach to construct ad-
ditive diffusion kernels over hybrid spaces for building
GP based surrogate statistical models.

* Theoretical analysis to prove that additive hybrid diffu-
sion kernel has the universal approximation property.

» Experiments on synthetic and real-world benchmarks
to show that HyBO significantly improves over state-
of-the-art methods. The code and data are available
on the GitHub repository https://github.com/
aryandeshwal/HyBO.

2. Problem Setup and Hybrid Bayesian
Optimization Approach

Problem Setup. Let X be a hybrid space to be optimized
over, where each element x € X is a hybrid structure.
Without loss of generality, let each hybrid structure x =
(xg € Xg,xz. € X.) € X be represented using m dis-
crete variables and n continuous variables, where x4 and
z. stands for the discrete and continuous sub-space of X.
Let each discrete variable v, from x4 take candidate values
from a set C'(v4) and each continuous variable v, from z..
take values from a compact subset of R. In parts of the ML
literature, a distinction is made between categorical and dis-
crete variables based on their values: categorical refers to
an unordered set (e.g., different types of optimizers for neu-
ral network training) and discrete refers to an ordered set (
e.g., number of layers in a neural network). We do not make
such distinction because our HyBO approach works for both
cases. Concretely, by our definition, a categorical variable
is also a discrete variable, i.e., C(vg) is just the no. of candi-
date values for categorical variable v4. We are given a space
of hybrid structures X. We assume an unknown, expen-
sive real-valued objective function F : X — R, which can
evaluate each hybrid structure x (also called an experiment)
and produces an output y = F(x). For example, in high-
entropy alloys optimization application, x4 corresponds to
the presence/absence of metals and x. corresponds to their
relative concentrations, and F(x) corresponds to running a
physical lab experiment using additive manufacturing tech-

niques. The main goal is to find a hybrid structure z € X
that approximately optimizes F by conducting a limited
number of evaluations and observing their outcomes.

Bayesian Optimization Framework. BO is a very effi-
cient framework to solve global optimization problems us-
ing black-box evaluations of expensive objective functions
(Shahriari et al., 2016). BO algorithms intelligently select
the next input for evaluation guided by a learned statistical
model to quickly direct the search towards optimal inputs.
The three key elements of BO framework are:

1) Statistical model of the true function F(x). Gaussian
Process (GP) (Rasmussen & Williams, 2006) is the most
popular choice for statistical model. GPs allows to incorpo-
rate domain knowledge by defining an appropriate kernel
over the input space and have better uncertainty quantifica-
tion ability. A GP over a space X is a random process from
X to R. It is characterized by a mean function p : X — R
and a covariance or kernel function k : X x X — R.

2) Acquisition function (AJF) to score the utility of evaluat-
ing a candidate input z € X based on the statistical model
M. Expected improvement (EI) (Mockus et al., 1978) is a
prototypical acquisition function.

3) Optimization procedure to select the best scoring candi-
date input for evaluation according to AF.

Algorithm 1 HyBO Approach

Input: X = Hybrid input space, K(x, z’) = Kernel over hybrid
structures, AF (M, x) = Acquisition function parametrized by
model M and input x, F(x) = expensive objective function
Output: T, the best structure

1: Initialize Do < initial training data; and ¢ <— 0

2: repeat

3:  Learn statistical model: M; < GP-LEARN(D;, K)

4:  Compute the next structure to evaluate:

Ti41 ¢ argmarzex AF (M, )

5: z. < Optimize continuous subspace conditioned on
assignment to discrete variables x4
6: x4 < Optimize discrete subspace conditioned on assign-

ment to continuous variables x.
7:  Evaluate objective function F(z) at z++1 to get y¢41
8:  Aggregate the data: Dy41 < Dy U {(zt41, yet1)}
9 t+t+1
10: until convergence or maximum iterations
11: Zpest ¢ AgMarz,ep Yt
12: return the best uncovered hybrid structure Zpes¢

Hybrid Bayesian Optimization Approach. Our HyBO
approach is an instantiation of the generic BO framework by
instantiating the statistical model and acquisition function
optimization procedure for hybrid spaces (see Algorithm 1).

Statistical model over hybrid structures. We employ GPs to
build statistical models. To accurately model the complex
interactions between discrete and continuous variables, we
invoke a principled approach to automatically construct ad-
ditive diffusion kernels over hybrid structures by leveraging
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diffusion kernels over continuous and discrete spaces.

Acquisition function optimization. Suppose My is the sta-
tistical model at iteration ¢. Let us assume that AF (M, x)
is the acquisition function that need to be optimized to se-
lect the next hybrid structure z;; for function evaluation.
We solve this problem using an iterative procedure that per-
forms search over continuous sub-space (z.) and discrete
sub-space (z4) alternatively. For searching continuous and
discrete sub-spaces, we employ CMA-ES (Hansen, 2016)
and hill-climbing with restarts respectively. We observed
that one iteration of optimizing continuous and discrete sub-
spaces gave good results and they were not sensitive to more
iterations. All results of HyBO are with one iteration.

3. Related Work

The effectiveness of any BO approach over hybrid spaces
depends critically on the choice of surrogate model. Prior
work explored a variety of surrogate models. SMAC (Hutter
et al., 2010) employs random forest, which may suffer from
inaccurate uncertainty quantification due to its frequentist
estimation. TPE (Bergstra et al., 2011) models each input di-
mension independently by a kernel density estimator, which
can be restrictive due to large size of input dimensions and
no inter-dependency among models of different input di-
mensions. MiVaBO (Daxberger et al., 2020) employs a
Bayesian linear regressor by defining features that capture
the discrete part using BOCS model (Baptista & Poloczek,
2018; Deshwal et al., 2020a), continuous part using random
fourier features (Rahimi & Recht, 2007), and pairwise in-
teraction between continuous and discrete features. As the
number of parameters increase, it will need a lot of training
examples for learning accurate statistical model.

GP based models overcome the drawbacks of all the above
methods. (Garrido-Merchan & Hernandez-Lobato, 2020)
provided a solution for BO over discrete spaces using an
input-transformed kernel. A recent work referred as Co-
CaBO (Ru et al., 2020) employs a sum kernel (summing a
Hamming kernel over discrete subspace and a RBF kernel
over continuous subspace) to learn GP models and showed
good results over SMAC and TPE. Unfortunately, the sum
kernel captures limited interactions between discrete and
continuous variables. In contrast, our additive hybrid dif-
fusion kernel allows to capture higher-order interactions
among hybrid variables and our data-driven approach can
automatically learn the strengths of these interactions from
training data. HyperBand (HB) (Li et al., 2017) and its
model-based variant BOHB (Falkner et al., 2018) are effi-
cient multi-fidelity methods for hyper-parameter optimiza-
tion that build on existing methods to optimize hybrid spaces.
Our HyBO approach is complementary to this line of work.

Prior methods perform search over discrete and continuous

subspaces (e.g., gradient descent) to solve the acquisition
function optimization problem. SMAC employs a hand-
designed local search procedure. MiVaBO uses integer pro-
gram solvers to search discrete subspace. Learning methods
to improve the accuracy of search (Deshwal et al., 2020b)
are complementary to SMAC, MiVABO, and HyBO. Co-
CaBO maintains a separate multi-armed bandit for each dis-
crete variable and employs the EXP3 algorithm (Auer et al.,
2002) to select their values independently. This method
does not exploit dependencies among variables, which can
be detrimental to accuracy. TPE samples from the learned
density estimator to pick the best input for evaluation.

4. Diffusion Kernels over Hybrid Structures

We first provide the details of key mathematical and compu-
tational tools that are needed to construct hybrid diffusion
kernels. Next, we describe the algorithm to automatically
construct additive diffusion kernels over hybrid structures.
Finally, we present theoretical analysis to show that hybrid
diffusion kernels satisfy universal approximation property.

4.1. Key Mathematical and Computational Tools

Diffusion kernels (Kondor & Vert, 2004; Lafferty &
Lebanon, 2005) are inspired from the diffusion processes
occurring in physical systems like heat and gases. The
mathematical formulation of these processes naturally lends
to kernels over both continuous and discrete spaces(e.g.,
sequences, trees, and graphs).

Diffusion kernel over continuous spaces. The popular
radial basis function (RBF) kernel (also known as Gaussian
kernel) (Kondor & Vert, 2004) is defined as follows:

]. _ _ 2 2
o~ lle—a'1?/20

Ka') = 5 @.1)
where o is the length scale hyper-parameter. This is the
solution of the below continuous diffusion (heat) equation:

0
akwo (1'7 t) - Akl’o (LC, t) (42)

— 0 9?
where A = 327 T 9a7
tial operator known as the Laplacian operator, and k,, (z,t)
=k(x,2") with 2’ = 2 and t = 02 /2.

2 . .
.- 637 is the second-order differen-
D

4.2. Diffusion Kernel over discrete spaces

The idea of diffusion kernels for continuous spaces is ex-
tended to discrete structures (e.g., sequences, graphs) (Kon-
dor & Lafferty, 2002) by utilizing the spectral properties of
a graph representation of the discrete space. A discrete ana-
logue of the Equation 4.2 can be constructed by employing
the matrix exponential of a graph and the graph Laplacian
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operator L as given below:

9
~ _BL
aB°

where L is the graph Laplacian of a suitable graph represen-
tation of the discrete input space and 3 is a hyper-parameter
of the resulting diffusion kernel similar to the length scale
parameter o of the RBF kernel. The solution of Equation 4.3
defines a positive-definite kernel for discrete spaces known
as the discrete diffusion kernel.

= LeﬁL (4.3)

According to Equation 4.3, one important ingredient re-
quired for defining diffusion kernels on discrete spaces is a
suitable graph representation for discrete spaces. One such
representation was proposed in a recent work (Oh et al.,
2019). In this case, the entire discrete space is represented
by a combinatorial graph G. Each node in the vertex set V'
of the graph corresponds to one candidate assignment of all
the discrete variables. Two nodes are connected by an edge
if the Hamming distance between the corresponding assign-
ments for all discrete variables is exactly one. The diffusion
kernel over this representation is defined as follows:

k(V,V) = exp(—BL(G)) (4.4)
kE(V,V) = ®exp(—pI)dT 4.5)
where ® = [¢1, - - - , ¢v|] is the eigenvector matrix and IT

= [m1,- -+ ,my|| is the eigenvalue matrix, where ¢;’s and
m;’s are the eigenvectors and eigenvalues of the graph Lapla-
cian L(G) respectively. Although this graph representation
contains an exponential number of nodes, (Oh et al., 2019)
computes the graph Laplacian L(G) by decomposing it over
the Cartesian product (¢) of m (number of discrete vari-
ables) sub-graphs (G1,G5 - - - , G,,) with each sub-graph
G representing one variable individually. This algorithmic
approach has time-complexity O(>/~, (C(v;))?), where
C'(v;) is the number of candidate values (arity) for the ith
discrete variable. However, this method is computationally
expensive, especially, for problems with large-sized arity.

To avoid this computational challenge, we leverage prior
observation in (Kondor & Lafferty, 2002) which provides
a closed-form of the discrete diffusion kernel by exploiting
the structure of the above combinatorial graph representa-
tion. We explain this observation for binary variables {0, 1}.
From its definition in Equation 4.4, the discrete diffusion
kernel over single-dimensional input will be:

—e28
k/’(l’d,w:j) = { 8 + 6—2/3;

Since the kernel over /m > 1 dimensions is defined using the
Kronecker product over m dimensions, the above expression
is easily extended to multiple dimensions setting giving:

if Td 75 l‘:i

if Td = .%‘il (4'6)

m ,Qﬁq)é(zd alt

H (14 e—26:)

z:l

k(zgq, xd 4.7

where §(z%, z/¥) = 0 if 2, is equal to /¥ and 1 otherwise.
The subscript d denotes that the variables are discrete and
the superscript refers to the ¢th dimension of the discrete
subspace. For general (discrete spaces with arbitray cate-
gories), we follow the same observation (Kondor & Lafferty,
2002) and use the following constant-time expression of the
discrete diffusion kernel in our method:

m 1— e—C(Ui)ﬂi
k Q) =
(xd, CUd) H (1 T (C(Uz) — 1)60(1)1')&)

i=1

i i
§(zg,zq

(4.8)

4.3. Diffusion Kernels over Hybrid Spaces

Unifying view of diffusion kernels. Our choice of dif-
fusion kernels is motivated by the fact that they can be
naturally defined for both discrete and continuous spaces.
In fact, there is a nice transition of the diffusion kernel
from discrete to continuous space achieved by continuous
space limit operation. More generally, both discrete and
continuous diffusion kernel can be seen as continuous limit
operation on two parameters of random walks: time and
space. For illustration, consider a random walk on an evenly
spaced grid where mean time of jump is £ and mean gap
between two points is s. If ¢ — 0, the resulting continuous
time and discrete space random walk generates the diffusion
kernel on discrete spaces. Additionally, in the limit of the
grid spacing s going to zero, the kernel will approach the
continuous diffusion kernel.

Algorithm to construct hybrid diffusion kernels. We
exploit the general formulation of additive Gaussian pro-
cess kernels (Duvenaud et al., 2011) to define an addi-
tive hybrid diffusion kernel over hybrid spaces. The key
idea is to assign a base kernel for each input dimension
1 €{1,2,--- ,m+ n}, where m and n stand for the num-
ber of discrete and continuous variables in hybrid space X’;
and construct an overall kernel by summing all possible
orders of interactions (upto m + n) between these base ker-
nels. In our case, the RBF kernel and the discrete diffusion
kernel acts as the base kernel for continuous and discrete
input dimensions respectively. The p'" order of interaction
(called p*" additive kernel) is defined as given below:

P

— p2 /

Kp = ap E : (H kid(zidvxid)>
1<y <ig <o+ yip<mAn \d=1

where 0, is a hyper-parameter associated with each additive
kernel and k;, is the base kernel for the input dimension %4.
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In words, the pth additive kernel is a sum of (m;”) terms,
where each term is a product of p distinct base kernels. Esti-
mation of 6, hyper-parameter from data allows automatic
identification of important orders of interaction for a given
application. The overall additive hybrid diffusion kernel
Kryp(z,x") over hybrid spaces is defined as the sum of
all orders of interactions as given below:

m—+n

Kuve =Y K, (4.9)
p=1
m—+n P

K:HYB: 2(9127 Z Hkid(xid’x;d)) (410)

p=1 i1, iy d=1

It should be noted that the RHS in Equation 4.10 requires
computing a sum over exponential number of terms. How-
ever, this sum can be computed in polynomial time using
Newton-Girard formula for elementary symmetric polyno-
mials (Duvenaud et al., 2011). It is an efficient formula to
compute the pt" additive kernel recursively as given below:

1< :
Ky =62 52(_1)(%1);@[)_].5].

@.11)

Jj=1

where S; = "™ kJ is the jth power sum of all base
kernels k; and the base case for the recursion can be taken
as 1 (i.e., o = 1). This recursive algorithm for computing
additive hybrid diffusion kernel has the time complexity of
O((n+m)?).

Data-driven specialization of kernel for a given applica-
tion. In real-world applications, the importance of different
orders of interaction can vary for optimizing the overall per-
formance of BO approach (i.e., minimizing the number of
expensive function evaluations to uncover high-quality hy-
brid structures). For example, in some applications, we
may not require all orders of interactions and only few
will suffice. The 6, hyper-parameters in the additive hy-
brid diffusion kernel formulation allows us to identify the
strength/contribution of the pth order of interaction for a
given application in a data-driven manner. We can compute
these parameters (along with the hyper-parameters for each
base kernel) by maximizing the marginal log-likelihood, but
we consider a fully Bayesian treatment by defining a prior
distribution for each of them. This is important to account
for the uncertainty of the hyper-parameters across BO it-
erations. The acquisition function AF(z) is computed by
marginalizing the hyper-parameters as given below:

Af(x;D):/Af(x;D,@)p((a\D)d@ (4.12)

where © is a variable representing all the hyperparameters
(o for continuous diffusion kernel, 3 for discrete diffusion

kernel, and 6 for strengths of different orders of interac-
tion in hybrid diffusion kernel) and D represents the aggre-
gate dataset containing the hybrid structure and function
evaluation pairs. The posterior distribution over the hyper-
parameters is computed using slice sampling (Neal, 2003).

4.4. Theoretical Analysis

Intuitively, a natural question to ask about the modeling
power of a kernel is whether (given enough data) it can
approximate (with respect to a suitable metric) any black-
box function defined over hybrid spaces. This is a mini-
mum requirement that should guide our choice of kernel in
the given problem setting. This question has been studied
widely in the form of a key property called universality
of a kernel (Steinwart, 2001; Micchelli et al., 2006; Sripe-
rumbudur et al., 2011; Mania et al., 2018). In this section,
we prove the universality of the additive hybrid diffusion
kernel by combining the existing result on the universality
of RBF (Gaussian) kernel with a novel result proving the
universality of discrete diffusion kernels.

Proposition 1 (Steinwart, 2001; Micchelli et al., 2006) Let
X, be a compact and non-empty subset of R". The RBF
kernel in Equation 4.1 is a universal kernel on X..

A kernel k defined on an input space X, has a unique corre-
spondence with an associated Reproducing Kernel Hilbert
Space (RKHS) of functions H;, defined on X, (Steinwart
& Christmann, 2008). For compact metric input spaces
X., akernel k is called universal if the RKHS H,, defined
by it is dense in the space of continuous functions C'(X,).
(Steinwart, 2001) proved the universality of the RBF (Gaus-
sian) kernel with respect to the uniform norm. (Micchelli
et al., 2006) established universality for a larger class of
translation invariant kernels. (Sriperumbudur et al., 2011)
discussed various notions of universality and connected to
the concept of characteristic kernels.

Proposition 2 Let X be the discrete space {0,1}™ and a
psuedo-boolean function on X, is defined as f : Xq — R.
The discrete diffusion kernel is a universal kernel on Xy.

Proof. A Reproducing Kernel Hilbert Space #, associated
with a kernel £ : X x X — R is defined as:

Hi = c(span{k(z,-),Vx € X})

where ¢l represents the closure and k(z, -) is called as the
feature map of x (Steinwart & Christmann, 2008).

4.13)

In our setting, a kernel k£ defined on discrete input space
X, is universal if and only if any pseudo-Boolean func-
tion f can be written as a linear combination of functions
(k(ziy, ), Vi, € Xy) in the RKHS H), (Mania et al., 2018;
Gretton et al., 2012), i.e.

Vi Xao Ry Fa; €R; f =) aik(wi,,); (4.14)
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We prove that this is true by computing the explicit form
of functions (k(x,,,-), Vz;, € Xy) existing in the RKHS
‘H;. of the discrete diffusion kernel. To see this, we exploit
the structure of the combinatorial graph representation of
the discrete space discussed in Section 4.1. The discrete
diffusion kernel is defined in terms of the eigenvectors ¢;
and eigenvalues 7; of the graph Laplacian L(() as follows:

on

k(a, xy) =Y dilwa) exp(—Bmi)gilay]  (4.15)
=1

Since the combinatorial graph G is generated by the Carte-
sian product over sub-graphs G; (one for each discrete vari-
able), the eigenvectors term ¢;[x4] can be calculated via
an explicit formula, i.e., ¢;[x4] = —1“’T"Ed, where w is a
binary vector of size n (Chung & Graham, 1997) (number
of discrete variables).

o
k(za,ah) = > —1"" % exp(—fm;) — 1V % (4.16)
=1

272
< k(xa, ) k(al, ) >= D —19" % exp(—fm;) — 1% %
=1

4.17)

where the inner product in LHS follows from the reproduc-
ing property (Steinwart & Christmann, 2008) of a kernel
k. Therefore, the functions k(z4, ) in the RKHS Hj, of the
discrete diffusion kernel are of the form {—1%" ¥¢; w; €
[0,2™ — 1]}, which is the well-known Walsh Basis (Verel
et al., 2018) for pseudo-Boolean functions. Therefore, any
pseudo-Boolean function f can be represented by a linear
combination of functions in H, since they form a basis.

Theorem 4.1 Let X. be a compact and non-empty subset
of R™ and k. be RBF kernel on X.. Let X be the discrete
space {0,1}™ and kq be discrete diffusion kernel on X,.
The additive hybrid diffusion kernel defined in Eqn 4.10,
instantiated with k. and kg for continuous and discrete
spaces respectively, is a universal kernel for the hybrid
space X, X Xg.

According to Equation 4.9, any pth order of interaction
term in the additive hybrid diffusion kernel is defined as
(ITi= ki, (xiy,2},)). Therefore, if each k;, is universal
over its corresponding dimension X;, (which is true from
Propositions 1 and 2), we need to show that the product
(IT= ki (2i,, 2),)) is universal over the union of dimen-
sions X, X A, - X X . This was proven by Lemma A.5
in (Steinwart et al., 2016). We provide the lemma here for
completeness.

Lemma 4.2 From (Steinwart et al., 2016) Let X C R™ be
a compact and non-empty subset, I,J C {1,...,m} be

Name \ Name in the suite \ Dimension ‘
Function 1 f001.i01_d10 10 (8d, 2¢)
Function 2 f001.102_d10 10 (8d, 2¢)
Function 3 f001.101_d20 20 (16d, 4¢)
Function 4 f001.102_d20 20 (16d, 4¢)

Table 1. Benchmark problems from bbox-mixint suite.

non-empty, and kr and kj be universal kernels on X1 x Xj,
respectively. Then k; ® kj defined by

kr ® k.;(x, (E/) = k;(xbx}) . kJ(l'J,fE{])
forall z,x' € X; x X is a universal kernel on X; x Xj.

Since both continuous and discrete spaces are compact and
Lemma 4.2 is true for arbitrary compact spaces, each order
of interaction is universal with respect to its corresponding
ambient dimension &, X &, --- x &; . In particular, it is
true for m + nth order of interaction which is defined over
the entire hybrid space X, x &; which proves the theorem.

5. Experiments and Results

We first describe our experimental setup. Next, we discuss
experimental results along different dimensions.

5.1. Benchmark Domains

Synthetic benchmark suite. bbox-mixint is a chal-
lenging mixed-integer blackbox optimization benchmark
suite (Tusar et al., 2019) that contains problems of varying
difficulty. This benchmark suite is available via COCO plat-
form'. We ran experiments with multiple problems from
this benchmark, but for brevity, we present canonical results
on four benchmarks (shown in Table 1) noting that all the
results show similar trends.

Real world benchmarks. We employ six diverse real-
world domains. The complete details (function definition,
bounds for input variables etc.) are in the Appendix.

1) Pressure vessel design optimization. This mechani-
cal design problem (Kannan & Kramer, 1994; Tanabe &
Ishibuchi, 2020) involves minimizing the total cost of a
cylindrical pressure vessel. There are two discrete (thick-
ness of shell and head of pressure vessel) and two continuous
(inner radius and length of cylindrical section) variables.

2) Welded beam design optimization. The goal in this
material engineering domain (Deb & Goyal, 1996; Reklaitis
etal., 1983) is to design a welded beam while minimizing
the overall cost of the fabrication. There are six variables:
two discrete (type of welding configuration and bulk ma-
terial of the beam) and four continuous (weld thickness,
welded joint length, beam width and thickness).

"https://github.com/numbbo/coco
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3) Speed reducer design optimization. In this domain
from NASA (Cagnina et al., 2008), the goal is to mini-
mize the weight of a speed reducer defined over seven input
variables: one discrete (number of teeth on pinion) and
six continuous (face width, teeth module, lengths of shafts
between bearings, and diameters of the shafts)

4) Optimizing control for robot pushing. This is a 14 di-
mensional control parameter tuning problem, where a robot
is trying to push objects toward a goal location (Wang et al.,
2018). We consider a hybrid version of this problem by dis-
cretizing ten input variables corresponding to location of the
robot and number of simulation steps. The remaining four
parameters corresponding to rotation are kept as continuous.

5) Calibration of environmental model. The problem
of calibration and uncertainty analysis of expensive envi-
ronmental models is very important in scientific domains
(Bliznyuk et al., 2008; Astudillo & Frazier, 2019). There
are four input variables (one discrete and three continuous).

6) Hyper-parameter optimization. We consider hyper-
parameter tuning of a neural network model on a diverse set
of benchmarks (Gijsbers et al., 2019): five discrete (hidden
layer size, activation type, batch size, type of learning rate,
and whether to use early stopping or not) and three continu-
ous (learning rate initialization, momentum parameter, and
regularization coefficient) hyper-parameters.

5.2. Experimental Setup

Baseline methods. We compare HyBO with four strong
baselines: 1) CoCaBO, a state-of-the-art method (Ru et al.,
2020); 2) SMAC (Hutter et al., 2010); 3) TPE (Bergstra et al.,
2011); 4) HyBO w/o Marg is a special case of HyBO,
where we do not perform marginalization over the hyper-
parameters of the hybrid diffusion kernel; and 5) Cont -BO
treats discrete variables as continuous and performs stan-
dard BO over continuous spaces (both modeling and acqui-
sition function optimization). We did not include MivaBO
(Daxberger et al., 2020) as there was no publicly available
implementation (Daxberger) 2.

Configuration of algorithms and baselines. We configure
HyBO as follows. We employ uniform prior for the length
scale hyperparameter (o) of the RBF kernel. Horse-shoe
prior is used for 3 hyper-parameter of the discrete diffusion
kernel (Equation 4.8) and hyper-parameters 6 of the additive
diffusion kernel (Equation 4.9). We employ expected im-
provement (Mockus et al., 1978) as the acquisition function.
For acquisition function optimization, we perform iterative
search over continuous and discrete sub-spaces as shown
in Algorithm 1. For optimizing discrete subspace, we run
local search with 20 restarts. We normalize each continuous
variable to be in the range [—1, 1] and employed CMA-ES

ZPersonal communication with the lead author.

algorithm * for optimizing the continuous subspace. We
found that the results obtained by CMA-ES were not sen-
sitive to its hyper-parameters. Specifically, we fixed the
population size to 50 and initial standard deviation to 0.1 in
all our experiments. We employed the open-source python
implementation of CoCaBO 4 SMAC >, and TPE °.

All the methods are initialized with same random hybrid
structures. We replicated all experiments for 25 different
random seeds and report the mean and two times the stan-
dard error in all our figures.

Evaluation metric. We use the best function value achieved
after a given number of iterations (function evaluations) as
a metric to evaluate all methods. The method that uncov-
ers high-performing hybrid structures with less number of
function evaluations is considered better.

5.3. Results and Discussion

Results on mixed integer benchmark suite. Figure 1
shows the canonical results on four benchmarks from
bbox-mixint listed in Table 1 noting that all results show
similar trends. HyBO and its variant HyBO-Round performs
significantly better and converges much faster than all the
other baselines. One key reason for this behavior is that hy-
brid diffusion kernel accounts for higher-order interactions
between variables. Cont-BO performs the worst among
all the methods. This shows that simply treating discrete
variables as continuous is sub-optimal and emphasizes the
importance of modeling the structure in discrete variables.

Ablation results for statistical models. To understand the
reasons for the better performance of HyBO, we compare
the performance of its surrogate model based on hybrid
diffusion kernels with those of CoCaBO and SMAC. We
perform the following experiment. We constructed testing
dataset (pairs of hybrid structures and their function eval-
uations) of size 200 via uniform random sampling. We
compute the mean absolute error (MAE) of the three surro-
gate models as a function of training set size. The results
are shown in Figure 2 which depicts the mean and two times
standard error of the MAE on 25 random testing datasets.
HyBO clearly has very low error compared to CoCaBO and
SMAC on Function 1 and 2. Although HyBO has similar
MAE to CoCaBO in the beginning on Function 3 and 4, it
rapidly decreases as the training set size increases which
is not the case for other two methods. This experiment
provides strong empirical evidence for the fact that the pro-
posed surrogate model in HyBO can model hybrid spaces
more accurately when compared to CoCaBO and SMAC.

Ablation results for marginalization in HyBO. Bayesian

*https://github.com/CMA-ES/pycma
*nttps://github.com/rubinxin/CoCaBO_code
Shttps://github.com/automl/SMAC3
*https://github.com/hyperopt/hyperopt
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Figure 1. Results of HyBO and state-of-the-art baselines on bbob-mixint benchmark suite for functions shown in Table 1.
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Figure 2. Results showing mean absolute test error with increasing size of training set on the bbob-mixint synthetic benchmarks.
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Figure 3. Results comparing the proposed HyBO approach with state-of-the-art baselines on multiple real world benchmarks.

treatment of hyper-parameters (marginalization) is one key
component of our proposed HyBO method. However, to
decouple the efficacy of additive diffusion kernel from the
usage of marginalization, we performed experiments using
HyBO without marginalization (HyBO w/o Marg in Fig-
ures). As evident from Figure 1, HyBO w/o Marg finds
better solutions than all the baselines albeit with slower
convergence which is improved by adding marginalization.

Results for real-world domains. Figure 3 shows compari-
son of HyBO approach with baseline methods on all real-
world domains except hyper-parameter optimization. We
make the following observations. 1) HyBO consistently per-
forms better than all the baselines on all these benchmarks.
2) Even on benchmarks such as speed reducer design and
welded beam design where HyBO finds a similar solution
as CoCaBO, it does so with much faster convergence. 3)
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| Dataset | Cont-BO | TPE \ SMAC | CoCaBO | HyBO \
blood_transfusion | 76.089 (0.325) | 76.711 (0.432) | 76.658 (0.418) | 76.978 (0.455) | 77.819 (0.463)
kel 85.185 (0.129) | 85.637 (0.069) | 85.453 (0.087) | 85.415 (0.099) | 85.466 (0.116)
vehicle 80.501 (1.120) | 80.913 (1.051) | 83.669 (1.013) | 82.882 (1.222) | 86.104 (0.894)
segment 87.253 (0.995) | 87.792 (0.537) | 89.986 (0.692) | 89.639 (0.727) | 91.433 (0.277)
cnae 95.370 (0.103) | 95.691 (0.082) | 95.605 (0.063) | 95.679 (0.108) | 95.644 (0.135)
jasmine 77.317 (0.216) | 77.893 (0.071) | 77.460 (0.189) | 77.513 (0.202) | 77.121 (0.172)

Table 2. Results on the task of hyper-parameter tuning of neural network models. Bold numbers signify statistical significance.

Benchmark TPE | SMAC | CoCaBO | HyBO
Synthetic Function 1 0.012 2.34 2.30 50
Synthetic Function 2 0.012 0.98 1.31 50
Synthetic Function 3 0.026 2.99 3.18 180
Synthetic Function 4 0.026 1.98 2.96 180
Pressure Vessel Design | 0.003 0.34 0.85 20
Welded Beam Design | 0.004 | 0.64 1.02 40
Speed Reducer Design | 0.006 1.38 0.94 40
Push Robot 0.017 1.94 1.70 90
Environment model 0.005 0.31 0.50 40

Table 3. Computational cost in average wall-clock time (seconds) per BO iteration.

CoCaBO performs reasonably well on these benchmarks but
its performance is worse than HyBO demonstrating that its
sum kernel (along with Hamming kernel for discrete spaces)
is less powerful than hybrid diffusion kernel of HyBO. 4).
TPE has the worst performance on most benchmarks pos-
sibly a direct result of its drawback of not modeling the
interactions between input dimensions. 5) SMAC performs
poorly on all the benchmarks potentially due to poor uncer-
tainty estimates from random forest surrogate model.

Table 2 shows the final accuracy (mean and standard er-
ror) obtained by all methods including HyBO on the task
of tuning neural network models for six different datasets
(BO curves are similar for all methods). HyBO produces
comparable or better results than baseline methods.

Computational cost analysis. We compare the runtime of
different algorithms including HyBO. All experiments were
run on a AMD EPYC 7451 24-Core machine. Table 3 shows
the average wall-clock time (in seconds) per BO iteration.
We can see that HyBO is relatively expensive when com-
pared to baseline methods. However, for real-world science
and engineering applications, minimizing the cost of phys-
ical resources to perform evaluation (e.g., conducting an
additive manufacturing experiment for designing materials
such as alloys) is the most important metric. The computa-
tional cost for selecting inputs for evaluation is a secondary
concern. HyBO uses more time to select inputs for eval-
uation to minimize the number of function evaluations to
uncover better structures. We provide a finer-analysis of the
HyBO runtime in Table 4. Each kernel evaluation time with
all orders of interactions is very small. The overall runtime

is spent on two major things: a) Sampling from posterior
distributions of hyperparameters using slice sampling; and
b) AFO using CMA-ES + local search. We can reduce the
sampling time by considering HyBO without marginaliza-
tion which shows slightly worse performance, but takes only
10 percent of the sampling time in HyBO.

Orders of HyBO . Kernel
interaction iter);ltion AFO | Sampling eval.
2 62 46 16 0.005
5 68 50 18 0.006
10 102 68 34 0.010
20 (HyBO) 180 114 66 0.020

Table 4. Average runtime (seconds) for different orders of interac-
tion within hybrid kernel for synthetic Function 3.

6. Conclusions

We studied a novel Bayesian optimization approach referred
as HyBO for optimizing hybrid spaces using Gaussian pro-
cess based surrogate models. We presented a principled
approach to construct hybrid diffusion kernels by combin-
ing diffusion kernels defined over continuous and discrete
sub-spaces in a tractable and flexible manner to capture
the interactions between discrete and continuous variables.
We proved that additive hybrid kernels have the universal
approximation property. Our experimental results on di-
verse synthetic and real-world benchmarks show that HyBO
performs significantly better than state-of-the-art methods.
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