
Versatile Verification of Tree Ensembles – Supplement

Laurens Devos 1 Wannes Meert 1 Jesse Davis 1

A. Proof of Theorem 2
We repeat the equations relevant to Theorem 2. The follow-
ing is the single-instance constraint optimization problem:

max
x∈X

T (x) subject to C(x). (3)

Next, the state expansion formula:

C([l1i1 , . . . , l
m
im]) =

{[l1i1 , . . . , l
m
im , l

m+1] | lm+1 ∈ Lm+1,

box(l1i1 , . . . , l
m
im , l

m+1) 6= ∅}. (4)

Finally, the definition of the scoring function f = g + h:

g(s) =

m∑
m′=1

νm
′

im′ , (5)

h(s) =

M∑
m′=m+1

hm′(s), (6)

hm′(s) = max{ νm′

j | lm′ ∈ Lm′
,

box(l1i1 , . . . , l
m
im
, lm

′
) 6= ∅ }.

(7)

Theorem 2. The heuristic search in S is guaranteed to find
the max-clique in G which corresponds to the optimal out-
put configuration of the optimization problem in Equation 3.

Proof. We show that the heuristic is consistent and thus
admissible, which ensures that the search finds the optimal
solution in an optimally efficient way (Dechter & Pearl,
1985).

For each state s = [l1i1 , . . . , l
m
im

] and any extension t =

[l1i1 , . . . , l
m
im
, lm+1

j], h is consistent when h(s) ≥ νm+1
j +

h(t). Unlike h(t), h(s) contains a term hm+1(s), which
is an overestimation of νm+1

j , that is, hm+1(s) ≥ νm+1
j .

Additionally, each hm′(s) ≥ hm′(t),m + 1 < m′ ≤ M
because box(s) ⊇ box(t), and consequently, each νm

′

j

considered in the max of hm′(t) is also considered in the
max of hm′(s) (Equation 7).

1Department of Computer Science, KU Leuven, Leu-
ven, Belgium. Correspondence to: Laurens Devos <lau-
rens.devos@kuleuven.be>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

B. Proof of Consistent Heuristic Equation 9
We prove that h2(s2)− h1(s1) is a consistent heuristic for
the optimization problem in Equation 2 of the main paper
(admissibility follows from consistency). First, we show
that h1 is a consistent heuristic:
Theorem B.1. The heuristic obtained by replacing max by
min in Equation 7 in the main paper, i.e.,

h1(s1) =

M∑
m′=m+1

min{ νm′ | lm′ ∈ Lm′
,

box(l1i1 , . . . , l
m
im
, lm

′
) 6= ∅ },

is a consistent heuristic for the minimization problem
minx1

T1(x1).

Proof. For minimization problems, consistent means that
h1(s1) ≤ ν + h1(t1) for two consecutive states s1 and t1,
and the leaf value ν added to g1(t1) = g1(s1) + ν. This
proof is analogous to the previous proof of Theorem 2.

Theorem B.2. The heuristic h(s1, s2) = h2(s2)− h1(s1)
is a consistent heuristic for the optimization problem in
Equation 2 of the main paper, i.e.,

max
x1,x2∈X

T2(x2)− T1(x1) subject to C(x1,x2).

Proof. We show that h(s1, s2) ≥ −ν1 + h(t1, s2) and
h(s1, s2) ≥ ν2+h(s1, t2), for successive state pairs (s1, t1)
and (s2, t2) and leaf values ν1 and ν2 added when transi-
tioning from s1 to t1 and s2 to t2 respectively.

We use the fact that h1 is a consistent heuristic with respect
to the minimization of T1(x1) (h1(s1) ≤ ν1 + h1(t1)) and
h2 is a consistent heuristic with respect to the maximization
of T2(x2) (h2(s2) ≥ ν2 + h2(t2)).

For the first case:

h(s1, s2) = h2(s2)− h1(s1)

≥ h2(s2)− (ν1 + h1(t1))

= −ν1 + h(t1, s2).

For the second case:

h(s1, s2) = h2(s2)− h1(s1)

≥ (ν2 + h2(t2))− h1(s1)

= ν2 + h(s1, t2).

Versatile Verification of Tree Ensembles – Supplement

This concludes the proof.

C. Details of Experiments
Table 1 gives an overview of the properties and param-
eters used for each dataset. Each model was trained on
a training set consisting of 90% of all data. The re-
maining 10% is used as the test set. The learning rate
is always determined using hyper-parameter optimization
given an ensemble size and a tree depth. We train mod-
els with learning rates 0.25, 0.5, 0.75, 1.0, pick the best
value η, and then again train models with learning rates
η − 0.17, η − 0.083, η + 0.083, η + 0.17. The best η value
is determined based on the performance on the test data.

We used XGBoost version 1.2.1 (Chen & Guestrin, 2016).

C.1. Robustness Details

To find a lower bound of the l∞ distance to the closest
adversarial example, we do a binary search. We begin with
a start value δ = δstart (see Table 1), and maintain lower
and upper limits δ

¯
and δ̄, initially 0 and δstart. We proceed

as follows. For a binary classification problem and for an
example x with a negative predicted label T (x) < 0, solve
the following optimization problem:

max
x̂∈X

T (x̂) subject to ||x− x̂||∞ < δ.

Both VERITAS and MERGE compute an upper bound b̄ on
this maximum value. If b̄ is less than zero, then we are
certain that no x̂ can exist with a flipped label within a
distance δ of x. So we increase our estimate δ = δ

¯
+ (δ̄ −

δ
¯
)/2, with δ

¯
set to the last δ. If b̄ is greater than zero, then

a x̂ may exist with a positive label, so we decrease our
estimate δ = δ

¯
− (δ̄ − δ

¯
)/2, with δ̄ set to the last δ. For an

instance with a positive label, the step are analogous but we
minimize instead of maximize.

For a multi-classification problem like MNIST and Fashion-
MNIST, we use the two-instance setting. For an example x
with label l, do a binary search for all other labels l′ 6= l, and
in each step of the binary search, optimize the following:

max
x̂∈X

Tl′(x̂)− Tl(x̂) subject to ||x− x̂||∞ < δ,

i.e., optimize the difference between the weight of the clas-
sifier for label l and the weight of the classifier for l′. If
this difference is positive, then a x̂ may exist for which
the classifier is more confident in its prediction for label l′

than for label l. The δ values are updated as in the binary
classification case.

A (suboptimal) full solution – which VERITAS can generate
when using the ARA* heuristic – can be used to update
δ̄. The distance between the suboptimal solution and x is

VERITAS

MERGE

0 20

0

25
OOM (8.0Gb)

Time

Model
output

Figure 1. A typical example of how VERITAS’s upper and lower
bounds progress over time in comparison to MERGE’s upper bound.
VERITAS finds tight upper and lower bounds. Merge runs out of
memory (OOM) before the timeout of 30 seconds.

indeed an upper limit of the optimal δ, as the optimal dis-
tance is either smaller or the same. Using these suboptimal
solutions in the search improves the convergence rate.

For a single invocation of the optimization problem, an up-
per bound b̄ is computed. Figure 1 shows a single illustrative
example of how VERITAS’s and MERGE’s bound develop as
time proceeds. Two examples of the updates by the binary
search to the δ values are plotted in Figure 2.

0 2 4 6 8
0
5

10
15
20

digits 5 vs. 4

VERITAS

MERGE

0 2 4 6 8

digits 8 vs. 3δ

step

Figure 2. Illustrations of two binary search executions on two
MNIST digits, a 5 and an 8. VERITAS and MERGE compute
a lower bound on the distance δ to the closest adversarial example
that is classified as a 4 (left) and a 3 (right). The background colors
indicate the remaining binary search interval on δ. A higher δ

¯value is better.

References
Chen, T. and Guestrin, C. XGBoost: A scalable tree boost-

ing system. In Proceedings of the 22nd acm sigkdd in-
ternational conference on knowledge discovery and data
mining, pp. 785–794. ACM, 2016.

Dechter, R. and Pearl, J. Generalized best-first search strate-
gies and the optimality of a*. J. ACM, 32(3):505–536,
1985.

Versatile Verification of Tree Ensembles – Supplement

Table 1. Overview of the properties and parameters used for each dataset. The columns are the number of rows n, the number of attributes
k, the number of treesM , the maximum depth d, the learning rate η, the start δ of the robustness binary search, and the MERGE parameters
T and L, and the accuracy on the test set.

Dataset n k M d η δstart T L Acc.

covtype 581 012 54 80 8 1.0 0.2 2 2 94.9%
f-mnist 70 000 784 200 8 0.33 20 2 1 91.1%
higgs 11 000 000 28 300 8 0.33 0.05 4 1 76.0%
ijcnn1 49 990 22 60 8 0.25 0.1 2 2 98.9%
mnist 70 000 784 200 8 0.33 40 2 2 98.3%
webspam 350 000 254 100 8 0.33 0.05 2 1 99.3%
mnist2v6 13 866 784 1000 4 0.25 40 4 1 99.6%

