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Abstract 

Machine learned models often must abide by cer- 

tain requirements (e.g., fairness or legal). This 

has spurred interested in developing approaches 

that can provably verify whether a model satisfies 

certain properties. This paper introduces a generic 

algorithm called V ERITAS that enables tackling 

multiple different verification tasks for tree ensem- 

ble models like random forests (RFs) and gradient 

boosted decision trees (GBDTs). This generality 

contrasts with previous work, which has focused 

exclusively on either adversarial example gener- 

ation or robustness checking. V ERITAS formu- 

lates the verification task as a generic optimization 

problem and introduces a novel search space rep- 

resentation. V ERITAS offers two key advantages. 

First, it provides anytime lower and upper bounds 

when the optimization problem cannot be solved 

exactly. In contrast, many existing methods have 

focused on exact solutions and are thus limited 

by the verification problem being NP-complete. 

Second, V ERITAS produces full (bounded sub- 

optimal) solutions that can be used to generate 

concrete examples. We experimentally show that 

our method produces state-of-the-art robustness 

estimates, especially when executed with strict 

time constraints. This is exceedingly important 

when checking the robustness of large datasets. 

Additionally, we show that V ERITAS enables tack- 

ling more real-world verification scenarios. 

1. Introduction 

Currently, it is becoming more common for deployed ma- 

chine learned models to conform to requirements (e.g., le- 

gal) or exhibit specific properties (e.g., fairness). This has 

motivated the development of verification approaches that 

are applicable to learned models. Given a specific property, 

these techniques verify, that is, prove whether or not the
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property holds. Examples of verification questions include: 

• Adversarial example generation: Given a data ex- 

ample, can slightly perturbing it cause its predicted 

label to flip? (Szegedy et al., 2013; Goodfellow et al., 

2014; Einziger et al., 2019) 

• Robustness checking: Given a data example, what is 

the minimum distance to such an adversarial example? 

(Carlini & Wagner, 2017; Ranzato & Zanella, 2020) 

• Feature dominance: Given a set of constraints de- 

scribing a class of data examples of interest, can we 

find one or more attributes where changing their values 

would disproportionately affect the model’s prediction? 

• Fairness: Do two instances exist that differ only on 

their protected attributes (e.g. sex, race, age) or a proxy 

variable, but have different predicted labels? (Dwork 

et al., 2012) 

If a property is violated, it is desirable to also return con- 

structed counter examples. For instance, if an adversarial 

example exists it is useful to see one concrete instance as 

this could, for example, be added to the training set. 

The popularity of additive tree ensembles (e.g., random 

forests (Breiman, 2001) and gradient boosted tree mod- 

els (Chen & Guestrin, 2016; Ke et al., 2017; Devos et al., 

2019)) has motivated interest in developing verification tech- 

niques for this model class. Most current work is character- 

ized by its focus on (1) solving one specific type of verifica- 

tion problem (e.g., adversarial example generation (Einziger 

et al., 2019) or robustness checking (Chen et al., 2019b; 

Törnblom & Nadjm-Tehrani, 2020; Ranzato & Zanella, 

2020)) and (2) developing exact solutions. While exact 

solutions are desirable, in practice they are not always fea- 

sible because verification tasks on additive ensembles are 

NP-complete (Kantchelian et al., 2016). 

One recent approximate approach is due to Chen et al. 

(2019b), who proposed a graph-based approach that com- 

putes an upper bound rather than a full solution if time and 

space limits are exceeded. However, this approach has three 

important limitations. First, the search steps are very coarse- 

grained, and the algorithm often terminates after only a few 

steps. Second, the algorithm is not guided by a heuristic,
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so a selected step may not improve the bound. Practically, 

this translates into the algorithm generating looser bounds. 

Third, the approach only is able to generate a (counter) 

example if the search terminates. 

This paper introduces a generic anytime algorithm called 

V ERITAS – Veri fication of T rees using A nytime S earch – 

for addressing multiple different types of verification tasks 

on tree ensembles. This contrasts with existing work that 

focuses on a single verification task. The key insight under- 

lying V ERITAS is that a large class of verification problems 

can be posed as a generic constrained optimization problem. 

We propose a novel search space for which an admissible 

heuristic exists, which confers two advantages. First, it 

provides anytime upper and lower bounds. Second, it can 

generate a concrete example using the current lower bound. 

Empirically, on robustness checking, V ERITAS finds better 

quality approximations than its competitor while still often 

being faster. Moreover, it typically results in order of magni- 

tude speedups compared to exact approaches. Furthermore, 

we demonstrate V ERITAS ’s versatility in terms of being able 

to address multiple verification tasks. First, we show several 

illustrative examples on a feature dominance task. Finally, 

we highlight how V ERITAS can give insights into a learned 

ensemble’s behavior on two use cases from soccer analytics. 

V ERITAS is available as an open-source package.1 

2. Preliminaries 

2.1. Additive Tree Ensembles 

The framework described in this paper reasons about addi- 

tive ensembles of binary trees .2 A binary tree T consists 

of two types of nodes. An internal node stores a split condi- 

tion and references to a left and a right child node. The split 

condition is a less-than comparison X < τ defined on an 

attribute X for some threshold τ . Splits on binary attributes 

are possible using τ = 0 . 5 . A leaf node has no children and 

simply stores an output value ν called the leaf value . The 

root node is the only node that has no parent. 

Given a data example x from the input space X , a tree 

is evaluated by recursively traversing it starting from the 

root node. For internal nodes, the node’s split condition is 

tested on x ; if the test succeeds, the procedure is recursively 

applied to the left child node, else, it is applied to the right 

child node. If a leaf node is encountered, the leaf value is 

returned and the procedure terminates. 

The box of leaf l , denoted box( l ) , defines a hypercube of the 

input space by conjoining all split condition from the root 

to l . All data examples x ∈ box( l ) evaluate to leaf l . For 

example, box( l2 

2) in Figure 1 equals { Age < 50 , Height ≥

 

1https://github.com/laudv/veritas 

2Note that all trees can be represented as binary trees. 

200 } . We also define the definition of box for a set of leafs: 

box( l1 , . . . , l 

M ) = 

⋂ 

m box( l 

m) . Two leafs overlap when 

the intersection of their boxes is non-empty. For example, 

in Figure 1, leaf l2 

2 

overlaps with l1 

1, but does not with l3 

3. 

An additive ensemble of trees is a sum of trees T = 

T 1 + · · · + T 

M . We use l 

m 

i 

to denote the i th leaf of 

tree T 

m. Given a data example x , T evaluates to the 

sum of the evaluations of all trees. The set of leaf nodes 

whose leaf values contribute to the output of the ensem- 

ble is called an output configuration of the ensemble. 

The box of an output configuration is by definition non- 

empty. For all data examples x in an output configuration’s 

box, the output of the ensemble is fixed because the same 

leafs are activated each time. For example, in Figure 1, 

box( l1 

1 

, l2 

1 

, l3 

1) = { Age < 40 , Height < 200 , BMI < 28 } . 

All data examples in that box will evaluate to ν1 

1 

+ ν2 

1 

+ ν3 

1 . 

2.2. M ERGE : Robustness Verification 

Chen et al. (2019b) present a method for robustness verifi- 

cation of tree ensembles. Their algorithm produces a lower 

bound δ
¯ 

on the distance to the closest adversarial example 

for a particular example x and uses a 10-step binary search. 

Given a model T , a data example x with predicted label 

T ( x ) , and a maximum distance δ , they verify whether an 

example x̃ in the area of x , || x − x̃ ||∞ 

< δ , exists that 

flips the predicted label: T (x̃ ) ̸ = T ( x ) . If such an example 

exists, the area surrounding x is shrunk by decreasing δ , 

else, the area is expanded by increasing δ . This is repeated 

10 times or until enough precision on δ
¯ 

is obtained. 

To prove that no x̃ exists with a flipped label within a dis- 

tance δ from x , Chen et al. use a graph representation of 

the ensemble model and a merge procedure defined on the 

independent sets3 of the graph to compute an upper bound 

on the ensemble’s output. When the upper bound is less 

than zero, it is impossible for the ensemble to output the 

positive class for any example in the area surrounding x . 

The graph G has one vertex for each leaf l 

m 

i 

of each tree 

T 

m in ensemble T . Two vertexes are connected by an edge 

when their boxes overlap. Figure 1 shows an ensemble 

and its corresponding graph representation. When verifying 

robustness, only the neighborhood surrounding an example 

x is considered. This is accomplished by including only the 

leafs that are accessible by examples close to x . Specifically, 

only leafs l 

m 

i 

for which a x̃ ∈ box( l 

m 

i 

) , || x − x̃ ||∞ 

< δ 

exists are included in the graph. For example in Figure 1, 

with δ = 5 and x = { Age : 60 , Height : 180 , BMI : 21 } , only 

leafs l1 

2, l2 

1, and l3 

1 

are included. 

The graph has two key properties: (1) there is a one-to-one 

correspondence between the trees in the ensemble and the in-

 

3An independent set is a subset of vertexes such that no two 

vertexes in the set are connected by an edge.

https://github.com/laudv/veritas
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Figure 1. An example ensemble with (a) three trees and (b) its 

multipartite graph transformation G , with l 

m 

i 

the i th leaf of tree 

Tm. The graph consists of M = 3 independent sets, one for each 

tree, and are denoted by a gray rectangular background. Edges 

in G connect leafs that have overlapping boxes. A max-clique 

contains exactly one vertex from each independent set (tree), and 

corresponds to an output configuration of the ensemble. An ex- 

ample max-clique in G is [ l1 

1 

, l2 

1 

, l3 

1] denoted by bold vertexes and 

bold edges. 

dependent sets, and (2) there is a one-to-one correspondence 

between an output configuration and a max-clique. 

Lemma 1 (Lemma 1, proof in (Chen et al., 2019b)) . A set 

of leafs is a max-clique in G iff it is an output configuration. 

Chen et al.’s main contribution is realizing that merging 

independent sets maintains the property in Lemma 1 and 

improves the upper bound on the ensemble’s output b̄ :

  \label {eq:upper-bnd} \sum _{m} \max _{i} \nu ^m_i, 

















 

(1) 

where m ranges over the remaining independent sets and 

ν 

m 

i 

are the leaf values of the vertexes in independent set m . 

The M ERGE algorithm has three major drawbacks. First, it 

is coarse-grained: the number of merge levels or steps is at 

most ⌈ log2( M ) ⌉ . The computational difficulty of each level 

grows exponentially, both in terms of time and memory, 

which means in practice that the algorithm stalls after only a 

two or three levels. This greatly limits the claimed anytime 

nature of M ERGE . Second, it is not guided by a heuristic and 

most of its work does not improve the bound in Equation 1. 

Third, the algorithm only produces a full solution when it 

runs to completion, i.e., all independent sets are merged 

into one. In Chen et al.’s (Chen et al., 2019b) experiments, 

M ERGE always produced better approximations than its 

competitors while being faster on 15 out of 18 reported 

cases. That is why we use M ERGE as a baseline in our 

experiments. 

3. V ERITAS : Verification as a Constrained 

Optimization Problem 

Consider the following optimization problems: 

Robustness checking Let T be a binary classi- 

fier that classifies example x as negative. If 

max|| x −x̃ ||∞ 

<δ 

T (x̃ ) < 0 , then no positively classi- 

fied perturbed example can exist within distance δ 

from x . 

Fairness Suppose an insurance company estimates its 

clients’ health scores using model T and wants to know 

which attributes affect the health score of middle-aged 

women the most. Given two middle-aged female indi- 

viduals x1 

and x2 

that differ only in a single attribute, 

the most dominant attribute is the one that maximizes 

T ( x2) − T ( x1) . The insurance company could take 

precautions if the most dominant attribute is a protected 

attribute, because that could be considered unfair. 

Both these examples belong to a class of verification prob- 

lems that can be modeled as a generic optimization prob- 

lem : find two examples that (1) satisfy the given constraints 

and (2) maximize the difference between the outputs of two 

models . Formally, the optimization problem is:

  \label {eq:opt2} \max _{ \bm {x}_1, \bm {x}_2 \in \mathcal {X} } \bm {T}_2(\bm {x}_2) - \bm {T}_1(\bm {x}_1) \quad \text {subject to} \quad \mathcal {C}(\bm {x}_1, \bm {x}_2). 









    



 

(2) 

where T1 

and T2 

are models, x1 

and x2 

are examples from 

the input space X , and C : X 2 → { true , false } is a function 

defining constraints on the input space. In many cases, we 

only consider a single model T . Taking T1 

to be the trivial 

model that always predicts 0.0, and T2 

= T , yields the 

maximization problem:

  \label {eq:opt1} \max _{\bm {x}\in \mathcal {X}} \bm {T}(\bm {x}) \quad \text {subject to} \quad \mathcal {C}(\bm {x}). 





   

 

(3) 

Minimizing T is also possible by taking T1 

= T , and mak- 

ing T2 

the trivial model. Note that we simplify C because 

the example of the trivial model does not affect the outcome. 

The algorithm presented in this paper, V ERITAS , is a search 

algorithm that solves the optimization problem in Equa- 

tion 2. The algorithm operates in a novel search space 

inspired by Chen et al.’s graph representation G . It is fine- 

grained as a single step is cheap, heuristically guided and 

does not waste time in irrelevant parts of the search space. 

The algorithm is anytime and outputs ever-improving up- 

per bounds, lower bounds, and suboptimal full solutions as 

it is running. As more time and memory is provided, the 

bounds grow closer until the exact full solution is found. 

As this problem is NP-complete (Kantchelian et al., 2016), 

it might take a long time until the bounds converge to an 

exact solution. This makes the fine-grained anytime nature 

of V ERITAS particularly compelling.
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We will first introduce the search space. Then, we will show 

how this space is used to solve the optimization problem in 

Equation 2. For ease of explanation, we will first tackle the 

single-instance setting in Equation 3, and then extend our 

method to support the two-instance setting. 

3.1. The Search Space S 

The search is not executed directly in G , but rather in a 

sound and complete search space S derived from G . The 

states of S are cliques in G and are represented as sequences 

of leaf nodes. Starting from the initial empty sequence [ ] 

at depth 0, the search space recursively builds up output 

configurations by adding leafs to the state in order, one leaf 

per tree. Specifically, a state s = [ l1 

i1 

, . . . , l 

m 

im
] at search 

depth m is expanded to states C ( s ) at depth m + 1 :

&C([l^1_{i_1}, \ldots , l^m_{i_m}]) = \nonumber \\ &\qquad \{ [l^1_{i_1}, \ldots , l^m_{i_m}, l^{m+1}] \mid l^{m+1} \in L^{m+1},\nonumber \\ &\qquad \qquad \mathrm {box}(l^1_{i_1}, \ldots , l^m_{i_m}, l^{m+1}) \neq \emptyset \label {eq:children} \},





    



 





    







 

 





    







  

 

where Lm +1 is the set of all leafs of tree T 

m +1. The ex- 

pand function C ensures that each expanded state is again a 

clique in G by allowing only states with non-empty boxes. 

When depth m = M is reached, an output configuration, or 

equivalently a max-clique is found. The search space has 

two important properties. 

Theorem 1. Each state at depth m = M corresponds to 

an output configuration (i.e., a max-clique in G ), and the 

search space enumerates all output configurations, that is, 

the enumeration is sound and complete. 

Proof. We show that S is sound and complete . 

Soundness: We show that any state s = [ l1 

i1 

, . . . , l 

M 

iM
] is an 

output configuration. By definition of C in Equation 4, the 

box of the state is non-empty. For each data example x in 

the state’s box, it holds that x ∈ box( l 

m 

im
) , m = 1 , . . . , M . 

Because of the properties of tree evaluation and the defini- 

tion of box , tree T 

m evaluates x to leaf l 

m 

im
. Therefore, a 

data example x exists that activates all leaf nodes in s , and 

the configuration is valid. Using Lemma 1, it follows that s 

is a max-clique in G . 

Completeness: Assume an output configuration O = 

{ l1 

i1 

, . . . , l 

M 

iM 

} so that [ l1 

i1 

, . . . , l 

M 

iM
] is not a state in the 

search space. Let s = [ l1 

i1 

, . . . , l 

m 

im
] ⊂ O and t = 

[ l1 

i1 

, . . . , l 

m 

im 

, l 

m +1 

im +1
] ⊆ O be sequences of leaf nodes 

such that s is a state in S , but t is not. It must be 

that t / ∈ C ( s ) . This can only be true when box( t ) = 

box( l1 

i1 

, . . . , l 

m 

im 

, l 

m +1 

im +1
) = 

⋂m +1 

m′=1 box( l 

m′ 

im′ ) = ∅ . This 

contradicts the fact that O is an output configuration.

 

3.2. Finding The Best State at Depth M 

To solve the optimization problem in Equation 3, we need to 

find the state in S at depth M with the maximum output that 

adheres to the constraints C . Constructing S explicitly and 

choosing the optimal state by enumerating all possibilities 

is intractable in practice. For that reason, we introduce an 

admissible and consistent heuristic to traverse the space 

in a best-first fashion. This allows us to only materialize the 

parts of S that are relevant to the problem. 

The search is based on A*. It maintains an OPEN list of 

states in S and repeatedly expands the state in OPEN with 

the best f -value until a state at depth M is found. It removes 

the current best state s = [ l1 

i1 

, . . . , l 

m 

im
] from OPEN and adds 

all its successors C ( s ) to OPEN. The f -value is the sum 

of two values: g ( s ) , the sum of the leaf values of the leafs 

in the state, and the heuristic h ( s ) , an estimation of the 

remaining value to a state at depth M :

\label {eq:g} g(s) &= \sum _{m'=1}^m \nu ^{m'}_{i_{m'}},\\ \label {eq:h} h(s) &= \sum _{m'=m+1}^M h_{m'}(s), \\ \label {eq:hm} h_{m'}(s) &= \max \{ \begin {array}[t]{l} \nu ^{m'}_j \mid l^{m'} \in L^{m'},\\ \mathrm {box}(l^1_{i_1},\ldots ,l^m_{i_m}, l^{m'}) \neq \emptyset \ \}. \end {array}























  







 







    








  



 

Intuitively, the heuristic h ( s ) sums upper bounds hm′( s ) for 

all remaining trees T 

m′ 

for which no leaf has been added 

to the state yet. The upper bound hm′( s ) is the maximum 

leaf value of any leaf of T 

m′ 

that overlaps with all leafs in s . 

Note that we do not need to keep a VISITED list, because 

there are no cycles. We show that this heuristic leads us to 

the optimal solution next. 

Theorem 2. The heuristic search in S is guaranteed to find 

the max-clique in G which corresponds to the optimal out- 

put configuration of the optimization problem in Equation 3. 

(Proof in supplement.) 

3.3. Anytime Upper and Lower Bound Estimates 

Depending on the size and difficulty of the problem, the 

search defined above might take a long time to find a solu- 

tion. However, even when the search is terminated prema- 

turely, the current best state in the OPEN list still contains 

useful information: because h is admissible, the current best 

f -value is an upper bound b̄ on the optimal output. 

To also produce a lower bound on the maximum output of 

the ensemble, we borrow ideas from Anytime Repairing 

A* (ARA*) (Likhachev et al., 2004). The importance of 

the heuristic in the f -value is reduced by ϵ , 0 < ϵ ≤ 1 as 

follows:

  \label {eq:f-ara} f(s) = g(s) + \epsilon h(s). 

   

 

(8)
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This promotes deeper solutions, yielding full solutions much 

quicker. However, when ϵ < 1 , the solutions might no 

longer be optimal because ϵh ( s ) is no longer an admissible 

heuristic. Nonetheless, the suboptimality is bounded by ϵ : 

for a suboptimal solution x̃ , the optimal solution’s output 

is no larger than T (x̃ ) /ϵ . A suboptimal solution x̃ is at 

least as good as the optimal solution, so T (x̃ ) is a lower 

bound b
¯ 

on the optimal output. While ϵ -tightness is a useful 

property of ARA*, we mainly use ARA* for its ability to 

produce suboptimal solutions quickly. We have found that, 

overall, A*’s upper bounds tend to converge faster and more 

smoothly, and are thus preferred over ARA*’s upper bounds. 

Both the upper bound and the lower bound are anytime: The 

best f -value in the OPEN list is always accessible. The ϵ 

value in the relaxed f -score of Equation 8 can be gradually 

increased each time a suboptimal solution is found. Using 

ARA* means that it is not necessary to restart the search 

from scratch: the OPEN list can be reused, making the 

incremental increase of ϵ a cheap operation.4 

3.4. Incorporating Constraints into the Search 

A naive way of incorporating the constraint function C in 

Equations 2 and 3 is to ignore it during the search, and filter 

solutions returned by the search. This is inefficient, as the 

constraints often rule out large chunks of the search space. 

For that reason, we lift C to the search state level. For exam- 

ple, considering the example in Figure 1 and the constraint 

Age > 60 , we reject states [ l1 

1] , [ l1 

2 

, l2 

2] , and [ l1 

2 

, l2 

1 

, l3 

2] . 

Let Cs 

: S → { true , false } be a function mapping the states 

of the search space to accept or reject. The function has the 

following two properties: 

1. It is consistent with C : a state s is accepted by Cs 

if 

and only if it is possible to find a data example x that 

sorts to the leafs in s and C ( x ) is true. 

2. It is consistent across states: if Cs( s ) = false , and t ⊇ 

s is a descendant from s , then Cs( t ) = false . In words: 

if a state is rejected by Cs, then all its state expansions 

must also be rejected. This property ensures that we 

do not reject states that are the predecessor of a valid 

state. 

Because all split conditions in the tree ensemble are simple 

linear constraints, the two properties are trivially satisfied. 

The constraint function Cs 

can be integrated into the search 

procedure by only adding accepted states to the OPEN list. 

For simple linear constraints, we can prune the graph G 

before the search starts, just like in the M ERGE algorithm.

 

4Our case is more simple than the general case in (Likhachev 

et al., 2004) because we do not have cycles. 

3.5. Maximizing the Difference Between Two Models 

Now we explain the necessary adjustments to enable solving 

Equation 2. The search space is modified as follows: a 

state is extended to consist of two sequences of leafs, one 

sequence for each instance. The expand function alternately 

expands the first and the second instance using Equation 4. 

The f -value maximized by the search is updated to the 

difference between the f -values of the two instances:

f(s_1, s_2) &= f_2(s_2) - f_1(s_1)\nonumber \\ &= g(s_2) - g(s_1) + h_2(s_2) - h_1(s_1).



    

       

 

The g (Equation 5) and h2 

(Equation 6) remain unchanged. 

The first heuristic h1 

is an admissible and consistent heuris- 

tic with respect to the minimizing variant of Equation 3 

obtained by replacing max by min in Equation 7. This 

makes h2 

− h1 

an admissible and consistent heuristic for 

the optimization problem in Equation 2 (proof in appendix). 

3.6. Summarizing the Setup 

We now have all necessary tools to answer verification ques- 

tions. First, train a tree ensemble. Second, define the con- 

straint function Cs. The complexity of this step greatly de- 

pends on the verification question.5 Third, give the learned 

model and Cs 

to V ERITAS , which will produce a stream of 

decreasing upper bounds b̄ , and a stream of increasing lower 

bounds b
¯ 

= T (x̃ ) , with x̃ suboptimal full solutions. Given 

infinite time and memory, the bounds converge: b̄ = b
¯
, and 

the last x̃ is the optimal solution. 

3.7. Complexity Analysis 

The worst-case complexity of V ERITAS is O ( LM ) , with 

L the average number of leafs per tree and M the number 

of trees. While this is the same as M ERGE , V ERITAS out- 

performs M ERGE in practice. V ERITAS only needs m − 1 

smaller cliques to reach any m -clique, and will only explore 

cliques that challenge the current best output value based 

on the heuristic estimate. M ERGE , on the other hand, only 

considers cliques at level l (of size T 

l)6 after having enu- 

merated all cliques in the previous levels. The number of 

cliques per level grows exponentially. This allows V ERITAS 

to more quickly visit larger cliques that have tighter output 

bounds while using less memory. 

The worst-case complexity of h ( s ) in terms of box overlap 

checks is O ( M L ) : the overlap between the box of s and the 

boxes of all leafs of the remaining trees is checked.

 

5In general, this step can be framed as a SAT problem: is it 

possible that an x ∈ box( s ) exists that satisfies the constraints. 

6 T is a parameter of M ERGE controlling the number of inde- 

pendent sets merged per level
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4. Experimental Evaluation 

The goal of our experiments is two-fold. First, we compare 

V ERITAS to current approaches on the standard problem of 

checking the robustness of tree ensembles. Second, we want 

to highlight the versatility of V ERITAS by looking at two 

general verification use cases that most existing methods 

cannot address: finding dominant attributes in a specific con- 

text, and asking domain specific questions about a model. 

4.1. Verifying Robustness 

Given an example x , robustness checking tries to find the 

l∞ 

distance δ to the closest adversarial example x̃ such 

that the labels for x and x̃ are different. That is, find the 

smallest δ such that || x − x̃ ||∞ 

< δ , and T ( x ) ̸ = T (x̃ ) . 

Because this is a NP-hard problem, finding the optimal 

δ is often computationally expensive. This is particularly 

true if one wants to check all examples in a large training 

set. In our experiments, the average time to find the exact 

solution using MILP for reasonably large datasets ranges 

from around 10 seconds up to more than 2500 seconds 

per example. Given a training set of 100,000 examples, 

checking each one would yield times ranging from 11 days 

to 2890 days. Hence, approximations are needed which 

introduce a tradeoff between the time taken to produce an 

approximate solution and the quality of the found solution. 

We compare V ERITAS to the exact MILP approach 

(Kantchelian et al., 2016) and the highly performant approx- 

imate approach M ERGE (Chen et al., 2019b) for robustness 

verification with the aim of addressing two questions: 

Q1 How does each approach perform in terms of the time 

and solution quality tradeoff? 

Q2 How does each approach’s ability to produce a suffi- 

ciently accurate solution vary as a function of time? 

4.1.1. D ATASETS AND M ETHODOLOGY 

We used the original author’s implementation of M ERGE . 

We used our own implementation of the MILP approach 

with Gurobi 9.1.1 (Gurobi Optimization, 2021) as the solver. 

The mathematical model is exactly as described in the orig- 

inal paper (Kantchelian et al., 2016). An overview of the 

parameters per dataset is given in the supplementary ma- 

terial. All experiments ran on an Intel(R) Xeon(R) CPU 

E3-1225 with 32GiB of memory. V ERITAS ’s memory usage 

was restricted to 1GiB, and never used more than 150MiB. 

M ERGE ’s memory limit was increased to 8GiB as it often 

failed to run with 4GiB of memory. 

We compare on seven commonly used datasets for checking 

robustness (e.g., (Chen et al., 2019b)). All models were 

trained using XGBoost (Chen & Guestrin, 2016) using the 

Table 1. Average l∞-distance δ to the nearest adversarial example, 

the time t in seconds, speed-up factor with respect to MILP, and 

the standard deviation σt 

of time t . The results are aggregated over 

n examples. MILP produces exact results, whereas M ERGE and 

V ERITAS produce lower bounds. The δ values for M ERGE and 

V ERITAS are expressed as ratios δapprox /δexact. Values closer to 

100% are better. The best results are indicated with a *.

 

MILP M ERGE V ERITAS

 

covtype δ 0 . 00796 56 . 9% 99 . 2% * 

( n = 500 ) t 37 . 3 2 . 88 0 . 505 * 

13 × 74 × 

σt 

25 . 6 32 . 2 0 . 0737 *

 

f-mnist δ 8 . 07 86 . 8% 90 . 8% * 

( n = 900 ) t 85 . 2 0 . 253 * 6 . 47 

337 × 13 × 

σt 

62 0 . 0874 * 0 . 307

 

higgs δ 0 . 00183 46 . 3% 88 . 1% * 

( n = 100 ) t 2640 2 . 87 1 . 45 * 

922 × 1828 × 

σt 

1560 14 . 3 0 . 292 *

 

ijcnn1 δ 0 . 0212 90% 99 . 5% * 

( n = 500 ) t 9 . 31 2 . 82 0 . 33 * 

3 × 28 × 

σt 

1 . 96 25 . 9 0 . 0674 *

 

mnist δ 10 . 4 83 . 5% 85 . 5% * 

( n = 900 ) t 30 . 2 4 . 26 2 . 21 * 

7 × 14 × 

σt 

17 . 5 9 . 52 0 . 121 *

 

webspam δ 0 . 00119 68 . 5% 94 . 7% * 

( n = 500 ) t 36 . 2 1 . 17 * 1 . 34 

31 × 27 × 

σt 

13 . 3 13 . 1 0 . 225 *

 

mnist2v6 δ 6 . 74 91 . 7% 95 . 1% * 

( n = 500 ) t 0 . 66 0 . 0707 * 1 . 6 

9 × 0 × 

σt 

0 . 178 * 0 . 655 0 . 329
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same number of trees and tree depth as reported in (Chen 

et al., 2019b). We performed hyperparameter optimization 

to tune the learning rate. All details of the datasets and 

parameters are summarized in the supplementary materials. 

All datasets except MNIST and Fashion-MNIST were min- 

max-normalized. The robustness values for MNIST and 

Fashion-MNIST are pixel intensity values. Note that in 

boosted tree ensembles, classes are assigned as follows: for 

binary classification, the positive class is predicted when 

T ( x ) > 0 ; for multi-classification, multiple one-versus-all 

ensembles are trained, and the class with the highest weight 

is predicted. 

4.1.2. R ESULTS 

Table 1 shows the results for Q1 . It shows the (approximate) 

distance to the nearest adversarial example as well as the 

average time in seconds and its standard deviation to per- 

form robustness checking for each approach. MILP always 

returns an exact δ whereas V ERITAS and M ERGE return a 

lower bound. V ERITAS always achieves a better average 

lower bound than M ERGE , being never further than 15% 

away from the optimal value, and deviating by less than 5% 

on 4 out of 7 datasets. Being exact comes at a substantial 

cost in time for MILP: V ERITAS is faster on six of the seven 

dataset. When V ERITAS wins, it achieves massive time sav- 

ing by being between 13 and 1828 times faster than MILP. 

Time wise, V ERITAS is faster than M ERGE on four datasets 

and tends to have a much smaller standard deviation. 

To answer Q2 , we explore how the fraction of examples that 

are verified varies as a function of time. We consider an 

example verified when (1) the δ value is produced within 

the time budget, and (2) the quality of the δ value is good 

enough. We measure the quality of the δi 

of task i as fol- 

lows:

  |\delta _i - \delta _i^{\mathrm {exact}}| < \frac {1}{n} \sum _j | \delta _j^\merge {} - \delta _j^{\mathrm {exact}} |, 





























 

that is, the absolute error with respect to the optimal solution 

is less than the absolute error of M ERGE averaged over 

all examples. As we use M ERGE as the state-of-the-art 

reference algorithm, we also use M ERGE ’s mean absolute 

error as a reference error value. 

Figure 2 shows the results for this experiment. When one 

algorithm verifies more examples than another for a spe- 

cific time budget t , its curve is above those of the other 

algorithms. V ERITAS dominates M ERGE for either all or 

the vast majority of the time budgets on five out of the six 

datasets. Moreover, it is quite difficult to control M ERGE ’s 

run time, which is reflected in the straight-line behavior 

for larger time budgets.7 For Fashion-MNIST, MNIST and

 

7The gentle curved increase for covertype and MNIST is due 

to variance on the run times. 

webspam, M ERGE can initially be faster than V ERITAS . In 

its first level, M ERGE is effective at removing many leaf 

value combinations without the overhead of a heuristic, im- 

proving the bounds quickly. However, as the number of 

cliques generated per level grows exponentially, the time it 

takes M ERGE to expand and store all of them dwarfs the 

overhead of the heuristic later on. Finally, MILP can only 

verify more than 50% of the examples within 10 seconds on 

the ijcnn1 and MNIST2v6 datasets. For ijcnn1, this might 

be explained by the fact that a smaller model with only 60 

trees is used. For MNIST2v6, which uses a 1000-tree model, 

the reason why MILP does so well is still unclear. 

4.1.3. D ISCUSSION 

V ERITAS produces better solutions than M ERGE , and often 

does it in less time. Moreover, it is fine-grained: the user has 

full control over the run time of the algorithm, and V ERITAS 

produces better approximations as it is given more time. 

Therefore the time-versus-approximation-quality trade-off 

can be effectively explored. 

In contrast, while M ERGE is generally fast, it does not offer 

fine-grained control. For example, for 10 random examples 

from the covertype dataset, M ERGE takes 0.43 seconds on 

average using parameters T = 2 and L = 2 . Changing 

L to 3 increases the average run time to 11 seconds. For 

L = 4 , M ERGE does not produce any results as it hits the 

8GiB memory limit after 8.5 minutes of total run time. A 

parameter configuration that results in an average run time 

between 0.43 and 11 seconds simply does not exist. 

We presented the MILP algorithm as an exact method, but in 

reality, MILP also produces anytime upper (UB) and lower 

bounds (LB). However, MILP’s bounds tends to be very 

loose until right before it finds the optimal solution. Hence, 

they are generally not informative within the time ranges 

of M ERGE and V ERITAS . To illustrate this, we recorded 

the time needed for the gap in MILP’s bounds to reach 

20%, i.e., LB / UB ≥ 0 . 8 . Over all experiments in Table 1, 

MILP’s total run time is 114 hours and stopping when a 

gap of 20% is reached would save a mere 12 minutes. In 

comparison, V ERITAS ’s total run time is 2.7 hours and 82% 

of the time, the gap between its answer and the optimal 

solution is within 20%. Moreover, stopping MILP when it 

reaches a 20% gap versus waiting until the optimal solution 

only rarely results in a speed-up of more than 5%: 4.0% 

(covtype), 0.4% (f-mnist), 0.0% (higgs), 0.7% (mnist), 2.6% 

(ijcnn1), 0.2% (webspam), 2.6% (mnist2v6). 

Finally, with state-of-the-art solvers like Gurobi (Gurobi Op- 

timization, 2021), the MILP formulation performs better 

than previously reported. In some cases, the value of having 

exact results might outweigh the computational cost.
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Figure 2. Fraction of instances that are verified as time progresses. An instance is considered verified when (1) a δ value is produced 

within the time limit, and (2) the absolute distance to the optimal robustness value (MILP) is less than the mean absolute error of M ERGE . 

4.2. Finding Dominant Attributes: YouTube 

For this experiment we use a dataset generated from trending 

YouTube videos. The task is to predict the order of mag- 

nitude of views given a bag-of-words representation of the 

words used in the title and description of the video. We use 

a GBDT model with 100 trees of depth 10. Given a number 

of initial words, we ask V ERITAS to produce k additional 

words such that the predicted view count is maximized. The 

state function Cs 

checks the at-most- k constraint. Some 

examples: 

• live, breaking, news, war → adding words big and trail- 

ers increases the prediction by 2 orders of magnitude. 

• epic, challenge → adding words album , video , and 

remix increases the prediction by almost 5 orders of 

magnitude. 

This approach represents a generic strategy that allows rea- 

soning about the (inflated) importance or dominance of one 

or more attributes. Other examples are fairness: given a set 

of constraints on the input space, maximize or minimize 

the output of the ensemble when only varying the values of 

one or more protected (proxy) attributes. If V ERITAS finds 

examples of individuals that are treated significantly differ- 

ently, then that might indicate unwanted model behavior. 

4.3. Domain Specific Questions: Soccer 

Another strength of our approach is that it can provide in- 

sights into learned models. To motivate this, consider the 

canonical task in soccer analytics of assigning a value to on- 

the-ball actions performed by players (Rudd, 2011; Decroos 

et al., 2019). These approaches value actions by estimating 

the probability of scoring in each game state, which is often 

done with a tree ensemble (Decroos et al., 2019). Then ac- 

tions are valued by how much they increase this probability. 

An open question is in what situations is it useful to pass the 

ball backwards?8 To answer this question for tree ensem-

 

8This question was discussed on panel at sports analyt- 

ics conference: https://www.youtube.com/watch?v= 

bles, one could look at all backward passes and simply select 

those assigned a positive value. What would be more useful 

would be to characterize situations where the model thinks 

passing the ball backwards would be useful. This is possible 

with V ERITAS . To illustrate this capability, we analyze the 

action-value models and expected goals (xG) (Lucey et al., 

2014) models. These models are trained using event stream 

data, which is a common source of data about professional 

soccer matches that is collected by having human annotators 

watch soccer matches and record information such as the 

location and time of on-the-ball events like passes and shots. 

The models used are similar in size and complexity to those 

used in professional soccer scouting software. 

Understanding Action-Value Models For this experiment 

we train a model that predicts the probability of scoring a 

goal in soccer within the next 10 actions (Decroos et al., 

2019). The model has 126 trees (early stopping) of depth 

10. The input for the model is two consecutive game states 

described by the position of the ball and the two action types 

(pass, shot, etc.). 

We investigate two questions (1) what ball action from the 

midfield will maximize the probability of scoring? and (2) 

in which contexts does a backwards pass increase the prob- 

ability of scoring in the next 10 actions? Because the action 

types are one-hot encoded, only one of these variables can 

be set to one in a valid instance. Therefore, to ensure that 

V ERITAS generates legal instances we need to include a 

state constraint function Cs 

that imposes a one-out-of- k con- 

straint for the one-hot-encoded action types. 

Figure 3 shows two generated instances. The pass for the 

first question (shown in blue) shows an aggressive probing 

pass to a dangerous area near the goal. The pass for the 

second shows a cutback from the touchline to the center of 

the pitch. These types of passes often create a dangerous 

situation since they force the goalie to rapidly reposition 

themselves. 

Understanding xG Models. We train a model that predicts
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(a)

 

(b)

 

Figure 3. (a) The blue arrow shows the optimal position for a pass 

from the midfield to end. The green arrow shows the result for the 

backwards pass question: V ERITAS generates a cut back with a 

positive goal probability. (b) A heatmap indicating where V ERITAS 

generates instances with the highest goal probability. 

the probability that a shot results in a goal using the publicly 

available toolset soccer-xg (Robberechts & Davis, 2020).9 

The model consists of 100 trees of depth 4. 

We answer: what are the optimal locations to shoot from out- 

side of the penalty box? We used V ERITAS to generate 200 

examples of shots from outside the penalty box that would 

have the highest chance of resulting in a goal. Figure 3.b is a 

heatmap showing the locations on the pitch for the instances 

generated by V ERITAS . One cluster of instances is found 

on the edge of the box, directly in front of the center of the 

goal. This makes sense and corresponds to areas where it 

is advantageous for teams to shoot from (Van Roy et al., 

2021). However, the instances generated near the corner 

spots are unexpected. Therefore we investigated the data. In 

the square 5m around the corner spot, there are 11 shots and 

8 goals, which yields an extremely high 72% conversion 

rate. One possible explanation is to recall that this data is 

recorded by human annotators. If a player kicks the ball 

from the locations near the corner, the annotators are likely 

labeling the action as a pass or cross and are only assigning 

an action the label of a shot in the unlikely event that it re- 

sults in a goal or save . This highlights how verification can 

identify unexpected patterns in the data, and hence provide 

insight into, e.g., how the data was collected and annotated. 

5. Related work 

A considerable amount of work has been done on verifica- 

tion of tree ensembles. Most work has focused on adver- 

sarial attacks (Einziger et al., 2019; Zhang et al., 2020) and 

robustness (Kantchelian et al., 2016; Chen et al., 2019b; Ran- 

zato & Zanella, 2020; Törnblom & Nadjm-Tehrani, 2021). 

Törnblom & Nadjm-Tehrani introduced the VoTE frame- 

work, a system that enumerates all equivalence classes – 

sets of data examples that evaluate to the same output value, 

equivalent to the concept of output configurations in this pa- 

per – and checks whether some property holds. The proper- 

ties that can be tested are general. However, the approach is 

limited by the number of equivalence classes, which quickly

 

9https://github.com/ML-KULeuven/soccer_xg 

grows exponentially large (Törnblom & Nadjm-Tehrani, 

2020). 

Logical SMT theorem provers have also been used (Einziger 

et al., 2019; Sato et al., 2019; Devos et al., 2021), as have 

mixed-integer linear programming tools (Kantchelian et al., 

2016). These approaches translate ensemble models to their 

respective languages and apply general purpose solvers to 

prove certain properties of the models. Others have ap- 

plied tools from program analysis like abstract interpreta- 

tion to verification of tree ensembles (Ranzato & Zanella, 

2020; Drews et al., 2020; Calzavara et al., 2020; Törnblom 

& Nadjm-Tehrani, 2019; 2021). There is also work that 

focuses on learning robust models (Chen et al., 2019a; 

Calzavara et al., 2019). Rather than verifying the robustness 

of existing models, these methods build models that are less 

susceptible to adversarial attacks. Wang et al. show how 

the approach of Chen et al. can be extended to any p -norm. 

They show that the complexity of robustness checking can 

vary depending on the used norm for some models (Wang 

et al., 2020). 

We did not compare to Silva (Ranzato & Zanella, 2020) 

and VoTE (Törnblom & Nadjm-Tehrani, 2021) because 

these systems do not estimate the distance to the closest 

adversarial example. Rather, they only check robustness for 

the easiest, most restrictive case (e.g. for MNIST, they only 

check ∃x̃ : || x − x̃ ||∞ 

< 1 ). 

6. Conclusion 

We introduced V ERITAS , a tree ensemble verification tool 

that is capable of solving verification tasks that can be mod- 

eled as a generic optimization problem. It operates in a 

novel sound and complete search space and traverses that 

space using an admissible and consistent heuristic. V ERI - 

TAS is the first fine-grained anytime algorithm to produce 

both an upper and a lower bound on the output of a tree 

ensemble model. Additionally, it also generates full subop- 

timal solutions that converge to the optimal solution when 

given enough time and memory. We empirically show that 

V ERITAS outperforms the state of the art in terms of quality 

of the bounds and that for many tasks, V ERITAS is also 

faster, and its run time can be controlled to a much finer 

degree. 
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