
Versatile Verification of Tree Ensembles

Laurens Devos 1 Wannes Meert 1 Jesse Davis 1

Abstract

Machine learned models often must abide by cer-

tain requirements (e.g., fairness or legal). This

has spurred interested in developing approaches

that can provably verify whether a model satisfies

certain properties. This paper introduces a generic

algorithm called V ERITAS that enables tackling

multiple different verification tasks for tree ensem-

ble models like random forests (RFs) and gradient

boosted decision trees (GBDTs). This generality

contrasts with previous work, which has focused

exclusively on either adversarial example gener-

ation or robustness checking. V ERITAS formu-

lates the verification task as a generic optimization

problem and introduces a novel search space rep-

resentation. V ERITAS offers two key advantages.

First, it provides anytime lower and upper bounds

when the optimization problem cannot be solved

exactly. In contrast, many existing methods have

focused on exact solutions and are thus limited

by the verification problem being NP-complete.

Second, V ERITAS produces full (bounded sub-

optimal) solutions that can be used to generate

concrete examples. We experimentally show that

our method produces state-of-the-art robustness

estimates, especially when executed with strict

time constraints. This is exceedingly important

when checking the robustness of large datasets.

Additionally, we show that V ERITAS enables tack-

ling more real-world verification scenarios.

1. Introduction

Currently, it is becoming more common for deployed ma-

chine learned models to conform to requirements (e.g., le-

gal) or exhibit specific properties (e.g., fairness). This has

motivated the development of verification approaches that

are applicable to learned models. Given a specific property,

these techniques verify, that is, prove whether or not the

1Department of Computer Science, KU Leuven, Leu-

ven, Belgium. Correspondence to: Laurens Devos <lau-

rens.devos@kuleuven.be>.

Proceedings of the 38

th International Conference on Machine

Learning , PMLR 139, 2021. Copyright 2021 by the author(s).

property holds. Examples of verification questions include:

• Adversarial example generation: Given a data ex-

ample, can slightly perturbing it cause its predicted

label to flip? (Szegedy et al., 2013; Goodfellow et al.,

2014; Einziger et al., 2019)

• Robustness checking: Given a data example, what is

the minimum distance to such an adversarial example?

(Carlini & Wagner, 2017; Ranzato & Zanella, 2020)

• Feature dominance: Given a set of constraints de-

scribing a class of data examples of interest, can we

find one or more attributes where changing their values

would disproportionately affect the model’s prediction?

• Fairness: Do two instances exist that differ only on

their protected attributes (e.g. sex, race, age) or a proxy

variable, but have different predicted labels? (Dwork

et al., 2012)

If a property is violated, it is desirable to also return con-

structed counter examples. For instance, if an adversarial

example exists it is useful to see one concrete instance as

this could, for example, be added to the training set.

The popularity of additive tree ensembles (e.g., random

forests (Breiman, 2001) and gradient boosted tree mod-

els (Chen & Guestrin, 2016; Ke et al., 2017; Devos et al.,

2019)) has motivated interest in developing verification tech-

niques for this model class. Most current work is character-

ized by its focus on (1) solving one specific type of verifica-

tion problem (e.g., adversarial example generation (Einziger

et al., 2019) or robustness checking (Chen et al., 2019b;

Törnblom & Nadjm-Tehrani, 2020; Ranzato & Zanella,

2020)) and (2) developing exact solutions. While exact

solutions are desirable, in practice they are not always fea-

sible because verification tasks on additive ensembles are

NP-complete (Kantchelian et al., 2016).

One recent approximate approach is due to Chen et al.

(2019b), who proposed a graph-based approach that com-

putes an upper bound rather than a full solution if time and

space limits are exceeded. However, this approach has three

important limitations. First, the search steps are very coarse-

grained, and the algorithm often terminates after only a few

steps. Second, the algorithm is not guided by a heuristic,

Versatile Verification of Tree Ensembles

so a selected step may not improve the bound. Practically,

this translates into the algorithm generating looser bounds.

Third, the approach only is able to generate a (counter)

example if the search terminates.

This paper introduces a generic anytime algorithm called

V ERITAS – Veri fication of T rees using A nytime S earch –

for addressing multiple different types of verification tasks

on tree ensembles. This contrasts with existing work that

focuses on a single verification task. The key insight under-

lying V ERITAS is that a large class of verification problems

can be posed as a generic constrained optimization problem.

We propose a novel search space for which an admissible

heuristic exists, which confers two advantages. First, it

provides anytime upper and lower bounds. Second, it can

generate a concrete example using the current lower bound.

Empirically, on robustness checking, V ERITAS finds better

quality approximations than its competitor while still often

being faster. Moreover, it typically results in order of magni-

tude speedups compared to exact approaches. Furthermore,

we demonstrate V ERITAS ’s versatility in terms of being able

to address multiple verification tasks. First, we show several

illustrative examples on a feature dominance task. Finally,

we highlight how V ERITAS can give insights into a learned

ensemble’s behavior on two use cases from soccer analytics.

V ERITAS is available as an open-source package.1

2. Preliminaries

2.1. Additive Tree Ensembles

The framework described in this paper reasons about addi-

tive ensembles of binary trees .2 A binary tree T consists

of two types of nodes. An internal node stores a split condi-

tion and references to a left and a right child node. The split

condition is a less-than comparison X < τ defined on an

attribute X for some threshold τ . Splits on binary attributes

are possible using τ = 0 . 5 . A leaf node has no children and

simply stores an output value ν called the leaf value . The

root node is the only node that has no parent.

Given a data example x from the input space X , a tree

is evaluated by recursively traversing it starting from the

root node. For internal nodes, the node’s split condition is

tested on x ; if the test succeeds, the procedure is recursively

applied to the left child node, else, it is applied to the right

child node. If a leaf node is encountered, the leaf value is

returned and the procedure terminates.

The box of leaf l , denoted box(l) , defines a hypercube of the

input space by conjoining all split condition from the root

to l . All data examples x ∈ box(l) evaluate to leaf l . For

example, box(l2

2) in Figure 1 equals { Age < 50 , Height ≥

1https://github.com/laudv/veritas

2Note that all trees can be represented as binary trees.

200 } . We also define the definition of box for a set of leafs:

box(l1 , . . . , l

M) =

⋂

m box(l

m) . Two leafs overlap when

the intersection of their boxes is non-empty. For example,

in Figure 1, leaf l2

2

overlaps with l1

1, but does not with l3

3.

An additive ensemble of trees is a sum of trees T =

T 1 + · · · + T

M . We use l

m

i

to denote the i th leaf of

tree T

m. Given a data example x , T evaluates to the

sum of the evaluations of all trees. The set of leaf nodes

whose leaf values contribute to the output of the ensem-

ble is called an output configuration of the ensemble.

The box of an output configuration is by definition non-

empty. For all data examples x in an output configuration’s

box, the output of the ensemble is fixed because the same

leafs are activated each time. For example, in Figure 1,

box(l1

1

, l2

1

, l3

1) = { Age < 40 , Height < 200 , BMI < 28 } .

All data examples in that box will evaluate to ν1

1

+ ν2

1

+ ν3

1 .

2.2. M ERGE : Robustness Verification

Chen et al. (2019b) present a method for robustness verifi-

cation of tree ensembles. Their algorithm produces a lower

bound δ
¯

on the distance to the closest adversarial example

for a particular example x and uses a 10-step binary search.

Given a model T , a data example x with predicted label

T (x) , and a maximum distance δ , they verify whether an

example x̃ in the area of x , || x − x̃ ||∞

< δ , exists that

flips the predicted label: T (x̃) ̸ = T (x) . If such an example

exists, the area surrounding x is shrunk by decreasing δ ,

else, the area is expanded by increasing δ . This is repeated

10 times or until enough precision on δ
¯

is obtained.

To prove that no x̃ exists with a flipped label within a dis-

tance δ from x , Chen et al. use a graph representation of

the ensemble model and a merge procedure defined on the

independent sets3 of the graph to compute an upper bound

on the ensemble’s output. When the upper bound is less

than zero, it is impossible for the ensemble to output the

positive class for any example in the area surrounding x .

The graph G has one vertex for each leaf l

m

i

of each tree

T

m in ensemble T . Two vertexes are connected by an edge

when their boxes overlap. Figure 1 shows an ensemble

and its corresponding graph representation. When verifying

robustness, only the neighborhood surrounding an example

x is considered. This is accomplished by including only the

leafs that are accessible by examples close to x . Specifically,

only leafs l

m

i

for which a x̃ ∈ box(l

m

i

) , || x − x̃ ||∞

< δ

exists are included in the graph. For example in Figure 1,

with δ = 5 and x = { Age : 60 , Height : 180 , BMI : 21 } , only

leafs l1

2, l2

1, and l3

1

are included.

The graph has two key properties: (1) there is a one-to-one

correspondence between the trees in the ensemble and the in-

3An independent set is a subset of vertexes such that no two

vertexes in the set are connected by an edge.

https://github.com/laudv/veritas

Versatile Verification of Tree Ensembles

(a) T1

Age < 40

l11 l12

+

T2

Height < 200

l21 Age < 50

l22 l23

+

T3

BMI < 28

l31 Age < 50

l32 l33

↓ ↓ ↓

(b)

l11

l12

l21

l22

l23

l31

l32

l33

Figure 1. An example ensemble with (a) three trees and (b) its

multipartite graph transformation G , with l

m

i

the i th leaf of tree

Tm. The graph consists of M = 3 independent sets, one for each

tree, and are denoted by a gray rectangular background. Edges

in G connect leafs that have overlapping boxes. A max-clique

contains exactly one vertex from each independent set (tree), and

corresponds to an output configuration of the ensemble. An ex-

ample max-clique in G is [l1

1

, l2

1

, l3

1] denoted by bold vertexes and

bold edges.

dependent sets, and (2) there is a one-to-one correspondence

between an output configuration and a max-clique.

Lemma 1 (Lemma 1, proof in (Chen et al., 2019b)) . A set

of leafs is a max-clique in G iff it is an output configuration.

Chen et al.’s main contribution is realizing that merging

independent sets maintains the property in Lemma 1 and

improves the upper bound on the ensemble’s output b̄ :

 \label {eq:upper-bnd} \sum _{m} \max _{i} \nu ^m_i,

(1)

where m ranges over the remaining independent sets and

ν

m

i

are the leaf values of the vertexes in independent set m .

The M ERGE algorithm has three major drawbacks. First, it

is coarse-grained: the number of merge levels or steps is at

most ⌈ log2(M) ⌉ . The computational difficulty of each level

grows exponentially, both in terms of time and memory,

which means in practice that the algorithm stalls after only a

two or three levels. This greatly limits the claimed anytime

nature of M ERGE . Second, it is not guided by a heuristic and

most of its work does not improve the bound in Equation 1.

Third, the algorithm only produces a full solution when it

runs to completion, i.e., all independent sets are merged

into one. In Chen et al.’s (Chen et al., 2019b) experiments,

M ERGE always produced better approximations than its

competitors while being faster on 15 out of 18 reported

cases. That is why we use M ERGE as a baseline in our

experiments.

3. V ERITAS : Verification as a Constrained

Optimization Problem

Consider the following optimization problems:

Robustness checking Let T be a binary classi-

fier that classifies example x as negative. If

max|| x −x̃ ||∞

<δ

T (x̃) < 0 , then no positively classi-

fied perturbed example can exist within distance δ

from x .

Fairness Suppose an insurance company estimates its

clients’ health scores using model T and wants to know

which attributes affect the health score of middle-aged

women the most. Given two middle-aged female indi-

viduals x1

and x2

that differ only in a single attribute,

the most dominant attribute is the one that maximizes

T (x2) − T (x1) . The insurance company could take

precautions if the most dominant attribute is a protected

attribute, because that could be considered unfair.

Both these examples belong to a class of verification prob-

lems that can be modeled as a generic optimization prob-

lem : find two examples that (1) satisfy the given constraints

and (2) maximize the difference between the outputs of two

models . Formally, the optimization problem is:

 \label {eq:opt2} \max _{ \bm {x}_1, \bm {x}_2 \in \mathcal {X} } \bm {T}_2(\bm {x}_2) - \bm {T}_1(\bm {x}_1) \quad \text {subject to} \quad \mathcal {C}(\bm {x}_1, \bm {x}_2).

(2)

where T1

and T2

are models, x1

and x2

are examples from

the input space X , and C : X 2 → { true , false } is a function

defining constraints on the input space. In many cases, we

only consider a single model T . Taking T1

to be the trivial

model that always predicts 0.0, and T2

= T , yields the

maximization problem:

 \label {eq:opt1} \max _{\bm {x}\in \mathcal {X}} \bm {T}(\bm {x}) \quad \text {subject to} \quad \mathcal {C}(\bm {x}).

(3)

Minimizing T is also possible by taking T1

= T , and mak-

ing T2

the trivial model. Note that we simplify C because

the example of the trivial model does not affect the outcome.

The algorithm presented in this paper, V ERITAS , is a search

algorithm that solves the optimization problem in Equa-

tion 2. The algorithm operates in a novel search space

inspired by Chen et al.’s graph representation G . It is fine-

grained as a single step is cheap, heuristically guided and

does not waste time in irrelevant parts of the search space.

The algorithm is anytime and outputs ever-improving up-

per bounds, lower bounds, and suboptimal full solutions as

it is running. As more time and memory is provided, the

bounds grow closer until the exact full solution is found.

As this problem is NP-complete (Kantchelian et al., 2016),

it might take a long time until the bounds converge to an

exact solution. This makes the fine-grained anytime nature

of V ERITAS particularly compelling.

Versatile Verification of Tree Ensembles

We will first introduce the search space. Then, we will show

how this space is used to solve the optimization problem in

Equation 2. For ease of explanation, we will first tackle the

single-instance setting in Equation 3, and then extend our

method to support the two-instance setting.

3.1. The Search Space S

The search is not executed directly in G , but rather in a

sound and complete search space S derived from G . The

states of S are cliques in G and are represented as sequences

of leaf nodes. Starting from the initial empty sequence []

at depth 0, the search space recursively builds up output

configurations by adding leafs to the state in order, one leaf

per tree. Specifically, a state s = [l1

i1

, . . . , l

m

im
] at search

depth m is expanded to states C (s) at depth m + 1 :

&C([l^1_{i_1}, \ldots , l^m_{i_m}]) = \nonumber \\ &\qquad \{ [l^1_{i_1}, \ldots , l^m_{i_m}, l^{m+1}] \mid l^{m+1} \in L^{m+1},\nonumber \\ &\qquad \qquad \mathrm {box}(l^1_{i_1}, \ldots , l^m_{i_m}, l^{m+1}) \neq \emptyset \label {eq:children} \},

where Lm +1 is the set of all leafs of tree T

m +1. The ex-

pand function C ensures that each expanded state is again a

clique in G by allowing only states with non-empty boxes.

When depth m = M is reached, an output configuration, or

equivalently a max-clique is found. The search space has

two important properties.

Theorem 1. Each state at depth m = M corresponds to

an output configuration (i.e., a max-clique in G), and the

search space enumerates all output configurations, that is,

the enumeration is sound and complete.

Proof. We show that S is sound and complete .

Soundness: We show that any state s = [l1

i1

, . . . , l

M

iM
] is an

output configuration. By definition of C in Equation 4, the

box of the state is non-empty. For each data example x in

the state’s box, it holds that x ∈ box(l

m

im
) , m = 1 , . . . , M .

Because of the properties of tree evaluation and the defini-

tion of box , tree T

m evaluates x to leaf l

m

im
. Therefore, a

data example x exists that activates all leaf nodes in s , and

the configuration is valid. Using Lemma 1, it follows that s

is a max-clique in G .

Completeness: Assume an output configuration O =

{ l1

i1

, . . . , l

M

iM

} so that [l1

i1

, . . . , l

M

iM
] is not a state in the

search space. Let s = [l1

i1

, . . . , l

m

im
] ⊂ O and t =

[l1

i1

, . . . , l

m

im

, l

m +1

im +1
] ⊆ O be sequences of leaf nodes

such that s is a state in S , but t is not. It must be

that t / ∈ C (s) . This can only be true when box(t) =

box(l1

i1

, . . . , l

m

im

, l

m +1

im +1
) =

⋂m +1

m′=1 box(l

m′

im′) = ∅ . This

contradicts the fact that O is an output configuration.

3.2. Finding The Best State at Depth M

To solve the optimization problem in Equation 3, we need to

find the state in S at depth M with the maximum output that

adheres to the constraints C . Constructing S explicitly and

choosing the optimal state by enumerating all possibilities

is intractable in practice. For that reason, we introduce an

admissible and consistent heuristic to traverse the space

in a best-first fashion. This allows us to only materialize the

parts of S that are relevant to the problem.

The search is based on A*. It maintains an OPEN list of

states in S and repeatedly expands the state in OPEN with

the best f -value until a state at depth M is found. It removes

the current best state s = [l1

i1

, . . . , l

m

im
] from OPEN and adds

all its successors C (s) to OPEN. The f -value is the sum

of two values: g (s) , the sum of the leaf values of the leafs

in the state, and the heuristic h (s) , an estimation of the

remaining value to a state at depth M :

\label {eq:g} g(s) &= \sum _{m'=1}^m \nu ^{m'}_{i_{m'}},\\ \label {eq:h} h(s) &= \sum _{m'=m+1}^M h_{m'}(s), \\ \label {eq:hm} h_{m'}(s) &= \max \{ \begin {array}[t]{l} \nu ^{m'}_j \mid l^{m'} \in L^{m'},\\ \mathrm {box}(l^1_{i_1},\ldots ,l^m_{i_m}, l^{m'}) \neq \emptyset \ \}. \end {array}

Intuitively, the heuristic h (s) sums upper bounds hm′(s) for

all remaining trees T

m′

for which no leaf has been added

to the state yet. The upper bound hm′(s) is the maximum

leaf value of any leaf of T

m′

that overlaps with all leafs in s .

Note that we do not need to keep a VISITED list, because

there are no cycles. We show that this heuristic leads us to

the optimal solution next.

Theorem 2. The heuristic search in S is guaranteed to find

the max-clique in G which corresponds to the optimal out-

put configuration of the optimization problem in Equation 3.

(Proof in supplement.)

3.3. Anytime Upper and Lower Bound Estimates

Depending on the size and difficulty of the problem, the

search defined above might take a long time to find a solu-

tion. However, even when the search is terminated prema-

turely, the current best state in the OPEN list still contains

useful information: because h is admissible, the current best

f -value is an upper bound b̄ on the optimal output.

To also produce a lower bound on the maximum output of

the ensemble, we borrow ideas from Anytime Repairing

A* (ARA*) (Likhachev et al., 2004). The importance of

the heuristic in the f -value is reduced by ϵ , 0 < ϵ ≤ 1 as

follows:

 \label {eq:f-ara} f(s) = g(s) + \epsilon h(s).

(8)

Versatile Verification of Tree Ensembles

This promotes deeper solutions, yielding full solutions much

quicker. However, when ϵ < 1 , the solutions might no

longer be optimal because ϵh (s) is no longer an admissible

heuristic. Nonetheless, the suboptimality is bounded by ϵ :

for a suboptimal solution x̃ , the optimal solution’s output

is no larger than T (x̃) /ϵ . A suboptimal solution x̃ is at

least as good as the optimal solution, so T (x̃) is a lower

bound b
¯

on the optimal output. While ϵ -tightness is a useful

property of ARA*, we mainly use ARA* for its ability to

produce suboptimal solutions quickly. We have found that,

overall, A*’s upper bounds tend to converge faster and more

smoothly, and are thus preferred over ARA*’s upper bounds.

Both the upper bound and the lower bound are anytime: The

best f -value in the OPEN list is always accessible. The ϵ

value in the relaxed f -score of Equation 8 can be gradually

increased each time a suboptimal solution is found. Using

ARA* means that it is not necessary to restart the search

from scratch: the OPEN list can be reused, making the

incremental increase of ϵ a cheap operation.4

3.4. Incorporating Constraints into the Search

A naive way of incorporating the constraint function C in

Equations 2 and 3 is to ignore it during the search, and filter

solutions returned by the search. This is inefficient, as the

constraints often rule out large chunks of the search space.

For that reason, we lift C to the search state level. For exam-

ple, considering the example in Figure 1 and the constraint

Age > 60 , we reject states [l1

1] , [l1

2

, l2

2] , and [l1

2

, l2

1

, l3

2] .

Let Cs

: S → { true , false } be a function mapping the states

of the search space to accept or reject. The function has the

following two properties:

1. It is consistent with C : a state s is accepted by Cs

if

and only if it is possible to find a data example x that

sorts to the leafs in s and C (x) is true.

2. It is consistent across states: if Cs(s) = false , and t ⊇

s is a descendant from s , then Cs(t) = false . In words:

if a state is rejected by Cs, then all its state expansions

must also be rejected. This property ensures that we

do not reject states that are the predecessor of a valid

state.

Because all split conditions in the tree ensemble are simple

linear constraints, the two properties are trivially satisfied.

The constraint function Cs

can be integrated into the search

procedure by only adding accepted states to the OPEN list.

For simple linear constraints, we can prune the graph G

before the search starts, just like in the M ERGE algorithm.

4Our case is more simple than the general case in (Likhachev

et al., 2004) because we do not have cycles.

3.5. Maximizing the Difference Between Two Models

Now we explain the necessary adjustments to enable solving

Equation 2. The search space is modified as follows: a

state is extended to consist of two sequences of leafs, one

sequence for each instance. The expand function alternately

expands the first and the second instance using Equation 4.

The f -value maximized by the search is updated to the

difference between the f -values of the two instances:

f(s_1, s_2) &= f_2(s_2) - f_1(s_1)\nonumber \\ &= g(s_2) - g(s_1) + h_2(s_2) - h_1(s_1).

The g (Equation 5) and h2

(Equation 6) remain unchanged.

The first heuristic h1

is an admissible and consistent heuris-

tic with respect to the minimizing variant of Equation 3

obtained by replacing max by min in Equation 7. This

makes h2

− h1

an admissible and consistent heuristic for

the optimization problem in Equation 2 (proof in appendix).

3.6. Summarizing the Setup

We now have all necessary tools to answer verification ques-

tions. First, train a tree ensemble. Second, define the con-

straint function Cs. The complexity of this step greatly de-

pends on the verification question.5 Third, give the learned

model and Cs

to V ERITAS , which will produce a stream of

decreasing upper bounds b̄ , and a stream of increasing lower

bounds b
¯

= T (x̃) , with x̃ suboptimal full solutions. Given

infinite time and memory, the bounds converge: b̄ = b
¯
, and

the last x̃ is the optimal solution.

3.7. Complexity Analysis

The worst-case complexity of V ERITAS is O (LM) , with

L the average number of leafs per tree and M the number

of trees. While this is the same as M ERGE , V ERITAS out-

performs M ERGE in practice. V ERITAS only needs m − 1

smaller cliques to reach any m -clique, and will only explore

cliques that challenge the current best output value based

on the heuristic estimate. M ERGE , on the other hand, only

considers cliques at level l (of size T

l)6 after having enu-

merated all cliques in the previous levels. The number of

cliques per level grows exponentially. This allows V ERITAS

to more quickly visit larger cliques that have tighter output

bounds while using less memory.

The worst-case complexity of h (s) in terms of box overlap

checks is O (M L) : the overlap between the box of s and the

boxes of all leafs of the remaining trees is checked.

5In general, this step can be framed as a SAT problem: is it

possible that an x ∈ box(s) exists that satisfies the constraints.

6 T is a parameter of M ERGE controlling the number of inde-

pendent sets merged per level

Versatile Verification of Tree Ensembles

4. Experimental Evaluation

The goal of our experiments is two-fold. First, we compare

V ERITAS to current approaches on the standard problem of

checking the robustness of tree ensembles. Second, we want

to highlight the versatility of V ERITAS by looking at two

general verification use cases that most existing methods

cannot address: finding dominant attributes in a specific con-

text, and asking domain specific questions about a model.

4.1. Verifying Robustness

Given an example x , robustness checking tries to find the

l∞

distance δ to the closest adversarial example x̃ such

that the labels for x and x̃ are different. That is, find the

smallest δ such that || x − x̃ ||∞

< δ , and T (x) ̸ = T (x̃) .

Because this is a NP-hard problem, finding the optimal

δ is often computationally expensive. This is particularly

true if one wants to check all examples in a large training

set. In our experiments, the average time to find the exact

solution using MILP for reasonably large datasets ranges

from around 10 seconds up to more than 2500 seconds

per example. Given a training set of 100,000 examples,

checking each one would yield times ranging from 11 days

to 2890 days. Hence, approximations are needed which

introduce a tradeoff between the time taken to produce an

approximate solution and the quality of the found solution.

We compare V ERITAS to the exact MILP approach

(Kantchelian et al., 2016) and the highly performant approx-

imate approach M ERGE (Chen et al., 2019b) for robustness

verification with the aim of addressing two questions:

Q1 How does each approach perform in terms of the time

and solution quality tradeoff?

Q2 How does each approach’s ability to produce a suffi-

ciently accurate solution vary as a function of time?

4.1.1. D ATASETS AND M ETHODOLOGY

We used the original author’s implementation of M ERGE .

We used our own implementation of the MILP approach

with Gurobi 9.1.1 (Gurobi Optimization, 2021) as the solver.

The mathematical model is exactly as described in the orig-

inal paper (Kantchelian et al., 2016). An overview of the

parameters per dataset is given in the supplementary ma-

terial. All experiments ran on an Intel(R) Xeon(R) CPU

E3-1225 with 32GiB of memory. V ERITAS ’s memory usage

was restricted to 1GiB, and never used more than 150MiB.

M ERGE ’s memory limit was increased to 8GiB as it often

failed to run with 4GiB of memory.

We compare on seven commonly used datasets for checking

robustness (e.g., (Chen et al., 2019b)). All models were

trained using XGBoost (Chen & Guestrin, 2016) using the

Table 1. Average l∞-distance δ to the nearest adversarial example,

the time t in seconds, speed-up factor with respect to MILP, and

the standard deviation σt

of time t . The results are aggregated over

n examples. MILP produces exact results, whereas M ERGE and

V ERITAS produce lower bounds. The δ values for M ERGE and

V ERITAS are expressed as ratios δapprox /δexact. Values closer to

100% are better. The best results are indicated with a *.

MILP M ERGE V ERITAS

covtype δ 0 . 00796 56 . 9% 99 . 2% *

(n = 500) t 37 . 3 2 . 88 0 . 505 *

13 × 74 ×

σt

25 . 6 32 . 2 0 . 0737 *

f-mnist δ 8 . 07 86 . 8% 90 . 8% *

(n = 900) t 85 . 2 0 . 253 * 6 . 47

337 × 13 ×

σt

62 0 . 0874 * 0 . 307

higgs δ 0 . 00183 46 . 3% 88 . 1% *

(n = 100) t 2640 2 . 87 1 . 45 *

922 × 1828 ×

σt

1560 14 . 3 0 . 292 *

ijcnn1 δ 0 . 0212 90% 99 . 5% *

(n = 500) t 9 . 31 2 . 82 0 . 33 *

3 × 28 ×

σt

1 . 96 25 . 9 0 . 0674 *

mnist δ 10 . 4 83 . 5% 85 . 5% *

(n = 900) t 30 . 2 4 . 26 2 . 21 *

7 × 14 ×

σt

17 . 5 9 . 52 0 . 121 *

webspam δ 0 . 00119 68 . 5% 94 . 7% *

(n = 500) t 36 . 2 1 . 17 * 1 . 34

31 × 27 ×

σt

13 . 3 13 . 1 0 . 225 *

mnist2v6 δ 6 . 74 91 . 7% 95 . 1% *

(n = 500) t 0 . 66 0 . 0707 * 1 . 6

9 × 0 ×

σt

0 . 178 * 0 . 655 0 . 329

Versatile Verification of Tree Ensembles

same number of trees and tree depth as reported in (Chen

et al., 2019b). We performed hyperparameter optimization

to tune the learning rate. All details of the datasets and

parameters are summarized in the supplementary materials.

All datasets except MNIST and Fashion-MNIST were min-

max-normalized. The robustness values for MNIST and

Fashion-MNIST are pixel intensity values. Note that in

boosted tree ensembles, classes are assigned as follows: for

binary classification, the positive class is predicted when

T (x) > 0 ; for multi-classification, multiple one-versus-all

ensembles are trained, and the class with the highest weight

is predicted.

4.1.2. R ESULTS

Table 1 shows the results for Q1 . It shows the (approximate)

distance to the nearest adversarial example as well as the

average time in seconds and its standard deviation to per-

form robustness checking for each approach. MILP always

returns an exact δ whereas V ERITAS and M ERGE return a

lower bound. V ERITAS always achieves a better average

lower bound than M ERGE , being never further than 15%

away from the optimal value, and deviating by less than 5%

on 4 out of 7 datasets. Being exact comes at a substantial

cost in time for MILP: V ERITAS is faster on six of the seven

dataset. When V ERITAS wins, it achieves massive time sav-

ing by being between 13 and 1828 times faster than MILP.

Time wise, V ERITAS is faster than M ERGE on four datasets

and tends to have a much smaller standard deviation.

To answer Q2 , we explore how the fraction of examples that

are verified varies as a function of time. We consider an

example verified when (1) the δ value is produced within

the time budget, and (2) the quality of the δ value is good

enough. We measure the quality of the δi

of task i as fol-

lows:

 |\delta _i - \delta _i^{\mathrm {exact}}| < \frac {1}{n} \sum _j | \delta _j^\merge {} - \delta _j^{\mathrm {exact}} |,

that is, the absolute error with respect to the optimal solution

is less than the absolute error of M ERGE averaged over

all examples. As we use M ERGE as the state-of-the-art

reference algorithm, we also use M ERGE ’s mean absolute

error as a reference error value.

Figure 2 shows the results for this experiment. When one

algorithm verifies more examples than another for a spe-

cific time budget t , its curve is above those of the other

algorithms. V ERITAS dominates M ERGE for either all or

the vast majority of the time budgets on five out of the six

datasets. Moreover, it is quite difficult to control M ERGE ’s

run time, which is reflected in the straight-line behavior

for larger time budgets.7 For Fashion-MNIST, MNIST and

7The gentle curved increase for covertype and MNIST is due

to variance on the run times.

webspam, M ERGE can initially be faster than V ERITAS . In

its first level, M ERGE is effective at removing many leaf

value combinations without the overhead of a heuristic, im-

proving the bounds quickly. However, as the number of

cliques generated per level grows exponentially, the time it

takes M ERGE to expand and store all of them dwarfs the

overhead of the heuristic later on. Finally, MILP can only

verify more than 50% of the examples within 10 seconds on

the ijcnn1 and MNIST2v6 datasets. For ijcnn1, this might

be explained by the fact that a smaller model with only 60

trees is used. For MNIST2v6, which uses a 1000-tree model,

the reason why MILP does so well is still unclear.

4.1.3. D ISCUSSION

V ERITAS produces better solutions than M ERGE , and often

does it in less time. Moreover, it is fine-grained: the user has

full control over the run time of the algorithm, and V ERITAS

produces better approximations as it is given more time.

Therefore the time-versus-approximation-quality trade-off

can be effectively explored.

In contrast, while M ERGE is generally fast, it does not offer

fine-grained control. For example, for 10 random examples

from the covertype dataset, M ERGE takes 0.43 seconds on

average using parameters T = 2 and L = 2 . Changing

L to 3 increases the average run time to 11 seconds. For

L = 4 , M ERGE does not produce any results as it hits the

8GiB memory limit after 8.5 minutes of total run time. A

parameter configuration that results in an average run time

between 0.43 and 11 seconds simply does not exist.

We presented the MILP algorithm as an exact method, but in

reality, MILP also produces anytime upper (UB) and lower

bounds (LB). However, MILP’s bounds tends to be very

loose until right before it finds the optimal solution. Hence,

they are generally not informative within the time ranges

of M ERGE and V ERITAS . To illustrate this, we recorded

the time needed for the gap in MILP’s bounds to reach

20%, i.e., LB / UB ≥ 0 . 8 . Over all experiments in Table 1,

MILP’s total run time is 114 hours and stopping when a

gap of 20% is reached would save a mere 12 minutes. In

comparison, V ERITAS ’s total run time is 2.7 hours and 82%

of the time, the gap between its answer and the optimal

solution is within 20%. Moreover, stopping MILP when it

reaches a 20% gap versus waiting until the optimal solution

only rarely results in a speed-up of more than 5%: 4.0%

(covtype), 0.4% (f-mnist), 0.0% (higgs), 0.7% (mnist), 2.6%

(ijcnn1), 0.2% (webspam), 2.6% (mnist2v6).

Finally, with state-of-the-art solvers like Gurobi (Gurobi Op-

timization, 2021), the MILP formulation performs better

than previously reported. In some cases, the value of having

exact results might outweigh the computational cost.

Versatile Verification of Tree Ensembles

0 5 10
Time

0

50

100
% covtype

0 5 10
Time

f-mnist
Veritas Merge MILP

0 5 10
Time

higgs

0 5 10
Time

ijcnn1

0 5 10
Time

mnist

0 5 10
Time

webspam

0 5 10
Time

mnist2v6

Figure 2. Fraction of instances that are verified as time progresses. An instance is considered verified when (1) a δ value is produced

within the time limit, and (2) the absolute distance to the optimal robustness value (MILP) is less than the mean absolute error of M ERGE .

4.2. Finding Dominant Attributes: YouTube

For this experiment we use a dataset generated from trending

YouTube videos. The task is to predict the order of mag-

nitude of views given a bag-of-words representation of the

words used in the title and description of the video. We use

a GBDT model with 100 trees of depth 10. Given a number

of initial words, we ask V ERITAS to produce k additional

words such that the predicted view count is maximized. The

state function Cs

checks the at-most- k constraint. Some

examples:

• live, breaking, news, war → adding words big and trail-

ers increases the prediction by 2 orders of magnitude.

• epic, challenge → adding words album , video , and

remix increases the prediction by almost 5 orders of

magnitude.

This approach represents a generic strategy that allows rea-

soning about the (inflated) importance or dominance of one

or more attributes. Other examples are fairness: given a set

of constraints on the input space, maximize or minimize

the output of the ensemble when only varying the values of

one or more protected (proxy) attributes. If V ERITAS finds

examples of individuals that are treated significantly differ-

ently, then that might indicate unwanted model behavior.

4.3. Domain Specific Questions: Soccer

Another strength of our approach is that it can provide in-

sights into learned models. To motivate this, consider the

canonical task in soccer analytics of assigning a value to on-

the-ball actions performed by players (Rudd, 2011; Decroos

et al., 2019). These approaches value actions by estimating

the probability of scoring in each game state, which is often

done with a tree ensemble (Decroos et al., 2019). Then ac-

tions are valued by how much they increase this probability.

An open question is in what situations is it useful to pass the

ball backwards?8 To answer this question for tree ensem-

8This question was discussed on panel at sports analyt-

ics conference: https://www.youtube.com/watch?v=

bles, one could look at all backward passes and simply select

those assigned a positive value. What would be more useful

would be to characterize situations where the model thinks

passing the ball backwards would be useful. This is possible

with V ERITAS . To illustrate this capability, we analyze the

action-value models and expected goals (xG) (Lucey et al.,

2014) models. These models are trained using event stream

data, which is a common source of data about professional

soccer matches that is collected by having human annotators

watch soccer matches and record information such as the

location and time of on-the-ball events like passes and shots.

The models used are similar in size and complexity to those

used in professional soccer scouting software.

Understanding Action-Value Models For this experiment

we train a model that predicts the probability of scoring a

goal in soccer within the next 10 actions (Decroos et al.,

2019). The model has 126 trees (early stopping) of depth

10. The input for the model is two consecutive game states

described by the position of the ball and the two action types

(pass, shot, etc.).

We investigate two questions (1) what ball action from the

midfield will maximize the probability of scoring? and (2)

in which contexts does a backwards pass increase the prob-

ability of scoring in the next 10 actions? Because the action

types are one-hot encoded, only one of these variables can

be set to one in a valid instance. Therefore, to ensure that

V ERITAS generates legal instances we need to include a

state constraint function Cs

that imposes a one-out-of- k con-

straint for the one-hot-encoded action types.

Figure 3 shows two generated instances. The pass for the

first question (shown in blue) shows an aggressive probing

pass to a dangerous area near the goal. The pass for the

second shows a cutback from the touchline to the center of

the pitch. These types of passes often create a dangerous

situation since they force the goalie to rapidly reposition

themselves.

Understanding xG Models. We train a model that predicts

LA9-V6_ZIUg

https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg
https://www.youtube.com/watch?v=LA9-V6_ZIUg

Versatile Verification of Tree Ensembles

(a)

(b)

Figure 3. (a) The blue arrow shows the optimal position for a pass

from the midfield to end. The green arrow shows the result for the

backwards pass question: V ERITAS generates a cut back with a

positive goal probability. (b) A heatmap indicating where V ERITAS

generates instances with the highest goal probability.

the probability that a shot results in a goal using the publicly

available toolset soccer-xg (Robberechts & Davis, 2020).9

The model consists of 100 trees of depth 4.

We answer: what are the optimal locations to shoot from out-

side of the penalty box? We used V ERITAS to generate 200

examples of shots from outside the penalty box that would

have the highest chance of resulting in a goal. Figure 3.b is a

heatmap showing the locations on the pitch for the instances

generated by V ERITAS . One cluster of instances is found

on the edge of the box, directly in front of the center of the

goal. This makes sense and corresponds to areas where it

is advantageous for teams to shoot from (Van Roy et al.,

2021). However, the instances generated near the corner

spots are unexpected. Therefore we investigated the data. In

the square 5m around the corner spot, there are 11 shots and

8 goals, which yields an extremely high 72% conversion

rate. One possible explanation is to recall that this data is

recorded by human annotators. If a player kicks the ball

from the locations near the corner, the annotators are likely

labeling the action as a pass or cross and are only assigning

an action the label of a shot in the unlikely event that it re-

sults in a goal or save . This highlights how verification can

identify unexpected patterns in the data, and hence provide

insight into, e.g., how the data was collected and annotated.

5. Related work

A considerable amount of work has been done on verifica-

tion of tree ensembles. Most work has focused on adver-

sarial attacks (Einziger et al., 2019; Zhang et al., 2020) and

robustness (Kantchelian et al., 2016; Chen et al., 2019b; Ran-

zato & Zanella, 2020; Törnblom & Nadjm-Tehrani, 2021).

Törnblom & Nadjm-Tehrani introduced the VoTE frame-

work, a system that enumerates all equivalence classes –

sets of data examples that evaluate to the same output value,

equivalent to the concept of output configurations in this pa-

per – and checks whether some property holds. The proper-

ties that can be tested are general. However, the approach is

limited by the number of equivalence classes, which quickly

9https://github.com/ML-KULeuven/soccer_xg

grows exponentially large (Törnblom & Nadjm-Tehrani,

2020).

Logical SMT theorem provers have also been used (Einziger

et al., 2019; Sato et al., 2019; Devos et al., 2021), as have

mixed-integer linear programming tools (Kantchelian et al.,

2016). These approaches translate ensemble models to their

respective languages and apply general purpose solvers to

prove certain properties of the models. Others have ap-

plied tools from program analysis like abstract interpreta-

tion to verification of tree ensembles (Ranzato & Zanella,

2020; Drews et al., 2020; Calzavara et al., 2020; Törnblom

& Nadjm-Tehrani, 2019; 2021). There is also work that

focuses on learning robust models (Chen et al., 2019a;

Calzavara et al., 2019). Rather than verifying the robustness

of existing models, these methods build models that are less

susceptible to adversarial attacks. Wang et al. show how

the approach of Chen et al. can be extended to any p -norm.

They show that the complexity of robustness checking can

vary depending on the used norm for some models (Wang

et al., 2020).

We did not compare to Silva (Ranzato & Zanella, 2020)

and VoTE (Törnblom & Nadjm-Tehrani, 2021) because

these systems do not estimate the distance to the closest

adversarial example. Rather, they only check robustness for

the easiest, most restrictive case (e.g. for MNIST, they only

check ∃x̃ : || x − x̃ ||∞

< 1).

6. Conclusion

We introduced V ERITAS , a tree ensemble verification tool

that is capable of solving verification tasks that can be mod-

eled as a generic optimization problem. It operates in a

novel sound and complete search space and traverses that

space using an admissible and consistent heuristic. V ERI -

TAS is the first fine-grained anytime algorithm to produce

both an upper and a lower bound on the output of a tree

ensemble model. Additionally, it also generates full subop-

timal solutions that converge to the optimal solution when

given enough time and memory. We empirically show that

V ERITAS outperforms the state of the art in terms of quality

of the bounds and that for many tasks, V ERITAS is also

faster, and its run time can be controlled to a much finer

degree.

Acknowledgements

LD is supported by Research Foundation-Flanders (FWO).

This research received funding from KU Leuven Research

Fund (C14/17/070), Research Foundation-Flanders under

EOS No. 3099257, and the Flemish Government under

the “Onderzoeksprogramma Artificiële Intelligentie (AI)

Vlaanderen” program.

https://github.com/ML-KULeuven/soccer_xg

Versatile Verification of Tree Ensembles

References

Breiman, L. Random forests. Machine learning , 45(1):

5–32, 2001.

Calzavara, S., Lucchese, C., and Tolomei, G. Adversarial

training of gradient-boosted decision trees. In Proceed-

ings of the 28th ACM International Conference on In-

formation and Knowledge Management , pp. 2429–2432,

2019.

Calzavara, S., Ferrara, P., and Lucchese, C. Certifying

decision trees against evasion attacks by program analysis.

In Computer Security – ESORICS 2020 , pp. 421–438,

Cham, 2020. Springer International Publishing.

Carlini, N. and Wagner, D. Towards evaluating the robust-

ness of neural networks. In 2017 ieee symposium on

security and privacy (sp) , pp. 39–57. IEEE, 2017.

Chen, H., Zhang, H., Boning, D., and Hsieh, C.-J. Robust

decision trees against adversarial examples. In Proceed-

ings of the 36th International Conference on Machine

Learning , volume 97 of Proceedings of Machine Learn-

ing Research , pp. 1122–1131, Long Beach, California,

USA, 2019a.

Chen, H., Zhang, H., Si, S., Li, Y., Boning, D., and Hsieh,

C.-J. Robustness verification of tree-based models. In

Advances in Neural Information Processing Systems 32 ,

pp. 12317–12328. Curran Associates, Inc., 2019b.

Chen, T. and Guestrin, C. XGBoost: A scalable tree boost-

ing system. In Proceedings of the 22nd acm sigkdd in-

ternational conference on knowledge discovery and data

mining , pp. 785–794. ACM, 2016.

Decroos, T., Bransen, L., Van Haaren, J., and Davis, J.

Actions speak louder than goals: Valuing player actions

in soccer. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery &

Data Mining , pp. 1851–1861, 2019.

Devos, L., Meert, W., and Davis, J. Fast gradient boosting

decision trees with bit-level data structures. In Proceed-

ings of ECML PKDD . Springer, 2019.

Devos, L., Meert, W., and Davis, J. Verifying tree ensem-

bles by reasoning about potential instances. In SIAM

International Conference on Data Mining proceedings .

Alexandria, Virginia, U.S, SIAM, 2021.

Drews, S., Albarghouthi, A., and D’Antoni, L. Proving data-

poisoning robustness in decision trees. In Proceedings

of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation , pp. 1083–1097,

2020.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,

R. Fairness through awareness. In Proceedings of the 3rd

innovations in theoretical computer science conference ,

pp. 214–226. ACM, 2012.

Einziger, G., Goldstein, M., Sa’ar, Y., and Segall, I. Verify-

ing robustness of gradient boosted models. In Proceed-

ings of the AAAI Conference on Artificial Intelligence ,

volume 33, pp. 2446–2453, 2019.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining

and harnessing adversarial examples, 2014.

Gurobi Optimization, L. Gurobi optimizer reference manual,

2021. URL http://www.gurobi.com .

Kantchelian, A., Tygar, J. D., and Joseph, A. Evasion and

hardening of tree ensemble classifiers. In International

Conference on Machine Learning , pp. 2387–2396, 2016.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,

Ye, Q., and Liu, T.-Y. LightGBM: A highly efficient

gradient boosting decision tree. In Advances in Neural

Information Processing Systems , pp. 3146–3154, 2017.

Likhachev, M., Gordon, G. J., and Thrun, S. Ara*: Anytime

a* with provable bounds on sub-optimality. In Advances

in neural information processing systems , pp. 767–774,

2004.

Lucey, P., Bialkowski, A., Monfort, M., Carr, P., and

Matthews, I. “Quality vs quantity”: Improved shot predic-

tion in soccer using strategic features from spatiotemporal

data. In Proc. of MIT Sloan Sports Analytics Conference ,

2014.

Ranzato, F. and Zanella, M. Abstract interpretation of

decision tree ensemble classifiers. In Proceedings of

the AAAI Conference on Artificial Intelligence , pp. 5478–

5486, 2020.

Robberechts, P. and Davis, J. How data availability affects

the ability to learn good xg models. In Machine Learning

and Data Mining for Sports Analytics , pp. 17–27, 2020.

ISBN 978-3-030-64912-8.

Rudd, S. A Framework for Tactical Analysis and Indi-

vidual Offensive Production Assessment in Soccer Using

Markov Chains. In New England Symposium on Statistics

in Sports , 2011.

Sato, N., Kuruma, H., Nakagawa, Y., and Ogawa, H. Formal

verification of decision-tree ensemble model and detec-

tion of its violating-input-value ranges. arXiv preprint

arXiv:1904.11753 , 2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing properties

of neural networks, 2013.

http://www.gurobi.com

Versatile Verification of Tree Ensembles

Törnblom, J. and Nadjm-Tehrani, S. An abstraction-

refinement approach to formal verification of tree ensem-

bles. In International Conference on Computer Safety,

Reliability, and Security , pp. 301–313. Springer, 2019.

Törnblom, J. and Nadjm-Tehrani, S. Formal verification

of input-output mappings of tree ensembles. Science of

Computer Programming , pp. 102450, 2020.

Törnblom, J. and Nadjm-Tehrani, S. Scaling up Memory-

Efficient Formal Verification Tools for Tree Ensembles.

arXiv e-prints , art. arXiv:2105.02595, May 2021.

Van Roy, M., Robberechts, P., Yang, W.-C., De Raedt, L.,

and Davis, J. Leaving goals on the pitch: Evaluating

decision making in soccer. In Proceedings of the MIT

Sloan Conference on Sports Analytics , 2021.

Wang, Y., Zhang, H., Chen, H., Boning, D., and Hsieh, C.-J.

On lp-norm robustness of ensemble decision stumps and

trees. In Proceedings of Machine Learning and Systems

2020 , pp. 11281–11291. 2020.

Zhang, C., Zhang, H., and Hsieh, C.-J. An efficient adver-

sarial attack for tree ensembles. In Advances in Neural

Information Processing Systems , volume 33, pp. 16165–

16176, 2020.

