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Abstract

Randomly perturbing networks during the train-
ing process is a commonly used approach to im-
proving generalization performance. In this paper,
we present a theoretical study of one particular
way of random perturbation, which corresponds
to injecting artificial noise to the training data. We
provide a precise asymptotic characterization of
the training and generalization errors of such ran-
domly perturbed learning problems on a random
feature model. Our analysis shows that Gaussian
noise injection in the training process is equiva-
lent to introducing a weighted ridge regulariza-
tion, when the number of noise injections tends
to infinity. The explicit form of the regulariza-
tion is also given. Numerical results corroborate
our asymptotic predictions, showing that they are
accurate even in moderate problem dimensions.
Our theoretical predictions are based on a new
correlated Gaussian equivalence conjecture that
generalizes recent results in the study of random
feature models.

1. Introduction

A popular approach to improving the generalization per-
formance is to randomly perturb the network during the
training process (Srivastava et al., 2014; Bishop, 1995; Gul-
cehre et al., 2016; LeJeune et al., 2020; Kobak et al., 2020).
Such random perturbations are widely used as an implicit
regularization to the learning problem. One way that random
perturbation has been used as a regularization is by inject-
ing it to the input data before starting the learning process
(Gong et al., 2020; Rakin et al., 2018; Poole et al., 2014). In
this paper, we provide a theoretical analysis of such learning
procedure on a random feature model (Rahimi & Recht,
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2008) under Gaussian input and perturbation vectors. Our
analysis particularly shows that Gaussian noise injection
introduces a weighted ridge regularization, asymptotically.

First, we describe the models for our theoretical analysis.
We are given a collection of training data {(y;,a;)}" 4,
where a; € RP is referred to as the input vector and y; € R
is referred to as the label corresponding to a;. In this paper,
we shall assume that the labels are generated according to
the standard teacher—student model, i.e.

yi =p(a; &), Vie {1,...,n}, (1)

where £ € RP is an unknown teacher weight vector, and
©(+) is a scalar deterministic or probabilistic function. Here,
we use the random feature model (Rahimi & Recht, 2008)
to learn the model described in (1). The random feature
model considers the following class of functions

Fee(a) = {gula) = w o(FTa), we R}, @)

where a € RP is an input vector, F' € RP %k is a random
matrix referred to as the feature matrix, and o (-) is a scalar
function referred to as the activation function. This model
assumes that F' is fixed during the training. Note that the
family in (2) can be viewed as a two—layer neural network
where the first layer weights are fixed, i.e. F'is fixed.

1.1. Learning Formulation

Before starting the learning process, ¢ independent perturba-
tion vectors are injected to each a;. This procedure forms
the augmented family {a; + Az;; }§=1 for each a;, where
{zi;}4—, are independent random perturbations and A > 0
denotes the noise variance. In this paper, we study the ef-
fects of such perturbation method on an average loss and
a random feature model. Specifically, we analyze formula-
tions of the following form

n l
I T (F a4 A1)
® = ermmin g 33 (0w o (F e+ Az
+ 3wl 3)

where A > 0 denotes the regularization parameter. Note that
the problem in (3) is a standard feature formulation when
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A = 0. Then, we refer to (3) as the noisy formulation, when
A > 0 and the standard formulation, otherwise.

1.2. Performance Measure

The main objective in this paper is to study the performance
of the learning formulation in (3) on unobserved test data.
For every test vector aney € RP, the corresponding label §
can be predicted using the following (probabilistic) role

J =0l o(F amew), )

for some predefined function ((-), where @ € R* denotes
the optimal solution of the formulation given in (3). To
measure the performance of the learning problem in (3) on
any unobserved test data {(Ynew, Gnew) }, We use the gener-
alization error defined as follows

1

Etest = 47

E[ (v — 2@ o(F an))’]. )
Here, the expectation is taken over the distribution of the
unobserved test vector a,e and the (random) functions ¢(-)
and ¢(-). We take v = 0 for regression problems (e.g. ¢(+)
is the identity function) and v = 1 for binary classification
problems (e.g. ¢(+) is the sign function). In this paper, we
assume that the test data is generated according to the same
training model introduced in (1). Furthermore, we measure
the performance of the formulation in (3) on the training
data via the training error defined as follows

n L
1 ~T T 2
Ewin = 5.5 ;:1 ;:1 (yi—w o(F [a; + Azyl))".

Note that the training error is the optimal cost value of our
learning formulation in (3) without regularization.

1.3. Contributions

The contribution of this paper can be summarized as follows:
(C.1) OQur first contribution is a correlated Gaussian equiv-
alence conjecture (¢cGEC). Our conjecture considers Gaus-
sian input and perturbation vectors. It states that the learning
formulation in (3) is asymptotically equivalent to a simpler

optimization problem that can be formulated by replacing
the non-linear vectors

v = a(FT[ai + Azij]),
with linear vectors with the following form
q;; = poly + I F T a; + I F " 2y + piob; + pspy;.

Here, {b;}}_, and {pij}f’f:l are independent standard
Gaussian random vectors and independent of {a;}? ; and

{zij}?,’f:l. Moreover, the weights g, 11, fi1, p2 and s
depend on o(+) and A as follows

po = Elo(x1)], 1 = E[z0(21)], i1 = E[vi0(21)]
p3 = Elo(z1)o(x2)] — pg — i}
13 = Elo(z1)?] - Elo(z1)o(z2)] — A,

where 1 = 2+ Avy, 9 = 2+ Avy, and z, vy and vy are in-
dependent standard Gaussian random variables. Specifically,
the cGEC states that the performance of the formulation:

¢
1 _ A
5 E E (yi — fw Fla; — fiw' F'z;
i=1 j=1

2
— pow ' 1y — pow ' b; — ﬂ3prij) + 3lwl?  ©)

is asymptotically equivalent to the performance of the noisy
formulation. This conjecture is valid in the asymptotic limit
(i.e. n, p and k grow to infinity at finite ratios). More details
about this equivalence is provided in Section 2. We refer to
(6) as the Gaussian formulation. The cGEC is verified by
presenting multiple simulations in different scenarios.

(C.2) The second contribution is a precise characterization
of the training and generalization errors of the noise injec-
tion procedure formulated in (3) for Gaussian input and
perturbation vectors. The theoretical predictions are ob-
tained using an extended version of the convex Gaussian
min-max theorem (CGMT) (Thrampoulidis et al., 2016;
2015). From a purely technical point of view, our analysis
technique is novel. Rather than a routine and direct appli-
cation of the standard CGMT method from previous work,
we have developed a new multivariate version of the CGMT
that is a significant extension of the existing formulation.
Specifically, the standard CGMT method provides precise
performance analysis of problems in the following form:
Minges, MaXyes, ¥ Gw + ¥ (w, w), where the matrix
G has independent standard Gaussian entries and the func-
tion ¢ (-, -) satisfies convexity assumptions. In our problem,
we are dealing with

G
Jug ]

Dl wtY(ww). (7)
Gy

min max [u; ,...
WESy UESy

Here, the matrix G; = KX* + TjI‘%, forj e {1,...,¢},
where 32 and T are two different covariance matrices and
K and {T'j }1<;<¢ are all independent standard Gaussian
matrices. We can see that every G; has independent rows.
However, any two different matrices G; and G are depen-
dent as their constructions share the same matrix K. Clearly,
the classical CGMT method is not applicable in this case.
To our knowledge, our paper provides the first theoretical
analysis that can handle such correlation in the input data.
We refer to this extended version the multivariate CGMT.
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Figure 1. Solid line: Theoretical predictions. Circle: Numerical
simulations for (3). Black cross: Numerical simulations for (6).
©(+) is the sign function with probability 6 of flipping the sign.
#(-) and o(-) are the sign function. We set p = 500, A = 0.5,
a=n/p=2,0=0.1, A= 1075 F has independent Gaussian
components with zero mean and variance 1/p. The results are
averaged over 200 independent Monte Carlo trials.

In Figure 1, we compare our theoretical predictions with
the actual performance of the learning problem given in
(3). First, note that our asymptotic predictions are in ex-
cellent agreement with the actual performance of (3) and
its Gaussian formulation given in (6), even for moderate
values of p, n and k. This provides a first empirical valida-
tion of our results. Figure 1 also study the effects of ¢ on
the training and generalization performance. Note that the
generalization error follows a double descent curve (Belkin
et al., 2018; 2019). Specifically, the generalization error
decreases monotonically as a function of the complexity
1 = k/n after reaching a peak known as the interpolation
threshold (Belkin et al., 2018; 2019). Figure 1(b) partic-
ularly demonstrates that the location of the interpolation
threshold depends on the number of noise samples. Specifi-
cally, the interpolation threshold peak occurs at ¢ for fixed
noise variance A = 0.5. Additionally, Figure 1(a) shows
that the interpolation threshold occurs when the training er-
ror converges to zero. Then, we can see that perturbing the
input data with ¢ random noise vectors moves the interpola-
tion threshold from 1 to £ and improves the generalization
error for complexity 7 lower than /.

(C.3) The third contribution is a precise analysis of the regu-
larization effects of the considered noise injection procedure.
Specifically, we use the asymptotic predictions of the noisy
formulation to show that the noise injection model in (3) is
equivalent to solving a standard feature formulation with an
additional weighted ridge regularization. This theoretical
result is valid when the number of noise samples ¢ tends to
infinity. In particular, we show that the formulation in (3) is
equivalent to solving the problem

1 ~ o 1.1
min =3 (e~ w B(F @)’ + 5| REw]?
=1

+ 3wl (8)
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Figure 2. Solid line: Theoretical predictions. Circle: Numerical
simulations for (3) and (8). ¢(-), @(-) and o(-) are the sign func-
tion. (a) p = 700, £ =180, a =n/p=1,A =land A = 1073,
b)p =600, « =n/p=157=%k/n=1 A =1and
X = 1073, F has independent Gaussian components with zero
mean and variance 1/p. The results are averaged over 100 inde-
pendent Monte Carlo trials.

when ¢ grows to infinity slower than the dimensions n, p
and k. Here, 0(-) is a new activation function and R is
defined as follows

R=[3F"F + I, )

Finally, we provide a precise asymptotic characterization of
the training and generalization errors corresponding to (8).
We refer to this formulation as the limiting formulation.

Figure 2 provides another empirical verification of our theo-
retical predictions since it shows that they are in excellent
agreement with the actual performance of (3) and (8). Fig-
ure 2(a) shows that the noisy formulation in (3) has approxi-
mately the same performance as the formulation in (8) for
¢ = 180. This is aligned with our theoretical prediction
which states that the formulations in (3) and (8) are equiv-
alent when £ grows to infinity slower than the dimensions
n, p and k. Figure 2(b) illustrates the convergence behavior
of the generalization error corresponding to (3) for a fixed
value of 7. It particularly shows that the noisy formulation
has a good convergence rate, i.e. the limit is already at-
tained with a moderate value of ¢. Moreover, we can see
from Figure 2(a) that the convergence rate depends on the
complexity parameter 7).

1.4. Related Work

There has been significant interest in precisely characteriz-
ing the performance of the random feature model in recent
literature (Mei & Montanari, 2019; Gerace et al., 2020; Dhi-
fallah & Lu, 2020; Hu & Lu, 2020). The ridge regression
formulation, (i.e. ¢(+) is the identity function and A = 0 in
(3)) is precisely analyzed in (Mei & Montanari, 2019) where
the feature matrix is Gaussian. In a subsequent work, (Mon-
tanari et al., 2019) uses the CGMT to accurately analyze the
maximum-margin linear classifier in the overparametrized
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regime. The work in (Gerace et al., 2020) precisely char-
acterizes the performance of the standard formulation, i.e.
A = 0, for general families of feature matrices and convex
loss functions. The results presented in (Gerace et al., 2020)
are derived using the non-rigorous replica method (Mezard
et al., 1986). The predictions in (Gerace et al., 2020) are
rigiourously verified in (Dhifallah & Lu, 2020) using the
CGMT. All the previous work consider an unperturbed for-
mulation of the random feature model. In this paper, we
study the effects of adding random noise during training.
Our analysis is based on an extended version of the CGMT
referred to as the multivariate CGMT. The CGMT is first
used in (Stojnic, 2013) and further developed in (Thram-
poulidis et al., 2016). It extends a Gaussian theorem first
introduced in (Gordon, 1988). It relies on (strong) convexity
properties to prove an equivalence between two Gaussian
processes. It has been successfully applied in the analysis
of convex regression (Thrampoulidis et al., 2016; Dhifallah
et al., 2018; Dhifallah & Lu, 2020) and convex classification
(Salehi et al., 2019; Sifaou et al., 2019; Mignacco et al.,
2020; Dhifallah & Lu, 2021) formulations.

There has been significant interest in studying the effects
of random noise injection during training (see e.g. (Bishop,
1995; An, 1996; Gulcehre et al., 2016)). In particular, prior
literature (Zantedeschi et al., 2017; Kannan et al., 2018)
shows that Gaussian noise injection during training im-
proves the robustness of the network. Moreover, several
recent papers (Bishop, 1995; Gong et al., 2020) show that
such perturbation technique introduces some sort of regu-
larization to the loss function. In particular, the work in
(Gong et al., 2020) shows that minimizing the worst—case
loss introduces a gradient norm regularization.

Another popular perturbation approach used in regularizing
learning models is the dropout method (Srivastava et al.,
2014; Wei et al., 2020). It consists of perturbing the learn-
ing problem by randomly dropping units from the network
during the training procedure. In this paper, we precisely
analyze the Gaussian noise injection method and we leave
the analysis of the dropout technique for future work. Our
empirical studies suggest that the dropout method has a bet-
ter convergence rate as compared to the noisy formulation.
Moreover, they suggest that both methods have comparable
generalization performance.

2. Gaussian Equivalence Conjecture with an
Intuitive Explanation

Consider three independent standard Gaussian random vec-
torsa € RP, z; € RP and z5 € RP. Moreover, consider the
random variables v; = ETa, vo and v3 defined as follows

ve=w o(F'[a+ Az]),vs=w o(F'[a+ Az,)),

where o(-), & € RP and F € RP*F satisfy some
regularity assumptions, and where w € RF. More-
over, define the joint probability distribution of vy, vy
and vs as P(v1,v2,v3). The c¢GEC states that the joint
distribution P(v1, 12, v3) is asymptotically Gaussian, i.e.
d(P(v1,v2,v3),P(Vg.1,V4,2,V,3)) converges in probabil-
ity to zero where v, 1, Vg2 and v, 3 are jointly Gaussian
with the same first and second moments of v; , v5 and 3
and d(-, -) is some probability distance that metrizes the con-
vergence in distribution (e.g maximum-sliced (MS) distance
(Kolouri et al., 2019; Goldt et al., 2020a)). To have the same
first two moments, the random variables v, 1, V4 2 and v 3
are selected as follows v, ; = v and

Vga=w' (poli + Flliia + fiyz1] + peb + 3Py ),
Vgz=w' (poly + F'[liia + i1 zo) + pob + [13P3),

where 1; represents the all 1 vector with size k. Here,
b € R, p, € R* and p, € R are three independent
standard Gaussian random vectors and they are independent
of a, z1 and z,. The weights jig, i1, i1, p2 and pg are as
defined in Section 1.3.

In the standard setting, i.e. A = 0, the cGEC is equivalent
to the uniform equivalence theorem (uGET), observed and
used in many earlier papers (Montanari et al., 2019; Gerace
et al., 2020; Goldt et al., 2020b; Dhifallah & Lu, 2020).
Recently, the work in (Hu & Lu, 2020) provided a rigorous
proof of the uGET. Specifically, the work in (Hu & Lu,
2020) proves a special case of cGEC when A = 0, the
feature matrix is Gaussian and the activation functions have
bounded first three derivatives. However, similar to previous
literature (Goldt et al., 2020b), we conjecture that the cGEC
is valid under more general settings. We believe that the
analysis in (Hu & Lu, 2020) can be extended to prove the
¢GEC and we leave the technical details for future work.

Our theoretical results are based on this conjecture. It is
thus useful to also provide an intuitive explanation for the
plausibility of the cGEC. Assume that f; is the ¢th column
of F. The nonlinear term I; = o(f, (a + Az;)) can be
decomposed by projecting on the basis (1, f; a, f, z1),
ie. I = po + ﬁlfja + ﬁlfiTzl + Jf‘. The term ;- is
selected so that we match the variance of I; and the correla-
tion with I, = o(f; (a + Az,)). We note that the cGEC
makes sense when the columns of F' are independent and
have the same norm. These are the regularity assumptions
for the feature matrix in (Goldt et al., 2020b). The same
intuition also appears in the analysis of the unperturbed ran-
dom kernel models, in particular, the random feature model
(Montanari et al., 2019). In this paper, we suppose that the
feature matrix and the activation function satisfy the regu-
larity assumptions in (Goldt et al., 2020b) and conjecture
that the Gaussian equivalence is valid for (v1,vs, ..., 1y)
for £ > 1 and uniformly in w € R¥. Using the cGEC, the
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performance of the formulation in (3) can be characterized
by asymptotically analyzing the Gaussian formulation given
in (6). We verify this conjecture by performing multiple
simulation examples in different settings.

3. Technical Assumptions

In this paper, we precisely characterize the noisy formula-
tion under the following technical assumptions.

Assumption 1 (Gaussian Vectors). The input vectors
{a;}?, and the perturbation vectors {z,;j}?:’zl7j:1 are
known and drawn independently from a standard Gaussian
distribution. Without loss of generality, we assume that the
hidden vector €& € RP has unit norm. Also, it is independent
of the input vectors, the noise vectors and F'.

This paper makes specific assumptions about the input/noise
vectors distribution. We wish to emphasize that such as-
sumptions are essential for our asymptotic analysis. An
interesting future work is to relax the Gaussian assump-
tion by establishing universality properties (e.g. (Oymak
& Tropp, 2017; Panahi & Hassibi, 2017) ). Our theoretical
predictions are valid in the high-dimensional setting where
n, p and k grow to infinity at finite ratios.

Assumption 2 (Asymptotic Limit). The number of samples
and the number of hidden neurons satisfy n = n(p) and
k = k(p), respectively. We assume that o, = n(p)/p —
a > 0andn, = k(p)/n(p) = n > 0as p — oco. Also, the
number of noise injections ¥ is independent of p.

Moreover, we consider the following assumption to ensure
that the generalization error defined in (5) concentrates.

Assumption 3 (Generative Model). The data generating
function o(+) introduced in (1) is independent of the input
vectors, the noise vectors and the feature matrix. Moreover,
the following conditions are satisfied.

(@) ¢(-) and @(-) are continuous almost everywhere in R.
For every h > 0 and z ~ N(0,h), we have E[p?(z)] <
+o0, E[z¢(2)] # 0and 0 < E[p?(2)] < +oo.

(b) For any [c, C], there exists a function g(-) such that

sup |P(x + hx)|? < g(z) forallx € R.
h,x€[c,C]

Additionally, the function g(-) satisfies E[g?(2)] < +oo,
where z ~ N(0,1).

In addition to the assumptions in Section 2, we consider the
following regularity conditions for the activation function.

Assumption 4 (Activation Function). The activation func-
tion o(-) is independent of the input vectors, the noise vec-
tors and the feature matrix. It also satisfies E[o(2)?] < +o00
and E[z0(2)] # 0, where z ~ N(0,1).

In addition to the assumptions discussed in Section 2, we
consider a family of feature matrices that satisfy the follow-
ing assumption to guarantee that the Gaussian formulation
converges to a deterministic problem.

Assumption 5 (Feature Matrix). The SVD decomposition of
the feature matrix can be expressed as F' = U SV, where
U c RP*P and V' € RF** are random orthogonal matrices
and S € RP** is a diagonal matrix formed by the singular
values of F'. Define the matrix M as M = F'F.

(a) We assume that U is a Haar-distributed random uni-
tary matrix.

(b) We also assume that the empirical distribution of the
eigenvalues of the matrix M converges weakly to a
probability distribution P, (-) supported in [0 Cual,
where Cuax > 0 is a constant independent of (p, £).

(c) We finally assume that E,[k] > 0, where the expecta-
tion is taken over the distribution P(-).

Based on Assumption 2, we also have the following property
dp = k(p)/p — & > 0 as p grows to infinity. Moreover, the
assumption on the feature matrix is used to show that some
key quantities in the cost function concentrate in the high
dimensional limit. The above assumptions are essential for
the technical tools we use. The simulation results in Section
5.4 show the robustness of the phenomenology uncovered
by our analysis on real data sets.

4. Precise Analysis of the Noisy Formulation

In this section, we asymptotically analyze the noise injec-
tion procedure introduced in (3). Specifically, we provide
a precise asymptotic characterization of the training and
generalization errors corresponding to (3).

4.1. Precise Asymptotic Analysis

Before stating our technical results, we start with few defi-
nitions. Define the following two deterministic functions

) K [3t,6 K
Foattr) = L[] (- By |
27)\( ) T12 gn,)x(tv T) / T1 gﬁ,)\(tv T)
T o Es+p3) | 8 TR+ 3
3,/\(t7 T) - 7EN 2 EN )
14 gﬁ,)\(t7 T) 14 gr;,k(tv T)

where the expectations are taken over the probability dis-
tribution P, (-) defined in Assumption 5 and where ¢t =
[t1,t2]" and T = [11, 2] . Here, the function g, \(-, ") is
defined as follows
t to(f—1
1 2( ) ) %

11 (o 2 (
wa(tT) = = -
gu(t,T) Tl(u1f~c+u2)+ R

(B3k +u3) + A (10)
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Furthermore, define the following four-dimensional deter-
ministic optimization problem

: 21 ~ * ~2m2( % \2 2(,9%\2
Jnf max o (v = 20T ve + T (65" + o (97)

7250 t5>0
Tty + Tote 12+ 13 (g5,)°
_ 2 119* _ 3y
Hol™ys) + =5 20 2Ty A(t,T)
2 )

where the constant ¥* satisfies 9* = 0 if g = 0 and
W = ~3/po otherwise, and Th = /0E,[x]. Here, 71, 72
and ~y3 depend on the data distribution and are defined as
7 = E[y?], 72 = Elys], 13 = E[y], where y = ¢(s), and
s is a standard Gaussian random variable. Note that the
problem defined in (11) depends on g; . which is given by

o = Yot TiTo (L, T)
T+ BT T (L, T)

12)

Now, we summarize our main theoretical results in the fol-
lowing theorem.

Theorem 1 (Noisy Formulation Characterization). Suppose
that the assumptions in Section 3 are all satisfied and the
cGEC introduced in Section 2 is valid. Then, the training
error converges in probability as follows

p—+o0 A

TS oA - 5 (@) +H ),

where C*(A, \) is the optimal cost of the deterministic
problem in (11). Here, the function h(-) is defined as follows

h(X) = —(¢")* ()\ - m) — T3 A(t", T7).

gtrain

Moreover, the generalization error defined in (5) converges
in probability to a deterministic function as follows
p—+00 1 ~ 2
E— 471[‘3 [(@(91) — 2(92)) } )
where g1 and go have a bivariate Gaussian distribution with

mean vector [0, 110s0*] and covariance matrix C, defined
as follows

Erest (13)

— 1 :ulsqu* :|
pisTig* 13,8* + 13, ((6%)* + (X))

The constant 9* satisfies 0* = 0 if po = 0 and ¥* = 73/ o
otherwise. Here, the constants s, (15 and jiag are de-
ﬁned as fos = E[U(Z)]’ His = E[ZU(Z)] and M%s =
Elo(2)?] — pd, — p3,, where z is a standard Gaussian
random variable. Additionally, the constant 3* can be com-
puted via the following expression
U
i+V;
Nt 7)) Va+Vat )\h’()\)
Vi+ Vs Vi+ Vs ’

2 2
(V1T1 —Vo—=Vi—2+ m)(q*)

where the constants V1, Vs, V3 and Vy are defined as follows

* 2 * *
H1 ~o( 0 tz@ - 1)
V - : ’ V - ( 7)
! T 3T 4 + 754
*x,,2 * *
Ha of U t2(€ - 1)
Vo =22y, = ( 7)
= O =

Here, ¢* = qf. ;. is given in (12), t* = [t},t3] " and 7* =
[75,73]T. Moreover, {t%,t5, 15,75} denotes the optimal
solution of the problem defined in (11). Also, we treat q*, t*
and T* as constants independent of A when we compute the
derivative of the function h(-).

To streamline our presentation, we postpone the proof of
Theorem 1 to Section 8. Note that Theorem 1 provides a
full asymptotic characterization of the training and gener-
alization errors corresponding to the formulation given in
(3). Specifically, it shows that the performance of (3) can be
fully characterized after solving a deterministic scalar for-
mulation where the cost function depends on the parameters
¢ and A. The theoretical predictions stated in Theorem 1
are valid for any fixed noise variance A > 0 and number of
noise samples ¢ > 1. Additionally, it is valid for a general
family of feature matrices, activation functions and genera-
tive models satisfying (1). The analysis presented in Section
8 shows that the deterministic problem in (11) is strictly
convex-concave. This implies the uniqueness of the optimal
solutions of the optimization in (11). Next, we study the
properties of the noise injection method in (3) when ¢ grows
to infinity slower than n, p and k.

4.2. Noise Regularization Effects

Now, we consider the setting where ¢ grows to infinity
slower than the dimensions n, p and k. We use the the-
oretical predictions stated in Theorem 1 to study the regular-
ization effects of the noise injection method in (3). Our first
theoretical result is introduced in the following theorem.

Theorem 2 (Regularization Effects). Suppose that the as-
sumptions in Theorem 1 are all satisfied. Moreover, define
the following formulation

1L N
min o3y~ w' 5(F a;)”
=1

1,1
+ IR w|* + 3w, (15)

Here, the regularization matrix R is defined as follows

R=[{F'F + 31y, (16)

and the new activation function 5 (-) satisfies the properties
E[o(2)] = E[o(z1)], E[z0(2)] = E[z0(x1)]

E[6(2)*] = Elo(x1)o(z2)], (17)
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where 11 = z + Avy, 2 = z + Avg and z, v, and vy are
indepfndent stg\ndard Gaussian random variables. Also, de-
fine Eyuin and Ee5 as the training and generalization errors
corresponding to the problem in (15). Then, for any ( > 0,
we have the following convergence results

lim lim P('gtmin - arain| < g) =1

£—+o00 p—>+00
lim lim ]P)(|Stesz - gtesi| < C) =1,

£—~+00 p——+00

(18)

where Eyr and Egin are the training and generalization
errors corresponding to the noisy formulation.

To streamline our presentation, we postpone the proof of
Theorem 2 to Section 8. The above theorem shows that the
noisy formulation given in (3) is equivalent to a standard
formulation with a new activation function and an additional
weighted ridge regularization, when ¢ — 4oc0. It also pro-
vides the explicit form of the regularization. This shows that
inserting Gaussian noise during the training procedure intro-
duces a regularization that depend on the activation function,
the feature matrix and the noise variance. Now, we provide
a precise asymptotic characterization of the formulation in
(15). Before stating our asymptotic result, we define the
following deterministic problem

. t - .
inf sup 271 (v = 2 T0Gr 2 + I TE (@ ) + pg(97)?

T1>04,>0 271

7

Tt

IR (@7)2 B nfS,A(tlaTl)

— 209" 3)

2 2 2T2,A(t1, 1) 2

Here, the constant ¥* satisfies 9* = 0 if ug = 0 and ¥*
s/ 1o otherwise, and 7 is defined in Section 4.1. Moreover,
the functions g; . and 75 (-, -) are defined as follows

Yot1 i T1 T (t1, 1)

/\;T = — N 5 and fQ’)\(tl,Tl) =
71+ g3 TETo A (1, 1)

1) 02t10

RN S T |

17 " Lgea(ty, 1) 1 Gra(t1,71)

Here, the functions fgj A(+,-) and gy A (-, -) are defined as
follows

Ty A(t,71) = BE, [(ﬁf’i + 113) /G (11, Tl)} ;
~ ly [ ~
Gra(tr,m) = (u?% + u%) + (u?ﬂ + u%) +A,
1
where the expectations are taken over the probability distri-
bution P (-) defined in Assumption 5. Now, we summarize

the asymptotic properties of the limiting formulation in (15)
in the following theorem.

Lemma 1 (Limiting Formulation Characterization). Sup-
pose that the assumptions in Theorem 1 are all satisfied.

Then, the training error corresponding to the limiting for-
mulation in (15) converges in probability as follows

~ o = A -~

5train L C*(Aa )‘) - 5 ((?)2 + h/()‘)) )
where C'\*(A7 A) is the optimal cost of the deterministic
problem in (19). Here, the function h(-) is defined as follows
~@? (A= =) — Dt ).
Tox (tiv 7—1*)

Moreover, the generalization error corresponding to the

limiting formulation in (15) converges in probability to a
deterministic function as follows
1
—— —FE

o E (o) = 26207

where g1 and go have a bivariate Gaussian distribution with
mean vector [0, 110s0*] and covariance matrix C, defined
as follows

P~ p—+oo
gtest

19)
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The constant 9* satisfies V* = 0 if po = 0 and ¥* = 3/ o
otherwise. Here, the constants s, 415 and [os are de-
fined as pos = Elo(2)], pus = Elzo(2)] and 13, =
Elo(2)?] — ud, — ul,, where z is a standard Gaussian
random variable. Additionally, the constant B\* can be com-
puted via the following expression

~ 1 1
B = (T2 =Va=Vi- A+ ———)(@)*

i+ Tox(th, ) @

Ty A (15,75 Vi+ A~
n 3,)\( 177—1) _‘/2+ 4+ h,/()\), (20)
Vi+ Vs Vi+ V3
where the constants V1, Vs, V3 and Vy are defined as follows
t*~2 R t* 2
Vl_ 1,1,1:17 V3:ﬂ%7 ‘/2:17/127‘/4:#%
1 T

Here, * = Gf. .. is given in (19). Moreover, {t1,7{}

denotes the optimal solution of the problem defined in (19).
Also, we treat @*, t and 77 as constants independent of \
when we compute the derivative of the function h(-).

The proof of Lemma 1 is provided in Section 8. The results
in Theorem 2 and Lemma 1 are based on the asymptotic
predictions stated in Theorem 1. Specifically, we show in
Section 8 that the asymptotic problem corresponding to the
noisy formulation in (11) converges to the deterministic
problem in (19), when ¢ grows to infinity. Then, we show
that the deterministic problem in (19) is the asymptotic limit
of the formulation in (15) using the CGMT framework. The
analysis presented in Section 8 shows that the deterministic
problem in (19) is strictly convex-concave. This implies the
uniqueness of its optimal solutions. Due to space limitation,
we provide the detailed proof of our theoretical results in
the supplementary material.
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5. Simulation Results

In this part, we provide additional simulation examples to
verify our asymptotic results stated in Theorem 1, Theorem
2 and Lemma 1. Our predictions stated in Section 4 are
valid for a general family of feature matrices, activation
functions and generative models satisfying (1). In this part,
we specialize our general results to popular learning models.
In particular, we consider two families of feature matrices.
We consider feature matrices that can be expressed as F' =
dV, where: (a) The scalar d satisfies d = 1/,/p and the
matrix V' has independent standard Gaussian components.
We refer to this matrix as the Gaussian feature matrix. (b)
The scalar d satisfies d = +/3/p and the matrix V' has
independent uniformly distributed components in [—1 1].
We refer to this matrix as the uniform feature matrix.

Also, we consider two popular regression and classification
models. For the regression model, we assume that () is
the ReLu function and @(-) is the identity function. For
the classification model, we assume that ¢(-) is the sign
function with possible sign flip with probability 6 and @(-)
is the sign function.

5.1. Limiting Performance

Our third simulation considers the non—linear regression
model. Figure 3 compares the numerical predictions and
our predictions stated in Theorem 2 and Lemma 1. This

0.35,
5 I = ReLu, £ = 100 8 L5 e Noisy Formulation
m: Binary, £ = 100 L;J:: s Limiting Formulation
= 03 —— SoftPlus, £ = 70 ~
. 2 4
3 3
= =
1] 1]
£ 025 4 = 05
£ Y
3 5]
S 8 O
0.2 0
1 2 3 4 20 40 60 80 100 120
n==k/n l
(@) (b)

Figure 3. Solid line: Theoretical predictions. Circle: Numerical
simulations for (3) in 3(a) and for both (3) and (8) in 3(b). Black
cross: Numerical simulations for (8). (a) p = 500, A = 0.4,
a=15and A = 1072, (b) p = 500, A = 0.6, @ = 2,
A =10"% 7 = 1 and o(-) is the SoftPlus. Binary denotes the
binary step activation. F' is the Gaussian feature matrix. The
number of Monte Carlo trials is 100.

simulation example first provides an empirical verification
of the theoretical predictions in Theorem 2 and Lemma 1. It
particularly shows that our predictions are in excellent agree-
ment with the empirical results for (3) and (8). Furthermore,
note that the performance of the deterministic formulation
given in Lemma 1 is achieved with a moderate number of
noise samples, i.e. £ = 70 and ¢ = 100. This verifies the
results stated in Theorem 2 and Lemma 1 and provides an
empirical verification of the cGEC introduced in Section 2.

Figure 3(a) further shows that the considered noisy formula-
tion can asymptotically mitigate the double descent in the
generalization error for an appropriately selected activation
function and fixed noise variance. Specifically, note that the
ReLu and binary activation functions lead to a decreasing
generalization performance which is not the case for the
SoftPlus activation. Figure 3(b) illustrates the convergence
behavior of the generalization error corresponding to (3) for
the SoftPlus activation and fixed 7. It particularly shows
that the generalization error of (3) converges to the gener-
alization error of (8) when ¢ grows to infinity. Moreover,
note that the limit is already achieved with a small value of
£. This verifies the predictions in Theorem 2.

5.2. Impact of the Noise Variance

In this simulation example, we study the effects of the noise
variance A on the generalization error corresponding to the
noisy formulation and the limiting formulation. Here, we
consider the binary classification model. Figure 4 compares
the numerical predictions and our theoretical predictions
stated in Theorem 1, Theorem 2 and Lemma 1. It provides

— A =)
0.45 — A= 0.5

Generalization Error
°
S
Generalization Error

Figure 4. Solid line: Theoretical predictions. Circle: Numerical
simulations for (3) in 4(a) and for (8) in 4(b). Black cross: Nu-
merical simulations for (6). (a) F is the Gaussian feature matrix
and o (+) is the tanh activation function. We set p = 400, £ = 50,
a=260=0.1and \=10"°. (b) F is the uniform feature ma-
trix and o (-) is the SoftPlus activation. We set p = 1500, o = 1.5,
§ = 0and A = 10~*. The number of Monte Carlo trials is 100.

another empirical verification of our theoretical predictions
since our results are in excellent agreement with the ac-
tual performance of the considered formulations. It also
provides an empirical verification of the cGEC discussed
in Section 2. Figure 4(a) studies the effects of the noise
variance A on the generalization error corresponding to the
noisy formulation for fixed /. Note that increasing the noise
variance improves the generalization error especially at low
7. Figure 4(a) also suggests that an optimized noise variance
can reduce the effects of the double descent phenomenon.
Now, Figure 4(b) studies the effects of the noise variance A
on the generalization error corresponding to the limiting for-
mulation. We can see that the generalization error increases
after reaching a minimum for A = 0.5. For A = 4, observe
that the generalization error is deceasing. This suggests that
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the double descent phenomenon can be mitigated for an
appropriately selected noise variance.

5.3. Alternative Formulations

Now, we consider the binary classification model, where
6 = 0. We compare the performance of the noisy formula-
tion given in (3) and the dropout technique. In this paper,
we consider the following version of the dropout method

1 n £
min o33 (- w (D FT @)+ 3wl
=1 j=1
where {D;; }?f are diagonal matrices with independent and
identically distributed diagonal entries drawn from the dis-
tribution, P(d = 1) = 1 — e and P(d = 0) = ¢, where €
denotes the probability of dropping a unit. The above formu-
lation is similar to the one considered in (Srivastava et al.,
2014; Wei et al., 2020). In Figure 5, we compare the general-
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Figure 5. Solid line: Theoretical predictions. Circle: Numerical
simulations. Hexagram: Numerical simulations for the dropout
formulation. Erf activation function and we set p = 600, o« = 1.4,
A=2A=10"2ande = 0.3. (a) £ = 40. (b) n = 2. F is the
uniform feature matrix. The number of Monte Carlo trials is 35.

ization performance of the noisy and dropout formulations.
First, we can notice that our asymptotic results provided
in Theorem 1, Theorem 2 and Lemma 1 match with the
actual performance of (3) and (15). This gives an empirical
verification of our results. Figure 5(a) considers the erf ac-
tivation function. It first shows that the dropout and noisy
formulations have comparable performance at low 1. How-
ever, we can see that the dropout method provides a largely
better performance as compared to the noisy formulation for
large values of n. Figure 5(a) also shows that the limiting
and dropout formulations have a similar generalization per-
formance. Figure 5(b) studies the convergence properties
of both approaches as a function of ¢. It particularly sug-
gests that the dropout method has a better convergence rate
as compared to the noisy formulation. Now, Figures 5(a)
and 5(b) suggest that the noisy and dropout formulations
have comparable generalization performance when ¢ grows
to infinity. We provide more simulation examples in the
supplementary material.

5.4. Generalizing the Theoretical Predictions

In Figure 6(a), we consider the Semeion Handwritten Digit
Data Set downloaded from the “Machine Learning Repos-
itory”. Figure 6(a) shows that the generalization errors on
real data sets exhibit the same gualitative behavior as for the
Gaussian input vectors. This suggests that the i.i.d. Gaus-
sian assumption can be removed/eased in practice, perhaps
by considering a different random ensemble model with a
covariance matching the input data set. Note that our results
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Figure 6. Numerical simulations. (a) ReLu activation and we set
p=256a=2A=05X=10""and e = 0.3. £ = 40.
(b) The least absolute deviation (LAD) loss , the tanh activation,
p =150, = 1.2, A = 0.8, A\ = 107 %, F is the Gaussian
feature matrix. The number of Monte Carlo trials is 100.

cannot be directly applied to noise distributions other than
Gaussian. In principle, we believe that non-Gaussian noise
can be treated by appealing to universality arguments (one
observed in Figure 6(b) for centered beta/Gaussian noise).
Our analysis is only valid for the squared loss, as some of
the techniques used to obtain the asymptotic formulation
are tailored to the squared loss. We leave the extension to
general loss functions as an important future work. We can
see from Figure 6(b) that the generalization error shows the
same behaviors for beta distributed noise and the LAD loss.

6. Conclusion

In this paper, we precisely analyzed a random perturba-
tion method used to regularize machine learning problems.
Specifically, we provided an accurate characterization of
the training and generalization errors corresponding to the
noisy feature formulation. Our predictions are based on a
correlated Gaussian equivalence conjecture and an extended
version of the CGMT, referred to as the multivariate CGMT.
Moreover, our analysis shows that Gaussian noise injection
in the input data has the same effects of a weighted ridge
regularization when the number of noise samples grows to
infinity. Additionally, it provides the explicit dependence of
the introduced regularization on the feature matrix, the acti-
vation function and the noise variance. Simulation results
validate our predictions and show that inserting noise during
training moves the interpolation threshold and can mitigate
the double descent phenomenon in the generalization error.
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7. Appendix I: Additional Simulation Examples

In this part, we provide additional simulation examples to support our conclusions in Section 5 and to illustrate the cGEC
discussed in Section 2. Furthermore, we consider the family of feature matrices and the regression and binary classification
models introduced in Section 5.

7.1. Correlated Gaussian Equivalence

In this simulation example, we consider a particular case of the cGEC to illustrate the Gaussian equivalence. Here, we
consider a projected version of the probability density function P(v4, 12, v3), defined in Section 2. Specifically, we consider
the probability density function of the random variable v = v; + v + v3. Figure 7 considers two different feature matrices

Sliced Original Distribution Sliced Original Distribution
0.3 } | [ Sliced Gaussian Distribution 03 Sliced Gaussian Distribution
s (anissian Density s (3at1881a0 Density
0.25
= 0.2
a

A~ 015
0.1
0.05

(a) (b)

Figure 7. Sliced original distribution measures the distribution of v = vy 4+ v2 +v3. Sliced Gaussian distribution measures the distribution
of v = vy1 + vg,2 + vg,3. The Gaussian density denotes the Gaussian distribution with the corresponding first two moments of v. F' can
be expressed as F' = V'/, /p. (a) V has independent standard Gaussian components and o (-) is the sign function. (b) V" has independent
uniformly distributed components in [—+/3 /3] and & (-) is the ReLu function. We take p = 10*, « = 1.2, A= land n = 1.

and activation functions. It also compares the probability density function of the random variable v = 11 + 15 + 3 with the
probability density function of the random variable v, = vy 1 + vy 2 + vy 3. Figure 7 shows that the random variable v
is Gaussian with the same first two moments of v, for particular choices of F, o(-), £ and w. This provides a particular
illustration of the cGEC.

7.2. Impact of the Noise Variance

In this simulation example, we provide an additional simulation example to study the effects of the noise variance A on
the generalization error corresponding to the noisy formulation. We consider the binary classification model introduced in
Section 5. Figure 8 compares the numerical predictions and our theoretical predictions stated in Theorem 1. First, Figure

0.45

0.4rF

0.35

0.3

Binary Activation
Erf Activation

Generalization Error

0 2 4 6 8 10

Figure 8. Solid line: Theoretical predictions. Circle: Numerical simulations for (3). F' is the uniform feature matrix. We set p = 600,
a=2,0=0,{=20,n=15and A = 10~%. The results are averaged over 100 independent Monte Carlo trials.

8 provides another empirical verification of our theoretical predictions. Specifically, observe that our predictions are in
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excellent agreement with the actual performance of the formulation given in (3). This also provides an empirical verification
of the cGEC discussed in Section 2. Figure 8 also shows that the generalization error corresponding to the noisy formulation
has a unique minimum as a function of A for the considered activation functions. This suggests that the optimization
problem over the noise variance A has a unique solution. This can simplify the design of an efficient optimization scheme
of the generalization error in terms of A.

7.3. Alternative Formulations

In the this simulation example, we consider the binary classification model introduced in Section 5, where § = 0. In Figure
9, we compare the performance of the noisy formulation and the dropout formulation for three different activation functions.
First, we can notice that our asymptotic results provided in Theorem 1, Theorem 2 and Lemma 1 match with the actual
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Figure 9. Solid line: Theoretical predictions. Circle: Numerical simulations for (3) and (8). Hexagram: Numerical simulations for the
dropout formulation. (a) Sigmoid activation and we set p = 600, « = 1.4, A = 1.5, A = 1074, ¢ = 60 and € = 0.3. (b) ReLu activation
function and we set the parameters as p = 600, « = 1.4, A = 3.5, A = 1073,¢ =60 and e = 0.3. (c) Sign activation function and we
set the parameters as p = 600, « = 1.6, A = 1.5, A = 10™%, £ = 60 and € = 0.4. The feature matrix F' is the uniform feature matrix.
The results are averaged over 35 independent Monte Carlo trials.

performance of the noisy formulation and its limiting formulation. This gives another empirical verification of our theoretical
predictions. Figure 9 suggests that the noisy and dropout formulations significantly improve the generalization performance
of the standard formulation for an appropriately selected activation function, A, ¢ and e. Figure 9(a) shows that the noisy
and dropout formulations have a similar generalization performance for fixed ¢ = 60 and for the sigmoid activation function.
Moreover, it shows that the dropout formulation approaches the generalization performance of the limiting formulation
at high 7. Moreover, 9(b) shows that the dropout method provides a largely better performance as compared to the noisy
formulation for fixed ¢ = 60 and for the ReLu activation. It also suggests that the limiting and dropout formulations have
a similar generalization performance where the dropout method is better at high 1. Now, Figure 9(c) considers the sign
activation function and shows that the noisy formulation provides a better generalization performance as compared to
the dropout formulation at low 7 and for a fixed number of noise injections, £ = 60. We can also see that the limiting
formulation generalizes better than the dropout method for the considered parameters. This simulation example particularly
suggests that the performance of the noisy and dropout formulations depends on the activation function. Moreover, the
dropout formulation have a similar generalization performance as compared to the limiting performance for the considered
parameters.

7.4. Convergence Behavior

In the last simulation example, we study the convergence behavior of the noisy and dropout formulations for different
activation functions. Figure 10 first shows that our theoretical predictions stated in Theorem 1, Theorem 2 and Lemma
1 match with the actual performance of the noisy formulation and its limiting formulation. This gives another empirical
verification of our predictions. Figure 10 studies the convergence properties of both approaches as a function of £ and for
different activation functions. It particularly suggests that the dropout method has a better convergence rate as compared to
the noisy formulation. Moreover, Figure 10 suggests that the noisy and dropout formulations have comparable generalization
performance when the number of noise injections grows to infinity.
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Figure 10. Solid line: Theoretical predictions. Circle: Numerical simulations for (3) and (8). Hexagram: Numerical simulations for the
dropout formulation. (a) Sigmoid activation function and we set the parameters as p = 500, « = 1.4, A = 1.5, A = 107, p = 2.5 and
€ = 0.3. (b) ReLu activation function and we set the parameters as p = 500, o = 1.4, A = 3.5, \ = 1073, n=1.5and e = 0.3. (¢)
Sign activation function and we set the parameters as p = 500, « = 1.6, A = 1.5, A = 1074, n = 2 and € = 0.4. The feature matrix F'
is the uniform feature matrix. The results are averaged over 35 independent Monte Carlo trials.

8. Appendix II: Analysis of the Noisy Formulation

In this part, we provide a rigorous proof of the predictions stated in Theorem 1, Theorem 2 and Lemma 1. To this end, we
suppose that the assumptions considered in Sections 2 and 3 are all satisfied. We derive our theoretical results using an
extended version of the CGMT framework which we refer to as the multivariate CGMT.

8.1. Multivariate Convex Gaussian Min-Max Theorem

To derive the asymptotic results stated in Theorem 1, Theorem 2 and Lemma 1, we use an extended version of the CGMT
framework introduced in (Thrampoulidis et al., 2016). The CGMT is used to accurately analyze a generally hard primary
formulation by introducing an asymptotically equivalent auxiliary optimization problem. In this paper, we consider primary
optimization problems of the following form

¢
i=

where u; € R™ and w; € R¥ are optimization variables and G; € R™ *ki has independent standard Gaussian random

components, for any ¢ € {1...,¢}. Additionally, the vectors w and u are formed by the concatenation of the vectors

{w;}_, and {u;}¢_,, respectively. We refer to the formulation in (21) as the multivariate primary optimization (multivariate

PO). We show that the corresponding multivariate auxiliary optimization (multivariate AO) is given by

¢ ¢
: T T
o = min max > lluillglwi+ 3 willh S wi + o (w, ), (22)
i=1 =1
where g; € R¥: and h; € R™ are independent standard Gaussian random vectors, for any i € {1...,/}. Here, we assume

that G; € R"*%i, g, € R¥ and h; € R™, are all independent, the feasibility sets S,, C R¥ and S,, C R™ are convex
and compact, and the function ¢ : R x R” — R is continuous convex-concave on Sy, X Sy, where k = Zle k; and
n = Zle n;. Now, we summarize our theoretical result in the following theorem.

Theorem 3 (Multivariate CGMT). Assume that the above assumptions are all satisfied. For any fixed { > 1 and ¢ > 0,
consider an open set S, .. Moreover, define the set S; . = Su \ Sp.c. Let ¢r and ¢5, be the optimal cost values of the
multivariate AO formulation in (22) with feasibility sets S, and Sy ., respectively. Assume that the following properties are
all satisfied

(1) There exists a constant ¢ such that the optimal cost ¢y, converges in probability to ¢ as k goes to +o0.

(2) There exists a constant ¢© such that the optimal cost ¢f, converges in probability to ¢¢ as k goes to +oo, for any fixed
e> 0.
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(3) There exists a positive constant > 0 such that ¢ > ¢ + (, for any fixed € > 0.

Then, the following convergence in probability holds

k—>+oo k—oo

|(I>k—¢]€‘ 0, and}P’('wk ESpe) — 1,

for any fixed € > 0, where @y, and Wy, are the optimal cost and the optimal solution of the multivariate PO formulation in
(21).

The above theorem allows us to analyze the generally easy multivariate AO formulation given in (22) to infer asymptotic
properties of the generally hard multivariate PO formulation in (21). The proof of Theorem 3 follows by showing that the
formulation in (22) and the following formulation

®;, = min max Zul w; + Y(w,u) —|—Z||uz||HwZ||gz,
i=1

satisfy all the assumptions in (Gordon, 1988), where { gi}le are independent standard Gaussian random variables. Then,
following the same analysis in (Thrampoulidis et al., 2015) and (Thrampoulidis et al., 2016), we can show that for any
X € Rand ¢ > 0, it holds

P(|®r — x| >¢) <2°P (o — x| > ¢). (23)

Combining this result with the assumptions of Theorem 3 completes the proof. We omit the detailed proof since it is similar
to the analysis in (Thrampoulidis et al., 2015) and (Thrampoulidis et al., 2016). We refer to Theorem 3 as the multivariate
convex Gaussian min-max theorem (multivariate CGMT).

Next, we use the multivariate CGMT to rigorously prove the technical results provided in Theorem 1, Theorem 2 and
Lemma 1. Our approach is to reformulate the Gaussian formulation in (6) in the form of the multivariate PO problem given
in (21). Then, use the multivariate CGMT framework to show that the formulation in (3) is asymptotically equivalent to an
easier formulation that can be written in the form of the multivariate AO problem given in (22). The next step is to show that
the multivariate AO formulation converges in probability to a deterministic problem that can be expressed in the form of the
formulation given in (11).

8.2. Asymptotic Analysis of the Noisy Formulation

In this part, we provide the technical steps to obtain the theoretical results stated in Theorem 1. Specifically, we use the
multivariate CGMT framework to precisely analyze the noisy formulation introduced in (3). Next, we suppose that the
assumptions introduced in Section 3 are all satisfied.

8.2.1. FORMULATING THE MULTIVARIATE PRIMARY FORMULATION

Based on the cGEC introduced in Section 2, it suffices to precisely analyze the Gaussian formulation in the large system
limit. Then, it suffices to analyze the following formulation

w

1=1 j= 1
2
— pow " 1y — pow b — psw ' py;)” + 5w (24
Note that the formulation in (24) is strongly convex with a strong convexity parameter equals to A. This means that it has a

unique optimal solution. Note that the multivariate CGMT framework assumes that the feasibility sets of the multivariate
PO formulation in (21) are compact. The following lemma shows that this assumption is satisfied by our formulation.

Lemma 2 (Primal Compactness). Assume that W, is the unique optimal solution of the formulation given in (24). Then,
there exist two positive constants Cy, > 0 and Cy > 0 such that

P(||lw,| < Cw) =5 1, P(I1w,| < Cy) =31, (25)

where the second asymptotic result is valid only when g # 0.
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Given that the loss function in (24) is proper and strongly convex, one can use the results in Lemma 1 in (Dhifallah & Lu,
2020) to prove Lemma 2. This asymptotic result follows using Assumptions 3, 4, and 5 and Theorem 2.1 in (Rudelson &
Vershynin, 2010). Combining this result with the theoretical result stated in Proposition 1 in (Dhifallah & Lu, 2020), the
Gaussian formulation is asymptotically equivalent to the following formulation

L
1
e P Y Z\ly (1A + 11 Z;]Fw — o9, — pe Bw — psPjwl|® + 3 |lw|?, (26)
[9|<Cy

where the matrices A € R"*?, Z; € R"*P, B € R"** and P; € R"** are formed by the concatenation of the vectors
a;, zij, b; and p;;, respectively. Here the label vector y € R" is formed by the labels {y;}?_; and can be expressed as
follows y = p(AE). Based on the analysis in Proposition 2 in (Dhifallah & Lu, 2020), it sufﬁces to precisely analyze the
problem in (26) for fixed feasible ©J. Then, minimize its asymptotic limit over ¢ to infer the asymptotic properties of (26).
Next, we start by analyzing the formulation in (26) for fixed feasible ¥J. To express (26) in the form of the multivariate
PO introduced in (21), we introduce additional dual optimization variables. Specifically, the formulation in (26) can be
equivalently formulated as follows

¢
, T T (
— : Al Bw —
b, 5 g ¥ g 2% (00 B
=1 27
+ A+ 1 Zj)Fw + psPyw) + 3 w2,
where the dual optimization vector u € R‘™ can be decomposed as follows u' = [u],... ,u, ], where u; € R", for

any 1 < i < /. Note that the optimization problem given in (27) has a unique optimal solution. The multivariate CGMT
also assumes that the feasibility set of the maximization problem in (27) is compact. The following lemma shows that this
assumption is also satisfied by our formulation.

Lemma 3 (Dual Compactness). Assume that U, is the unique optimal solution of the formulation given in (27). Then, there
exists a positive constants Cy, > 0 such that

P(|l@,]l/vn < Cu) =3 1. (28)

This result can also be proved using similar steps as in Lemma 2 in (Dhifallah & Lu, 2020). Specifically, we can use the
result in Proposition 11.3 in (Rockafellar & Wets, 1998) to show the compactness of the optimal dual vector u,,. The results
in Lemma 2 and Lemma 3 show that the Gaussian formulation is asymptotically equivalent to the following formulation

. HUII2
min max —
lw||<Cu n;%u <C. 2n£

u; 91, + upoBw — y
nl z_: #0 H2 (29)
+ [ A+ 1 Zj)]Fw + p3 Pjw) + 5 [|lw|®.

Next, we focus on precisely analyzing the formulation in (29). Now, note that the label vector y depend on the Gaussian
matrix A. Then, we decompose A as follows

A=AP¢+ AP{ = A¢¢T + AP;, (30)
where P¢ € RP*P denotes the projection matrix onto the space spanned by the vector £ € R” and Pé‘ =1I,—-&¢ T denotes

the projection matrix onto the orthogonal complement of the space spanned by the vector €. Note that the random matrix
Age " is independent of the random matrix AP?. Then, we can express A as follows without changing its statistics

A=s¢' +APg, 31

where s € R” has independent standard Gaussian components and the two random quantities s and A are independent.
This shows that the optimization problem formulated in (29) is statistically equivalent to the following formulation

J4

‘ lul® =T
min  max —y+ms§ Fw
lwli<C. el <o, anl " z:: (32)

+ o9, + GEFw + T, T3 w) + 3w,
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where G and {T'; }§:1 are independent matrices with independent and identically distributed standard Gaussian components.
Here, G € R"*F, T, c R™*k_ Moreover, & € RF*F and I' € R*** are positive definite matrices and defined as follows

{2 = BF " P{F + 1315, 33

[ =2F"F + 121,

The above results show that it suffices to precisely analyze the formulation given in (32). Moreover, note that (32) can be
equivalently formulated as follows

9 2 T ~ 7TF R
min uog w1, HQUHe _u ¥y m&g w TS
lwl<Cuw L <c, 7 n n n (34)
1 1 1 1
+—u ' M'GEZ*w+ —u TT2w + 3 wl?,
nd nt

where 1, denotes the all one vector of size £n, y € R™ and 5 € R’" are formed after performing an ¢ times concatenation
of the vectors y and s, respectively. Here, the matrices T' € R™** and M € R™**" are given as follows

T =T/, T,,....,T]1", M =[I,,1,,...,1,].

We can notice that the optimization problem formulated in (34) is in the form of the multivariate PO problem given in (21).
Therefore, applying the multivariate CGMT, the corresponding multivariate AO problem can be expressed as follows

2 ~ 7T
Fw - pod
_ul® g Fw ro oo w1,
lwl<Cuw lul <, 2nt In nt
el <
_u'y 35
€-+—4mwmmfzzw+- wwmlrzw G
12w, |2 wII
h M 2

where the vectors g, € R¥, gy € R, hy € R™ and hy € R are independent standard Gaussian random vectors. First,
observe that the convexity assumption in Theorem 3 is satisfied by our multivariate PO formulation in (34). Furthermore,
note that the compactness assumptions in the multivariate CGMT framework are also satisfied by our primary problem in
(34). Then, following the multivariate CGMT framework, we focus on analyzing the multivariate AO formulation introduced
in (35). Specifically, the objective is to simplify the multivariate AO problem and study its asymptotic properties.

8.2.2. SIMPLIFYING THE MULTIVARIATE AUXILIARY FORMULATION

In this part, our objective is to simplify the multivariate AO problem given in (35). Specifically, the main objective is to
express the formulation in (35) in terms of scalar optimization variables. First, observe that the singular value decomposition
(SVD) of the matrix M can be expressed as M = USV ', where U € R™*" and V' € R*" are two orthogonal
matrices and § € R™*" is given by S = [\/ZI n Onx(g,l)n]. Therefore, the optimization problem expressed in (35) can
be formulated as follows

~ =T
F . 2 )
min  max MuTst — M + 'uLuTVTlgn
lw||<Cyp Iull < In 2nt nl
vl <c,
T T
u'V Ve 36
——H—+—wm9mw+—wmrm G
\/Z 1 F w
+ bl T 3,

where we perform the change of variable upew = Vu, we decompose the new vector as u,, = [u ,u, ] and we

replace u,.w by u. Now, we denote by ¢; and ¢, the norms of the independent vectors u; and ul = [u , T] i.e.
t1 = ||u1]| and t2 = |ju_1|. Additionally, we decompose the orthogonal matrix V" as follows V' = [V, V2] where

T
1
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V1 € R and V, € RX(=1n Define the vector v € R¥ as v = F ' ¢ and the scalar ¢ as ¢ = © ' w, where  is
defined as follows © = v/||v||. Also, define the scalar T}, ; as T, 1 = ||v]|.

Now, we are ready to further simplify the multivariate AO formulation. The first step is to fix ¢; and ¢5 and solve the
formulation in (36) over the direction of the independent vectors w; and w_1. Specifically, based on the result in Lemma 3,
the formulation given in (36) can be simplified as follows

ot Vi +13 3+ 13
min max Vi lgIE%w—i—gg;F%w— 11 + 3wl
lwl|[<Cw 0<ty/v/n<Cy, ML In 2nt
0<ts//n<Ci,

t 1 1 N _ . (37
+ VA w|hy + [D2wlhe — VG + podV Lo + fnTpaqV ] 3]

t 1 N ~ ~
Dbl - VG4 a0V L+ T 00V,

where we decompose the Gaussian vector hy as hy = [fAr,zT E;], where hy € R” and hy € RE-D7 Here, Cy, and Cy, are
sufficiently large positive constants that ensure the asymptotic result in Lemma 3. Note that it remains to solve over the
primal vector w to obtain a scalar formulation of the multivariate AO problem. We continue our analysis by defining the
following optimization problem

Vit Vi + 13

B+

e ocuvms 91w+ gIThw — =52+ Sl
lw|<Cw 0<ti/n<Cy, L /n ol
OStZ/ﬁSCtZ

VA Swl|?h e D (38)
w2 a2 + T w2 Ra? + lao?V] Lo + Ty 1qV T3~ Vg2

t 1 ~ o~ ~
I w ol + 09V 1 — VI + I TnaV I3

Note that the difference between the cost functions of the formulations in (37) and (38) are terms that converge in probability
to zero. Before showing the asymptotic equivalence between the formulations in (37) and (38), we provide important
convexity properties of the optimization problem in (38) as given in the following lemma.

Lemma 4 (Strong—convexity of (38)). Define f, 2 as the cost function of the problem in (38). Then, f, o is strongly convex
in the vector w where X is a strong convexity parameter. Moreover, it is strongly concave in the variables t1 and to in the
feasibility sets where —1 is a strong concavity parameter.

Proof. The strong convexity can be proved by observing that the cost function of (38) is a positive sum of convex and
. 1
strongly convex functions in terms of w for fixed feasible ¢; and t. Moreover, note that the term \/t3 + t2g, I'2w can

1 1
be replaced with t1 g, ' w + t2g9, T2 w without changing the statistics of our formulation, where g, and g, are two
independent Gaussian vectors. Then, one can see that the cost function of (38) is strongly concave in the variables ¢ and ¢,
where —1 is a strong concavity parameter. O

Lemma 4 provides important convexity properties of the optimization problem formulated in (38). These properties are
essential to prove the equivalence between (37) and (38) as stated in the following lemma.

Lemma 5 (High-dimensional Equivalence I). Define §;71 and §;72 as the sets of optimal solutions of the minimization

problems in (37) and (38), respectively. Moreover, let (3;,1 and 6;72 be the optimal objective values of the optimization
problems in (37) and (38), respectively. Then, the following convergence in probability holds

1051 — 05| 72570, and (S} 1, 87 ,) '=57 0, (39)

where D(A, B) denotes the deviation between the sets A and B and is defined as D(A, B) = sup,,, ¢ 4 infz,es/|®1 — T2|2.

The detailed proof of Lemma 5 is deferred to Appendix 10.1. Lemma 5 particularly shows that the optimization problems in
(37) and (38) are asymptotically equivalent. Then, it suffices to precisely analyze the formulation in (38). To solve over the
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primal vector w, we introduce two independent scalar optimization variables 7; and 75 where they both solve optimization
problems of the following form

V= % 5 , for any z > 0. (40)
Here, note that the optimal solution of the problem in (40) can be expressed as 7* = /z. Next, we use the identity in
(40) to transform the non-smooth square roots in the cost function of the formulation given in (38) to smooth terms. This
is an essential step to solve over the primal vector w. Specifically, based on the result in Lemma 2, our multivariate AO
formulation given in (38) can be expressed as follows

min  max inf Vit TE%U)—FMQTF —|—7—1—tl—|—7.2—t2 - i+t + 2 ||lwl?
lw]|<C 0<t1<Ct >0 /nf 91 N 2¢ 20 20 2
0<t2<Cy, T2>0
t1]|h| Cpit, (41)
+ 2|T - 132 wl||? + p T||F2 1 + {1 = VG +mT,1qV{ 3|
o g 2 Lin — V2T@+/71T71qV2T§||2a

where Cpir = t1]|hal|2/(€71) + ta|lhal|?/(£72). Here, we also perform the change of variable ¢1 ey = t1/1/n and
12 new = 12 /+/n, then, replace 11 new and to new by t1 and to. Note that the feasibility sets of the optimization variables
and 7o are open unbounded sets. To simplify the analysis, we show that the feasibility sets of the variables 7; and 5 can be
restricted to compact sets with probability going to 1 as p grows to +oo as stated in the following lemma.

Lemma 6 (Additional Compactness). There exist positive constants independent of p, c¢-, > 0, C, > 0, ¢, > 0 and
Cr, > 0, such that the following convergence in probability holds

p— o0

P(Cn < 7'1 < O‘I’1) —1, ]P(CTQ < 7'2 < CTz) .

L, (42)
where T1 and T, are the optimal solutions of the formulation in (41).

The detailed proof of Lemma 6 is provided in Appendix 10.2. Based on Lemmas 4 and 6, the optimization problem given in
(41) is asymptotically equivalent to the following problem

min e in Vit o7 NG ER: Trdew+ Tty N Tty 8+ 15 T A faof?
lw||<Cl o<t1<cf1 cT1<n<c fé 0/n 92 20 2/ 2/ 2
0<t2<C4, ¢y <12<Cry
ty||h il (43)
i B b 2 St g2 4 [0 = VIG+ T, 00V 5

27'n

T T~
+ m“ﬂoﬁvz 1o — Vo g+ inTy1qVs 5|2

Now, we are ready to simplify the formulation in (43) over the optimization vector w. We start our analysis by decomposing
the optimization vector w € R” as follows

w = qv + B, (44)

where 7 € R¥~! and B3 € R¥*(*~1) is formed by an orthonormal basis orthogonal to the vector v € R¥. Based on the
result in Lemma 2, one can equivalently formulate the problem in (43) as follows

\/7t1 TE2BLT+ V 1+ 2 TI‘ZBJ‘T-_*_Ltl_i_TLtQ_t%_Ft%
v N 20 " o0 20

min  max min
lg|<Cq 0<t1<Cyy c.,.1<7'1<C fé
|7||<Cp 0<t2<C, cry <7'2<C'72

tillh1112 . 1 1 S 1 (45)
Iy st gy 4 gsta)? + T D B 1+ gDhalP 1 2 (¢ + )
27‘1n 2n
t
Ta | ~ T 2 T T
or E 1€n Viy+mT,1qV, 3||2+727_2£nHM019V2 Lop — V2y+M1Tp,1qV2 3||2>
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where C; > 0 and C, > 0 are two positive constants selected to satisfy the asymptotic result in Lemma 2. Here, we also
drop terms that converge in probability to zero. One way to justify this step is using similar analysis as in Lemma 5. Note
that the convexity results in Lemma 4 are still satisfied by the formulation in (45). Specifically, the cost function in (45) is
jointly strongly convex in the minimization variables and jointly strongly concave in the maximization variables.

Now, it remains to solve over the optimization vector » € R¥~!. To solve over 7, we interchange the minimization over
r and the maximization over ¢; and 2. This step is justified using the result in (Sion, 1958). The cost function of the
optimization vector 7 can then be expressed as follows

t \/ t2 t1||lh
g(r) = \ét} Is:Blr ;\/i VAT TriBlr 4+ 12”Tl” |S2Bir +q220)? + 3|r|?
(46)

+ LTI By g Do)

where we ignore the terms independent of r. Note that the function g(-) is convex and smooth. Before solving the
minimization problem of the function g(-), we define the matrix G € R¥** and the vectors f € R¥~! and z € R¥~! as
follows

G — tthlH >+ prl-\

f:tl”’“” B, 2v+<P”B I'v (47)
Z—\\QﬁB 2291"‘ tH ‘B, I‘2927

=L . o . o . .
where B,, = (By)". After computing the derivative of the function g(-) and setting it to zero, the optimal solution of the
unconstrained version of minimizing the function g(+) can be expressed as follows

# =~ [B,GB} + 1, ot + ). (48)

Similar to the analysis in Lemmas 2, 3 and 6, one can show that the norm of the optimal vector 7 is bounded. This means
that 7* is an optimal solution of the formulation in (45). Then, the optimal loss function can be expressed as follows
2 _ 1 2
==L [BLGBy AL fLeTew
) 2 B 2 (49)
— 52" [B,GBy + | =

Based on the SVD decomposition of the matrix M, it can be checked that the last term in the multivariate AO formulation
given in (45) is zero. Then, the formulation given in (45) can be expressed as follows

ty ti+13 ta A+ Vya(t,T) = V,3(t
min  max min 4 tiy | Tele + p72( ,T) p,3( 7T)q2
lg|<Cy 0<t1<Cy, c,1<n<cT1 20 20 2 2
0<t5<C4, crpy <T2<Cr, (50)

1
—y+mTyqs)* - p,4(t T),

where t = [t1,t5]" and 7 = [, 2] . Here, 1,, denotes the vector of all one with size n and the functions Voo (s, ),
Vp.3(+,-) and V, 4(+, -) depend on the optimization variables and are given by

Voo(t,7) =0  Go
T [pL 1 -1
Vps(t,T)=f [Bv GB, + AI:H} f (51)
_ -1
Vpalt,7) = 27 [BiGBj + AI,H} 2.
Note that we simplified the multivariate AO formulation given in (35) to a scalar optimization problem as given in (50).

Then, it remains to study the asymptotic properties of the scalar formulation in (50). We refer to this problem as the scalar
formulation.



On the Inherent Regularization Effects of Noise Injection During Training

8.2.3. ASYMPTOTIC ANALYSIS OF THE SCALAR FORMULATION

In this part, we study the asymptotic properties of the scalar formulation in (50) corresponding to the multivariate AO
problem. Based on Assumption 5 and the result in Proposition 3 in (Debbah et al., 2003), the random variable T}, ; converges
pointwisely in probability to the scalar 7 defined as follows

Ty1 = \/& FF'¢ 222, 1 = \/OR,[x], (52)

where the expectations are over the probability distribution P, (-) defined in Assumption 5. Furthermore, the random
function V,, »(-, ) can be expressed as follows

1 ti1l|lh 2 T
Vyalt,m) = TTﬁTF< 1”7 on o L)'
p,1 1 "
9~ 2772
R F[(tluhlu i cp,mul)FTF_M (53)
T, TN T
t1]|ha )2 T3

where t = [t1,t5] " and 7 = [y, 72] . Then, using the theoretical results in (Debbah et al., 2003) and based on Assumption
3, the random function V}, o(+, -) converges pointwisely in probability as follows

. § st t1 2
Vpa(t, m) 2720 Vo(t, ) = T2( L + Cerfl ) o[57] - AR, [x)?
o (54)

+ (tluQ + G, T/’L3)6E (%],

where (;, = t1/(f11) + t2(¢ — 1)/(¢12) and the expectations are over the probability distribution P, (-) defined in
Assumption 5. The theoretical results in Proposition 3 in (Debbah et al., 2003) also show that the random function V,, 4(-, -)
satisfies the following asymptotic result

p—+oo

Vpa(t. ) — Vyu(t, ) 0, (55)

where the random function ‘A/p74(-, -) is defined as follows

‘717,4(t77') = %Tr[f]% {é + /\Ik—l] - ié} (56)

Here, Tr[.] represents the trace. Additionally, the matrix S s given as S = ,ulFTF + p3I; and the matrix G has the
following expression G = t1||h1[|?/(11n)% + (p.+,-/nT. Using again Proposition 3 (Debbah et al., 2003) and Assumption
5, we can also see that the random function V}, 4 (-, -) converges in probability to the function V4 (-, -) defined as follows

/2 ~2 2
Vat, ) = TE |5 pE L ]
?1(#1’1+H2) + Cer (A6 + p3) + A
n(t] +13) ik + 3 ]

+ K,|: ~ ~ N
2 L3k + p3) + Cor (AR + p3) + A

Now, it remains to study the asymptotic properties of the random function V}, 3(-, -). Based on the block matrix inversion
lemma, it can be checked that the random function V,, 3(-, -) satisfies the following

Vot 7) = Vpo(t,7) + A = (57)

Tpﬁg(t, T) ’
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Here, the random function 7T}, o (-, -) is defined as follows
Tpo(t,7) =0 [G+ A ' ®. (58)

Using the matrix inversion lemma, it can be checked that the random function T}, (-, -) converges in probability to the
function T5 » (-, -) defined as follows

K 3t K
J(LE[Q,@A(t,T)}/(l - Mrtl 6E[g,€7,\(t,7')})’

where the function g, »(-, -) is defined in Section 4. Additionally, using the weak law of large numbers (WLLN), we have
the following convergence property

TQ)\(t T)

1 ~
EH/’('O’&ln —y+mTyaqs|? e, 1e9 + 1+ BT — 2 Tigye — 2u097s. (59

Here, 71, 2 and 3 depend on the data distribution and are defined as v; = E[y?], 72 = E[ys], 73 = E[y], where y = ¢(s),
and s is a standard Gaussian random variable. This proves that the cost function of the following deterministic problem

. . Tity + oty 13+ 13 ¢ nTsA(t, )
min max min — —
lq|<Cq 0<t1<Cyy cry <T1<Cry 20 2/ 215 A (t, T) 2
0<t2<Ct, 7y <12 <Cry (60)

+ T (’Y1 =2 Thqye + I3 TE G + g — 2,u01973)

is the converging limit of the cost function of the scalar formulation in (50), where the function T3 (-, -) is given by
Va(t, T)/n. Before continuing our analysis, we summarize convexity properties of the cost function of (60) in the following
lemma.

Lemma 7 (Strong—convexity of (60)). Define fas the cost function of the problem in (60) defined in the feasibility set.
Then, f is jointly strongly convex in the variables (q,, 71, T2) for fixed feasible (t1,t2). Moreover, it is jointly strongly
concave in the variables (t1, t2) for fixed feasible (q,9, 71, T2).

This result can be proved by observing that the strong convexity parameters in Lemma 4 are independent of p and that the
operations performed after Lemma 4 preserve the convexity properties. Another property of the scalar formulation is that its
set of optimal solutions concentrates around the set of optimal solutions of the formulation in (60) as summarized in the
following lemma.

Lemma 8 (Consistency of the Scalar Formulation). Define 7, 1, 7,5, 1y 1, t; o and qy, as the optimal solutions of the scalar
Sformulation given in (50). Additionally, define T, 75, t7, t5 and q* as the optimal solutions of the deterministic optimization
problem given in (60). Therefore, the following convergence in probability holds

g T Ty T o,
bt e (61

t* —t5 q) p qr.
Moreover, define U, and 9* as the optimal solutions of the minimization problems of (50) and (60) over 1) in the feasibility

set defined in (26). Then, we also have the following convergence in probability
By T (©2)

The convergence result in (61) follows using Theorem 2.1 in (Newey & McFadden, 1994). We can see that all the
assumptions in Theorem 2.1 in (Newey & McFadden, 1994) are satisfied by the formulations in (50) and (60). Moreover, the
result in (62) follows using Proposition 2 in (Dhifallah & Lu, 2020). The detailed proof is omitted since it follows similar
ideas as in Proposition 4 and Proposition 5 in (Dhifallah & Lu, 2020). Based on (Sion, 1958), we can further simplify
the formulation in (60) by solving the minimization problem over the variables ¢ and . Note that the optimal J* satisfies
¥* = 0if gy = 0 and ¥* = 3/ o otherwise. Furthermore, the optimal g denoted by ¢; , can be expressed as follows

o = Yotr T To A (L, T)
.= = .
T+ T A (E, T)
Observe that the optimal solutions, ¥* and q;T, satisfy the boundedness constraints. Moreover, note that our results are

valid for any bounds that satisfy the results in Lemmas 2, 3 and 6. Now that we obtained the asymptotic scalar optimization
problem, it remains to study the asymptotic behavior of the training and generalization errors.

(63)
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8.2.4. ASYMPTOTIC ANALYSIS OF THE TRAINING AND GENERALIZATION ERRORS

First, the generalization error is given by

1

fuea = 1| (plau®) ~ 2@ o(FTare) |

where @y is an unseen data sample and w is the optimal solution of the noisy formulation. Based on the uniform Gaussian
equivalence theorem (uGET), observed and proved in many earlier papers (Hu & Lu, 2020; Montanari et al., 2019; Gerace
et al., 2020; Goldt et al., 2020b; Dhifallah & Lu, 2020), the asymptotic properties of the generalization error are equivalent
to the asymptotic properties of & defined as follows

_ 1 =R -~ =N =N 2
Erest = EIE {((P(arlw ) - SD(/JOsﬁp + /UflszFTanew + HQSWTZ)) ] .

Here, w and ﬁp are the optimal solutions of our primary formulation given in (26). The expectation is taken over the
distribution of the random vector @y, the random vector z and the possibly random functions ¢(-) and ¢(-), where z is
independent of @y and drawn from a standard Gaussian distribution. Moreover, the constants (s, (415 and pos are defined
as pos = E[o(2)], p1s = E[z0(2)] and p3, = E[o(2)?] — pud, — p3,, where z is a standard Gaussian random vector. Now,
consider the following two random variables

9 ~T ~T
g1 = a'r—lrewgv and g2 = MOs'lgp + psw FTanew + posw  z.

Given the optimal solutions w and ¥,,, the random variables g1 and g2 have a bivariate Gaussian distribution with mean
vector [0, p10s¥,] T and covariance matrix given by

T 4~
o _[ e met Fo ]
P FE g R + i3

Define the random variables (T;, B; and ?\; as follows
~ =T A*_ F’\Q d"\k_ 112 64
4 =0 w, B = |[Fwl|]®, and 7} = [Jw]]", (64)
where © = v /||v|| and the vector v is defined as v = F'' €. Then, the covariance matrix C, can be expressed as follows

1 ﬂlsTp,lz]\;

C = Lo .
P ,LLlsTp,lq\; /u’%sﬂ; +:u%9?kp

(65)
. . . . . . . A* e

IiIence, to study the asymptotic properties of the generalization error, it suffices to study the asymptotic properties of 73, g,

B, and 7. The following lemma summarizes the asymptotic properties of our primal formulation given in (26).

A‘k

Lemma 9 (Primal Consistency). The random variables U, ?f;, B; and ?; converge in probability as follows

R e N
D p p (66)

iy L = ()2 4+ WO,

where ¢* and 9* are optimal solutions of the deterministic scalar formulation in (60). Moreover; the function h(-) and 3*

are defined in Theorem 1.

Proof. Note that the analysis in Section 8.2.2 shows that the scalar formulation given in (50) is a simplified version of the
multivariate AO formulation given in (35). Define the random variable 9}, as the optimal solution of the minimization of the

problem (35) over 9 in the feasibility set defined in (26). Moreover, define the random variables g,,, E}‘; and 7 as follows

s =T D ()2 — {15712
G =0 w, f = [|[Fwl, and 7 = [w]]%, 67)
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where w is the optimal solution of the multivariate AO formulation given in (35). Based on the decomposition in (44), note
that 37 satisfies the following expression

= |Fw|®=(g;)*» " F Fo+2¢v ' F' FB,7"

(68)
+ @) By F FB:#,
where 7 is defined in (48) and is the optimal solution of minimizing the function g(-) introduced in (46). Substituting the
expression of 7* given in (48), performing the same analysis as in Section 8.2.3 and using the convergence result in (61), it
can be shown that the random quantity 3} converges in probability to 3* defined in (20). Additionally, observe that r; can
be expressed as follows

~ ~112 2 ~*(12
o = lwll* = (g)” + 77" (69)

Define the function hy, : A = —(q5)?Vp 3(t5, 75) — Vp.a(t), 75), where the random functions V), 3(-, -) and V}, 4(-, -) are
defined in (51) and where th o= [ty 150" and T, = [ Th1,Tho) . Here, {t% |, t* 5,71, 7%, } are defined in Lemma 8.
Given the expression of 7 1n (48), we can see that 7, can be expressed as follows

= (@) + hp (V). (70)
where the optimal solutions are treated as constants independent of \. Performing the same analysis as in Section 8.2.3 and
using the convergence result in (61), it can be shown that the random quantity 77, converges in probability as follows

e P = ()2 + B (), (71)
where ¢* is the optimal solution of (60) and the function h(-) is defined in Theorem 1. Given that the scalar formulation
given in (50) is a simplified version of the multivariate AO formulation and based on Lemma 8, we obtain the following
asymptotic properties

g T g 0 2 g, (72)
where ¢* and ¥* are the optimal solutions of the deterministic scalar formulation in (60). Following a similar analysis as in

(Thrampoulidis et al., 2018), we can show that the assumptions in Theorem 3 are all satisfied. The main idea is to define the
set S, introduced in Theorem 3 as

{w: |||F'w||2 — 8% < €}, and {w : H|w||2 —r¥| < e} (73)

Then, use the strong convex1ty properties of the formulation in (45) to prove that the assumptions in Theorem 3 are satisfied.

This means that 19* qp, ﬁ* and 77 5, defined in (64) concentrates around the same values as 19p, > ﬁ and 7, defined in
(67). O

Now, to show the convergence of the generalization error in Theorem 1, it suffices to show that & is a continuous function
in 1/9\* 0y B\* and 7. Based on Assumption 3, the functions ¢(-) and $(-) are square integrable over Gaussian distributions.
Moreover, the optimal solutions 19p, 0> ﬂ; and 7’“\; are bounded. Based on Assumption 3 and the continuity under integral
sign property (Schilling, 2005), the continuity of £ follows. These properties lead to the convergence result given in (19)
in Theorem 1. Based on the analysis in Lemma 9 and Theorem 3, the optimal cost value of the noisy formulation converges
in probability to the optimal cost value of the deterministic formulation in (60). Combining this result with the asymptotic
property stated in (71) shows the convergence of the training error stated in Theorem 1.

8.3. Large Number of Noise Injections

Note that the analysis in the previous parts studies the properties of the training and generalization errors corresponding to
(3) when p grows to infinity. In this part, we study the properties of the noisy formulation when ¢ grows to infinity slower
than the dimensions n, p and k. Note that in this regime and based on the analysis in the previous part, the noisy formulation
converges to the deterministic formulation in (60). Then, the objective is to analyze the deterministic formulation in (60)
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when ¢ grows to infinity. Here, we note that the bounds on the feasibility sets of the deterministic formulation in (60)
depends on / as follows

Ctl = \/Zétu Ctz = \/Zatm Cry = \/&‘Fl?
Cry = \/267—2, C‘rl = \/Z€7—17 CT2 = \/Eé‘l'z' (74)

We start our analysis by performing the change of variable 71 = Tl/\/Z, T =To/VI t; = tl/\/z and ty = t2/\/Z. This
means that the deterministic scalar optimization problem given in (60) can be expressed as follows

. Tty + oty 13+ 13 (q;‘r)2 T3 (¢, T)
max. min — -
0<t1<Cy, Try <T1<Chr, 2 2 2T, \(t, T) 2

0<t2<C, Try <T2<Cr, (75)

t N -
o (71 =2 Tg; 2 + BT (a7 )2 + pg(9%)? — zu(ﬂg*%)

where t = [t1,t2] " and 7 = [r1, 2] " Here, the functions T5 x(-, -) and ¢; . are the same as the ones provided in Section 4.
Furthermore, the functions T3 » (-, -) and g, (-, -) are given as follows

fik+p31 | 15 TR+ 3
T37)\(t,T)=t%]E['u1 Nz} 1Tl [/h M3]’

Ira(t, T) 14 e (t, T)
_tifo 2 o (1)
gR’A(t’T) o T1 (/L1H+N2> + (Tlf + TQE )

X (ﬁ%n + H?},) + A
Now, we focus on analyzing the formulation in (75) when the number of noise injections grows to infinity. The following
lemma summarizes our main technical results.
Lemma 10 (Large Number of Noise Injections). When ¢ grows to infinity, the asymptotic limit of the formulation in (75) is

obtained by updating the functions Ts x(-,-) and g,; A (-, ) as follows

[iik + 3
g/{,)\(t: T)

2

t1 [~ to (...
Tyalt,) = £E] | gt ) = 2 (it 3) + 2 (w4 + 1

The convergence result in Lemma 10 follows using Theorem 2.1 in (Newey & McFadden, 1994). Specifically, we use the
strong convexity property in Lemma 7. Also, we use the pointwise convergence of the cost functions based on Assumptions 4
and 5 and the dominated convergence theorem. This shows that all the assumptions in Theorem 2.1 in (Newey & McFadden,
1994) are satisfied by the formulation in (75) and its asymptotic formulation mentioned in Lemma 10. Next, we refer to the
asymptotic limit obtained in Lemma 10 as the asymptotic deterministic formulation.

Performing a similar analysis as in Sections 8.2.1, 8.2.2 and 8.2.3, it can be checked that the asymptotic deterministic
formulation obtained in Lemma 10 is the asymptotic limit of the following formulation

1l ~ 2 1
min 5= 3 (3~ w G(F a) + 3R w]? + 3w (76)

Here, the regularization matrix R is defined as follows
R=[3F"F + i1y, (77)

and the new activation function & (+) satisfies the following properties

(78)
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where ©1 = z + Avy, 9 = z + Awvy and 2z, v; and v, are independent standard Gaussian random variables. Now, note that
the norm of any vector € R? can be expressed as follows

Lo [ - 2
gllell” = gy =5 Tuw = max g+ el
) 2 tr ot 9
= maxinf =5+ 5+ ol 79

We can see that the optimal solution of the max-min problem in (79), denoted by ¢t* and 7*, satisfies t* = 7*. This trick
can be used in the CGMT framework to show that the asymptotic limit of the formulation in (76) can also be expressed as
follows

. Tltl t% (q;,r,oo)2 77T3,)\,oo(t1; Tl)
max min _— = = —
0<t1<Cy, Gy <T1<Cry 2 2 2T 5\ oo(t1,71) 2 80)
ty ~ -
+§g(ﬁ—QmTwLaﬁm+ﬁTﬂﬁmmf+uaWV—QmeQ7

where the constant 9* satisfies v* = 0 if o = 0 and 9* = 3 /o otherwise. Moreover, ¢; , ., is defined as follows

Yot1 1 TiTo x 00 (t1,71)
T1 + tlﬁ%TfTQ,)\,oo (tl, Tl)

81

*
Qt,‘r,oo -

Here, the functions T2 x oo (+, ), T5,x,00 (", *) and gy .00 (+, -) can be expressed as follows

o
i) (- ) ®)

1) K
To r00(t1, 1) = =5 [

T}
Ty oo(ts, 1) = BE| (5 + 1)/ g oo (t1,71)|

Gra00(t1,T1) = ! (ﬁ?"ﬂrﬂg) + (ﬁ%"ﬂJF#g) + A

t
T1
The property in (79) can also be used to show that the optimal solution ¢5 and 75 of the asymptotic deterministic formulation
obtained in Lemma 10 satisfy ¢5 = 7. This then leads to the formulation in (80).

Now, define the asymptotic training and generalization errors stated in Theorem 1 as Eiqin, 0o and Eest o0, respectively. Then,
the asymptotic training error converges as follows

0 * A *
Etrain, o0 e, ¢ (A N) — 5 ((q )? + h/oo()\)) ; (83)

where C* (A, \) is the optimal cost of the deterministic problem in (80). Here, the function Ao () is defined as follows

hoe(X) = (g (2 — T p 00 (1, 70).

&)
T27A»00(t1(5 7—1*)
Moreover, the asymptotic generalization error converges as follows

s+ 1 ~
Euminoo —— —E[(¢lg1) — (g2))?] (34)
where ¢; and g, have a bivariate Gaussian distribution with mean vector [0, os9*] and covariance matrix C, defined as
follows

_ { 1 tspTig* ]
pispTiq* 1385 + 13, ((6%)% + hig (V)

The constant 9* satisfies 9* = 0 if ug = 0 and 9* = 3/ o otherwise. Here, the constants jigs, i1 and s are defined
as pos = Elo(2)], p1s = E[z0(2)] and p3, = E[o(2)?] — pud, — p?,, where z is a standard Gaussian random variable.
Additionally, the constant 8% can be computed via the following expression

1
* 2 _ _

5”_%+Vx%ﬂ Va—Vi— A+

nTS,)\,oo(tfva) o V2 + V;l + A /

Vi+Vs i+Vvs %

QW?

TQ,/\OO(tL T

V), (85)
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where the constants V7, V5, V3 and V} are defined as follows

t*ﬁQ R t*HQ
‘/1: ;*17‘/3:/1'%7‘/2: ;*27‘/212/153.
1 1

Here, ¢* = g+ .+ o satisfies the expression in (81). Moreover, ¢7 and 77" denote the optimal solution of the problem defined
in (80). Also, we treat ¢*, t¥ and 77 as constants independent of A when we compute the derivative of the function i (+).
The results in (83) and (84) can be proved using a similar analysis as in Section 8.2.4. Performing a similar analysis as in
Sections 8.2.1, 8.2.2, 8.2.3 and 8.2.4, it can be checked that the training and generalization errors corresponding to the
formulation in (76) converge in probability to the limiting functions obtained in (83) and (84), respectively.

Note that the analysis in this Section is valid for any bounds that satisfy the theoretical results in Lemmas 2, 3 and 6.
Moreover, observe that the cost functions of both deterministic problems in (60) and (80) diverge when ¢4, to, 71 or T2 grows
to infinity or when 71 or 72 goes to 0. This means that the solution of the unconstrained version of the formulations in (60)
and (80) should satisfy the feasibility constraints in (60) and (80). This means that the optimization problems in (60) and
(80) can be equivalently formulated as in (11) and (19). This completes the proof of Theorem 1, Theorem 2 and Lemma 1.

9. Appendix: Additional Technical Details

In this part, we provide additional technical details to prove the results stated in Theorem 1, Theorem 2 and Lemma 1.
Specifically, we provide a rigorous proof of the theoretical results stated in Lemma 5 and Lemma 6.

9.1. Proof of Lemma 5: High—dimensional Equivalence I

The optimization problems given in (37) and (38) share the same feasibility set D which we define as follows
D = {(watlth) : ||wH S C’wuo S tl S Ctlao S t2 S Ctg}‘ (86)

Define fp,l as the cost function of the optimization problem given in (37) and define fp_g as the cost function of the

optimization problem given in (38). Note that the following inequality |/z — \/y| < /|2 — y| is true for any = > 0 and
y > 0. Therefore, we have the following inequality

. ~ 2t2 2t3
sup ‘fp,Z(wvtlatQ) - fp,l(watlat2)| S sup {\/1|Zp,1 + \/22|Zp,2|} (87)
(w,t1,t2)€D (w,t1,t2)€D n n

where we perform the change of variable t; = ¢,/\/n and ty = t5/+/n. Here, Z, ; is defined as follows

Zy1 = VI S2w||T2w||h] hy + VE|Z2w|h] (=V ]G + 19V 1 + 1 T)1qV | 3)
~T N ~ ~
Tl (VTG + podV] Loy + i T0aV ] 3), ®9

and Z, 5 is defined as follows

~T R - R
Zyo = |T2w|hy (—V3 5 + p00Va Loy + 1 Tp1qV 3 9). (89)

Given that the set D is bounded and based on Assumptions 4 and 5, Z,, 1 and Z,, > can be bounded by a constant independent
of the optimization variables. Combining this with the weak law of large numbers, one can see that the right hand side of
(87) converges in probability to zero. Then, we obtain the following convergence in probability

p——+o00

sup |j§,,2(w,t1,t2) — ]/c;)l(’w,tl,tg)‘ — 0. (90)
(w,tl,tQ)ED

Moreover, the following two properties are true for bounded functions

{|supx J(@) — sup, g(@)| < supy|f(@) — g(=)| o)

inf f(z) — infg g(@)| < supy|f(z) — g(z)].
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Given that the functions J?nl and ﬁ,z are bounded in the set D and the result in (90), we get the following convergence in
probability

051 — O30 7257 0, 92)

where 6;’1 and 51*)72 are the optimal objective values of the optimization problems given in (37) and (38), respectively. Now,
define 3‘;1 and (SA’;,Q as the set of optimal solutions of the minimization problems in (37) and (38), respectively. Next, the
objective is to show that

(S 1,85 ,) — 0. (93)

Moreover, define the functions fm and fp,g as follows

fp,l(w) = OSIIfIll%}étl fp71(w,t1,t2)

0<t<Ch,
w) = max w,t1,t2).
fp,Q( ) Oﬁtlfctl fp,?( s U1y 2)
0<t<Ch,

(94)

Note that the set 35,1 is the set of minimizing w of the first function in (94). Based on Lemma 4, the function f;),g is strongly
convex in the feasibility set where A is a strong convexity parameter. This means that it has a unique minimizer denoted by
w;z. Now, assume that 'w;,l is a minimizer of the function pr. Moreover, assume that there exists v > 0 independent of
p such that the following convergence holds true

P sup [w' —w)olz > 7) 31 (95)
wreS?
Given the strong convexity of the function ]7;,’2, we have the following inequality
Fp2(Bw1 + (1= Brws) < Bfpa(wn) + (1= B) fpa(wo)
- %ﬁ(l = B)wr — w3, (96)

where this is valid for any 3 € [0, 1] and feasible w; and ws. Take w; = wj, ;, wa = w5 and § = 1/2. Based on the

fact that wy; 5 is a minimizer of the function fp,g, there exists v > 0 independent of p such that
~ « ~ N )\’}/2 p—00
P sup [ fpa(w)s) = Fra(w)| = =) =3 1. (97)
wreSy |

Next, we use the convergence in probability established in (90) and (92) to show that the result in (97) produces a
contradiction. To this end, note that the following inequality is always valid

[fp2(wy o) = fpo(w), )| < |fp2(wy o) — foa(wp )+ [fpa(wp ) = fpa(wy 1), (98)
which means that the following inequality is always true
|fp2(w] o) = fp2(wp )| <105, — Op [+ Wia [fpa(w) = fp2(w)]. (99)

Observe that the inequality derived in (99) implies that the following inequality holds true

sup | fp2(why) — fra(w*)| <05, — 05|+ sup |fpi(w) — fpa(w)|. (100)
w*€§;11 HwHSCw

Now, based on (90), (91) and (92), the right hand side of (99), converges in probability to zero. This means that the following
convergence in probability holds

—+00
p*}

sup |fpa(w) o) = fpo(w?)] 0. (101)

wreSy |
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This contradicts with the result in (97). This means that for any €; > 0 and e; > 0, there exists pg € N such that for any
p > po, we have that

IP( sup [|w* — w |l < 61) >1— e (102)

w* ES; 1
This means that the following convergence in probability is true

D(S;,,850) P50, (103)

p,2

where D(.A, B) denotes the deviation between the sets A and 13 and is defined as D(A, B) = sup,, ¢ 4 infa,en(lz1 — x2||2.
This completes the proof of Lemma 5.

9.2. Proof of Lemma 6: Additional Compactness

We start our prove by analyzing the feasibility sets of the primal formulation in (27). Note that the optimal solution of the
formulation given in (27) can be expressed in closed form as follows

-1 T—
_ 1 K
wy, = [MKTK + )\Ik:| (J) ; (104)

for a sufficiently large C,. Here, the matrix K € R™** is defined as follows
K =[ys¢ F+GZ? + TT?. (105)
The matrices 3 and T are defined in (33). Moreover, ¥, 5 and G are formed by performing ¢ times concatenation of

Yy =1y — puol,, sand G. Here, y = ¢(s) and s, G and T have independent standard Gaussian components. Now, based
on the results in (Rudelson & Vershynin, 2010) and Assumptions 4 and 5, there exists a positive constant C'; > 0 such that

|K|/vn < Ch, (106)
with probability going to 1 as p grows to 4+-00. Therefore, there exists a positive constant C'y > 0 such that
1 T —1 1
([—KTK +AI )>7, 107
O—mm([nﬂ + k] = Oyt A\ ( )
where oy, (+) denotes the minimum eigenvalue. Now, observe that
1K g =ii(s79)°¢ ' FF € +3"BB 'y + 2 (s'9)¢ FB'y, (108)

where B = GX? + TT?. Given that the random quantities s, G and T" have independent standard Gaussian components,
we have the following

%gTFBTQ P2EC ), (109)
Moreover, using the weak law of large numbers and Assumptions 3 and 5, we obtain the following asymptotic results
%@ P2 Blzp(2)], €T FFT€ 7257 6E[x). (110)
Combining this with Assumptions 3, 4 and 5, we obtain the following inequality
a0 = GiROEL o)l (i
valid with probability going to 1 as p grows to infinity. This shows that there exists a positive constant ¢,, > 0 such that

Wyl = cuw, (112)

with probability going to 1 as p grows to infinity. Then, we can apply the multivariate CGMT framework with the additional
constraint in (112). Based on this result and Assumption 4, there exists positive constants ¢, > 0, C, > 0, ¢, > 0 and
C+, > 0, such that the following convergence in probability holds

P, <71 <Cp) 22251, Py, <72 < Cpy) 22551, (113)

where 71and 7, are the optimal solutions of the formulation in (41). This completes the proof of Lemma 6.



