
Supplementary Materials: Hierarchical Agglomerative Graph

Clustering in Nearly-Linear Time

A Overview of Materials Included

1. In Section B, we restate key definitions and algorithms from our paper.
2. Then, in Section C, we present details about some of our data structures such as mergeable

heaps, which are used in our proofs.
3. Next, in Section D, we present deferred proofs regarding the efficiency of our algorithms.
4. Lastly, in Section E, we present deferred experimental details from our evaluation.

B Algorithms and Definitions

For ease of reference, we restate a few keys definitions and algorithms that are used in the rest of
the appendix.

B.1 Linkage Measures

Let the best-neighbor of a cluster X be argmaxY ∈N(X)W(X,Y ). We call the edge connecting X and
its best-neighbor Y the best-edge of X. We say that a linkage measure is reducible [Ben82], if for
any three clusters X,Y, Z where X and Y are mutual best-neighbors, it holds that W(X ∪ Y,Z) ≥
max(W(X,Z),W(Y,Z)). Our framework yields exact HAC algorithms for any reducible linkage
measure that also satisfies the following property.

Definition B.1. A linkage measure is called triangle-based if it satisfies the following property.
Consider any step of the algorithm which merges clusters B and C into a cluster B ∪ C. Let A be
a cluster distinct from B and C. Then, if edge (A,C) does not exist, W(A,B) =W(A,B ∪ C).

B.2 Algorithms

Most of our algorithms use the Merge routine to merge two clusters, which is given below (Al-
gorithm 1). Next, we provide the two main HAC implementations in our framework, which are
based on the classic nearest-neighbor chain and heap-based methods (Algorithm 2 and Algorithm 3
respectively).

C Neighbor-Heap Details

Augmented Heaps. A simple implementation of neighbor-heaps is to store the edges incident to
a cluster using an augmented binary tree, or an augmented heap. Given a binary tree storing key-
value entries, and a function f taking an entry and yielding a real-valued priority, we can obtain a
max-heap (min-heap) by setting the initial augmented value of each vertex to its priority calculated

1



Algorithm 1 Merge(A,B,L)

Input: Active clusters A and B, triangle-based linkage L.
Output: Cluster id of the remaining active cluster.
1: (A,B) = (argmin(d(A), d(B)), argmax(d(A), d(B)).
2: Remove B from Heap(A) (and vice versa).
3: Heap(B) = Heap(A)∪Heap(B) (using L to merge the weights of C ∈ Heap(A)∩Heap(B))
4: Mark cluster A as inactive.
5: For each C ∈ Heap(A), update the cluster-id from A to B in Heap(C), using L to merge if
B ∈ Heap(C).

6: Return B.

Algorithm 2 GraphHAC-Chain(G = (V,E,w),L)

Input: Edge weighted graph, G, triangle-based linkage L.
Output: Dendrogram D for L-HAC.
1: for each cluster v ∈ V do
2: if v is active then
3: Initialize stack S, initially containing only v.
4: while S is not empty do
5: Let t = Top(S).
6: Let (t, b,W(t, b)) = BestEdge(t).
7: if b is already on S then
8: Pop(S).
9: Merge(t,Top(S)). [Algorithm 1]

10: Pop(S).
11: else
12: Push b onto S.

using f , and inductively setting the augmented values for internal vertices using max (min) of their
augmented value, and the augmented values of their two children. We refer to [SFB18] for details
on implementing augmented binary trees.

The BestEdge operation can be implemented by having the augmented value at each tree
vertex (corresponding to an edge of the graph) be the edge weight, and the augmentation function
to max. Extracting the best-edge can then be done using a find-like function which finds a (key,
value) pair in the tree that exhibits the overall augmented value of the tree. Another way is to set
the augmented value to a pair of the edge weight and the neighbor id, and have the augmentation
function to take a lexicographic maximum. The best-edge in this approach is simply the augmented
value at the root of the tree. In our implementations, we use the former approach, since it is more
space-efficient than the latter approach. Both implementations cost O(log n) work per BestEdge
operation.

The Union operation can be implemented by using Union on the underlying augmented binary
trees. The algorithm from [BFS16] (which is implemented in the PAM library [SFB18]) merges
two trees of size n,m with n ≤ m in O(n log(m/n+ 1)) time, which is asymptotically optimal for
comparison based algorithms [BT79].

2



Algorithm 3 GraphHAC-Heap(G = (V,E,w),L)

Input: Edge weighted graph, G, triangle-based linkage L.
Output: Dendrogram D for L-HAC.
1: Let H be a max-heap storing the highest-weight edge incident to each active cluster in the

graph.
2: while |H| > 1 do
3: Let e = (u, v,W(u, v)) be the max edge in H.
4: Delete e from H.
5: if v is inactive then
6: Let e′ = (u, v′,W(u, v′)) = BestEdge(u).
7: Insert e′ into H.
8: else
9: x = Merge(u, v). [Algorithm 1]

10: Let e′ = (x, y,W(x, y)) = BestEdge(x).
11: Insert e′ into H.

D Deferred Proofs

Lemma D.1. Single-linkage, complete-linkage, and WPGMA-linkage are all triangle-based link-
ages.

Proof. It is well known that all of these linkage rules are reducible (e.g., see [MRS08]). To show that
they also satisfy Definition B.1, observe that the weight of an edge (A,B) can change after merging
clusters B and C only when A is also connected to C. For example, for single-linkage, it is easy to see
that the edges that we take the max over when calculatingW(A,B∪C) = max(x,y)∈E(A,B∪C)w(x, y)
can affect the result only when W(A,C) > W(A,B). Similar calculations show that complete-
linkage and WPGMA-linkage are triangle-based linkages.

D.1 Framework Analysis

Lemma D.2. Let m1, . . . ,mn−1 be the sequence of merge operations performed by an algorithm
where mi = (ui, vi). Let Cost(mi) = min(d(ui), d(vi)), where d(ui) and d(vi) are the degrees of the
clusters when they are merged. Then, the total cost

∑n−1
i=1 Cost(mi) = O(m log n).

Proof. The proof is by a charging argument. Following the definition of Cost, assign a token to
each edge in N(argmin(d(ui), d(vi))) for each i. We do not undercount the cost, since we assign
Cost(mi) tokens at each step i to the edges. We now bound the total cost by bounding the number
of tokens that can be assigned to an edge.

We conceptually add an extra total-edges variable, T (u) to the data structures storing the vertex
neighborhoods, N(u). This variable simply stores the total number of edges that have been merged
into this tree. At the start of the algorithm, T (u) = d(u). When two clusters u and v merge, if v
is the cluster remaining active after the merge, T (v) is incremented by T (u). Let A be the set of
active clusters. It is easy to check that

∑
c∈A T (c) = 2m at all points in the algorithm.

Next, we bound the maximum number of tokens assigned to an edge by observing that each time
an edge has a token assigned to it in some step i, the total-edges of the set containing it doubles.
Since T (u) of a set u can grow to at most 2m, each edge can receive at most O(logm) = O(log n)
tokens, and thus the total cost is O(m log n).

3



Theorem D.3. There are deterministic implementations of the chain-based and heap-based algo-
rithms that run in O(m log2 n) time for any triangle-based linkage L.

Proof. We first bound the time-complexity for the merge steps that both algorithms have in com-
mon. Both algorithms perform n − 1 merge operations, whose total cost is O(m log n) using
Lemma D.2. To translate this cost measure back to time-complexity, we note that the total
time taken for the i-th merge step using the deterministic neighbor-heap implementation is at
most O(Cost(mi) log(n/Cost(mi) + 1)) = O(Cost(mi) log n), and thus the total time to perform all
merges is O(m log2 n). We bound the time of the remaining algorithm-specific steps separately.

Chain-based Algorithm. We use a few well-known facts about this algorithm, namely that (i)
each of the 2n− 1 clusters that appears in the dendrogram is pushed onto the stack exactly once,
and (ii) the number of times BestEdge is called is O(n). Therefore, the total time-complexity of
these steps is O(n log n) and the overall time-complexity is O(m log2 n).

Heap-based Algorithm. The remaining steps involve extracting edges from the global heap H.
We analyze two types of edges that can be extracted: (i) edges whose remaining endpoint is inactive
and (ii) edges whose remaining endpoint is active. There are at most n−1 type (ii) edges, since each
type (ii) edge results in a merge, and so the time spent processing these edges is O(n log n). Next,
for the type (i) edges, observe that each such edge can be charged to the deactivated endpoint,
v, and that the total number of charges for a cluster v is at most its degree at the time it was
deactivated. Thus, the total cost for these edges is

∑n−1
i=1 Cost(mi) = O(m log n) (by Lemma D.2)

and the time-complexity for these steps is O(m log2 n) since each inactive edge takes O(log n) time
to extract the current best edge from its active endpoint, and to update H. Thus, the overall
time-complexity is O(m log2 n).

D.2 A Faster Randomized Chain-Based Algorithm

In this section we present a randomized implementation of our chain-based algorithm which runs
in O(m log n) time.

Overview. There are two challenges posed by Algorithm 1 that we must implement more efficiently
in order to achieve an O(m log n) time HAC algorithm.

1. The merge-cost from Lemma D.2 is O(m log n). Thus, in order to achieve O(m log n) time
we must perform each merge operation in (amortized) O(1) time per merged element.

2. The overall algorithm also performs O(m log n) neighbor-updates in Line 5 of Algorithm 1,
which remove the id of a merged vertex from an active neighbor’s neighbor-heap and relabel
it to the id of the new neighbor. Thus, we must either handle these updates lazily, or also
handle them in (amortized) O(1) time per operation.

Our approach to handle (1) is to use a faster randomized implementation of neighbor-heaps
which we outline below. The high-level idea is to use an efficient meldable heap, such as a Fibonacci
heap or Leftist heap in conjunction with hash tables. We deal with (2) by eagerly updating the
hash tables of our neighbors when performing a merge, but lazily updating the IDs stored in the
meldable heap, except when we identify an edge that is being merged. The overall cost of the hash
table updates is O(m log n) time in expectation. Although the updates to the heaps cost O(log n)
time each, since they require deleting two existing elements and reinserting a new merged element,
each of these updates can be assigned uniquely to an edge in the original graph, and thus the overall
time complexity for these updates is also O(m log n). We now provide a detailed description of our
approach.

4



D.2.1 Neighbor-Heaps using Meldable Heaps and Hashing

We give an alternative implementation of neighbor-heaps, which is asymptotically faster than the
augmented-heap based implementation at the cost of using randomization. The idea is to use a
heap data structure that supports efficient melding, such as Fibonacci heaps [FT87], in combination
with a hash table. The neighbor-heap representation for a cluster v is a pair of a heap and a hash-
table where the neighbors of v are stored in both data structures. Let H(A) denote the heap and
Q(A) denote the table for a cluster A. The elements in H(A) are pairs of a cluster-id, C, and the
associated weight of this edgeW(A,C). The priority of an element is just the weight. The elements
in Q(A) are triples of a key (a cluster-id), C, the associated weight of this edge W(A,C), and a
pointer to the location of the element for C in H(A).

The Meld operation on two mergeable heaps H1,H2 can be done in O(1) time. Note that
this operation does not detect elements in Keys(H1) ∩Keys(H2), which is why we also store the
elements in both heaps in a hash-table (which implements intersection efficiently).

We also define a T-Merge operation on two hash-tables in neighbor-heaps, Q(A), Q(B), which
works as follows. Without loss of generality let |Q(A)| ≤ |Q(B)|. We map over the elements in
Q(A), and insert them into the larger size table. If an key C appears in both tables, then we merge
this edge using the linkage function L. We also append C and the locations of C in both heaps to
an array O that collects all of the locations for C ∈ Q(A)∩Q(B). The T-Merge operation returns
O and Q(B). T-Merge on two tables Q(A), Q(B) runs in O(min(|Q(A)|, |Q(A)|)) expected time.

D.2.2 Merging Clusters

Next, we present how two clusters are merged using the randomized neighbor-heap (Algorithm 4).
Algorithm 4 is similar to our original Merge algorithm, Algorithm 1 with a few key differences.

Algorithm 4 FastMerge(A,B,L)

Input: Active clusters A and B, triangle-based linkage L.
Output: Cluster id of the remaining active cluster.
1: (A,B) = (argmin(d(A), d(B)), argmax(d(A), d(B)))
2: Remove B from H(A) and Q(A) (and vice versa).
3: (O,Q(B)) = T-Merge(Q(A),Q(B)) . O holds heap-locations for C ∈ Q(A) ∩Q(B)
4: for each (C,LA, LB) ∈ O do
5: Delete C from H(A) and H(B) using LA and LB to find these elements.
6: Insert C into H(B) with the weight merged using L. Let the pointer to this element be L′.
7: Update the location of C in Q(B) to L′.

8: H(B) = Meld(H(A),H(B)). . Before the meld, Keys(H(A)) ∩Keys(H(B)) = ∅.
9: for C ∈ Keys(Q(A)) do

10: Update cluster-id from A to B in Q(C) and H(C). If B ∈ Q(C), use L to merge the edge
weights and update both Q(C) and H(C).

11: Mark cluster A as inactive.
12: Return B.

First, Line 2 removes the IDs of the merged clusters from both the heaps and hash-tables for each
of the merging clusters. Next, on Line 3 the algorithm merges the hash-tables of both clusters using
the T-Merge routine described above. The result is a sequence O of triples containing the cluster-
id, and two heap-locations of C ∈ Keys(Q(A))∩Keys(Q(B)), and the newly merged table, Q(B).
The algorithm then loops over these clusters C with edges to both A and B, and the location of

5



these edges in H(A) and H(B) (Lines 4–7). For each such cluster, the algorithm first deletes C from
H(A) and H(B) using the given locations (Line 5). It then inserts C into H(B) with the updated
weight of this edge (Line 6). Note that at this point, Keys(H(A)) ∩Keys(H(A)) = ∅. After the
loop, the algorithm first melds the two heaps (Line 8). The last step is to update the neighbor-heaps
of neighbors of A (the deactivated cluster). The algorithm iterates over all neighbors C of A on
Line 9, and on Line 10, updates the id from A to B in Q(C) and H(C). Note that the location of
A in H(C) is stored Q(C). If C also has an edge to B, it sets the weight of the (C,B) edge to the
updated weight in Q(C). It also deletes A and B from H(C) and reinserts B into H(C) with the
correct weight. Finally, it marks A as inactive and returns the ID of the remaining active cluster,
B.

D.2.3 Modifications to the Chain-Based Algorithm

Lastly, we discuss how to modify the chain-based algorithm to obtain an O(m log n) time HAC for
triangle-based linkage. The algorithm is identical to Algorithm 2 with the only differences being the
representation of the neighbor-heap data structures, and the merge routine. Specifically, the call
to Merge on Line 9 uses the FastMerge algorithm (Algorithm 4). As Lemma D.4 shows, after a
merge, the state of the neighbor-heap data structures corresponds to the state of the current graph
induced by the active clusters, and thus we do not have to modify BestEdge.

Lemma D.4. After a call to Algorithm 4, the adjacency information stored in the neighbor-heaps
(both H(A) and Q(A)) of all active clusters A is correct.

Proof. The proof is by induction. Consider the k-th merge between two vertices A and B, and
assume that the claim holds before this merge. Assume without loss of generality that A is deacti-
vated and B remains active. The only clusters affected by the merge are {B} ∪ {C ∈ N(A)}, since
all neighbors in N(B) \N(A) have an edge to B with the same weight as before the merge.

First, we show that Algorithm 4 correctly updates the edges incident to B. The only edges that
experience weight change are those in N(A)∩N(B), which the algorithm detects when performing
T-Merge on Line 3. For each neighbor C in N(A)∩N(B), it deletes C from both H(A) and H(B)
(Line 5) and reinserts C into H(B) with the correct weight. Finally, the location corresponding
to C is updated in Q(B). Note that T-Merge also sets the weight of C correctly in Q(B). The
remaining affected edges are new neighbors of B, which are correctly labeled and stored in Q(B)
and H(B).

Second, we show that Algorithm 4 correctly updates the neighbor-heaps for C ∈ N(A). It
processes these neighbors in the for-loop on Line 9. If the neighbor C is not in N(A) ∩ N(B),
it just updates the cluster-id from A to B in H(C), and leaves the location in Q(C) unchanged.
Otherwise, for C ∈ N(A) ∩N(B), it deletes A and B from H(C), updates the weight of the edge
using L and reinserts B into H(C) (similarly for Q(C)). Therefore, all of the neighbors C ∈ N(A)
reference B after Algorithm 4 finishes.

Using Lemma D.4 we have that the state of the neighbor-heap data structures correspond to
the current state of the graph induced by the active clusters after performing a merge operation.
Combining the fact that the neighbor-heap data is always correct after a merge with the exist-
ing proof for the correctness of the chain-based algorithm suffices to show that our randomized
implementation is correct. Next, we show that our approach is also efficient.

Theorem D.5. There is a randomized implementation of the chain-based algorithm that runs in
O(m log n) time in expectation for any triangle-based linkage L.

6



Proof. We follow the proof of Theorem D.3 and separately account for the cost of the merge steps,
and the cost of the remaining steps in the algorithm.

The algorithm performs n − 1 merge operations, with a total merge-cost of O(m log n) using
Lemma D.2. To translate this cost measure to the time-complexity measure, we examine the two
types of operations done inside of the FastMerge algorithm (Algorithm 4).

The first type of updates are those done on the hash-tables, Q(C) for a cluster C. Over all
merges, there are O(m log n) such operations, which each cost O(1) time in expectation, and thus
the overall cost of the hash-table updates are O(m log n) in expectation.

The second type of updates are done on the heaps. First, the cost of melding the two heaps
is O(1) amortized using lazy Fibonacci heaps and O(log n) using Leftist or eager Fibonacci heaps.
In either case, the overall cost of the meld operations is at most O(n log n). The remaining heap
operations can be broken up further into two categories of heap updates which update the cluster-ids
and weights of edges in the heaps.

1. Updates that only affect the cluster-ids of an edge cost O(1) time each in expectation, since
they are done by looking up the location of the edge in the hash-table, and updating the id
of this element in O(1) time.

2. Updates that change the weights of edges in the heap are more costly since they require
deleting and reinserting elements from the heap, and deleting an element costs O(log n) time.
However, updating the weight of an edge is done only when two clusters A,B merge and both
A,B have an edge to a neighbor cluster C. We observe that we can charge the cost of this
step to one of the original edges in the graph, and that each original edge is charged at most
once.

For heap updates of type (1), the cost is thus O(m log n) time in expectation. For heap updates of
type (2), there are at most O(m) of these updates, and each costs O(log n) time for a total cost of
O(m log n) time.

Finally, the remaining steps in the algorithm outside of the merge steps are O(n) BestEdge
queries, which each cost O(log n) time for a total cost of O(n log n) time. Thus, the overall time-
complexity of the algorithm is O(m log n) in expectation, as desired.

D.3 Exact Unweighted Average-Linkage

First, we present again the two key subroutines that make up our exact unweighted average-linkage
algorithm (Algorithms 5 and Algorithm 6).

Algorithm 5 FlipEdge(A,B)

Input: Edge oriented from active clusters A to B.
Output: Edge oriented from B to A.
1: w =W(A,B). [true weight of the edge]
2: Update the edge (A,B,w) in Heap(A).

Let Ĝ denote the directed graph induced by the active clusters, with edges oriented according to
the edge-orientation EO. We start by proving a lemma that helps prove that our exact unweighted
average-linkage algorithm is correct.

Lemma D.6. After a call to Algorithm 1, for each active cluster A, the weights of all edges directed
towards A in Ĝ are set correctly in Heap(A).

7



Algorithm 6 UpdateOrientation(A,B, EO)

Input: Active clusters A and B, dynamic orientation structure EO.
1: (A,B) = (argmin(d(A), d(B)), argmax(d(A), d(B)).
2: For each C ∈ N(A), delete (C,A) and insert (C,B) into the orientation data structure. Edge

flips are handled using FlipEdge [Algorithm 5]
3: for each edge (B,C) oriented out of B do
4: w =W(B,C). [true weight of the edge]
5: Update the edge (B,C,w) in Heap(C).

Proof. The proof is by induction. Consider the k-th merge between two clusters A and B, and
assume that the claim holds before this merge. Assume without loss of generality that A is de-
activated by this merge, and B remains active. Recall that the merge algorithm will also invoke
Algorithm 6, which updates the orientation by remapping edges that are incident to the deacti-
vated cluster from the maintained orientation EO, and that Algorithm 5 is invoked each time the
dynamic edge-orientation algorithm flips an edge.

For any edges that are flipped during the execution of Algorithm 6, the weights of these edges
are correctly set in the heap of the cluster that the edge now points to (the head of this edge). The
reason is that Algorithm 5 is invoked upon each edge flip and this algorithm computes the correct
weight of the edge and updates the weight in the heap of the head of this edge. This accounts for
all edges that are flipped by the orientation algorithm when deleting all (A,C) (undirected) edges
and reinserting them as (B,C) edges.

The only remaining edges which may not have updated their out-neighbors are new edges
incident to B that are oriented out of B. Thus, Algorithm 6 maps over all edges oriented out of B
and sets the weight of these edges correctly in the heap of the head of this edge.

We have accounted for (i) all edges whose orientation flips due to the deletions and insertions
in the merge and (ii) the new edges oriented out of B. Finally, by assumption, the remaining edges
have their correct weights set in the heaps of the head of these edges, and thus all active clusters
A have the correct weights for edges that point to them.

Theorem D.7. The exact average-linkage algorithm is correct and runs in Õ(n
√
m) time for

arbitrary graphs.

Proof. To show correctness, by Lemma D.6, we have that after the i-th merge, the state of each
active cluster’s heap is correct for all but the O(αi) edges that are oriented out of this cluster. Since
before performing a BestEdge computation, the algorithm maps over all O(αi) of these edges and
updates the weight of these edges in its heap to the correct weight, all of the edges in its heap
have the correct weight, and thus the cluster selects the best-edge incident to it. The correctness
of the overall algorithm can now by obtained by combining this proof with the existing proof for
the correctness of the nearest-neighbor chain algorithm.

Next, we analyze the time-complexity of our algorithm. We first bound the extra cost incurred
by maintaining the dynamic graph-orientation data structure EO over the course of the algorithm.
Using the dynamic graph-orientation data structure of Henzinger et al. [HNW20], we obtain an
amortized cost of O(log2 n) for each edge insertion and deletion. The dynamic graph-orientation
data structure is only updated and used during the Merge() and BestEdge() operations. Con-
sider the i-th such operation, and let Gi be the graph induced by the current clustering at the time
of this operation.

8



Using Lemma D.2, the total number of merge operations is at most O(m log n). For each of
these operations, we have to perform an edge insertion and deletion, which could translate to a
total O(m log3 n) edge flips. Each edge flip also requires O(log n) time to update the weight of the
edge in the heap of the new head of this edge. Thus the total cost of the edge insertions, deletions,
and flips is O(m log4 n) over the course of the entire algorithm.

The merge algorithm also processes the edges incident to the remaining active cluster, B. The
cost for this step is O(αi log n), since there are O(αi) edges oriented out of B and we pay O(log n)
to perform a heap-update for each one. Since there are n− 1 merges, the overall cost for this step
is O(log n

∑n−1
i=1 αi) over the course of the entire algorithm.

Lastly, the cost for performing the BestEdge operation is O(α∗i ) where α∗i is the current
arboricity at the time of the i-th BestEdge operation. Note that there may be many BestEdge
operations performed before a merge is performed. Since there are 2n− 2 BestEdge operations,
the overall cost is O(

∑2n−2
i=1 α∗i ).

By bounding each αi, 1 ≤ i ≤ n − 1 and α∗j , 1 ≤ j ≤ 2n − 2 above as αmax ≤
√
m, the

maximum arboricity of the graph over the entire sequence of merges, the overall time-complexity
of the algorithm is

O(m log4 n+ n log n · αmax) = Õ(n
√
m).

D.4 Approximate Unweighted Average-Linkage

We start by recalling the notion of approximation and the invariant used in our approximation
algorithm. An ε-close HAC algorithm is an algorithm which only merges edges that have similarity
at least (1− ε) · Wmax where Wmax is the largest weight currently in the graph [MLLL19].

The idea of our algorithm is to maintain an extra counter for each cluster which stores the size
the cluster had at the last time that the algorithm updated all of the incident edges of the cluster.
Call this variable the staleness, S(A), of a given cluster A. Recall that the size of a cluster |A| is
defined to be the number of initial (singleton) clusters that it contains. Our algorithm maintains
the following invariant:

Invariant 1. For any active cluster A, |A| < (1 + ε)S(A).

Let the stored similarity of an edge (u, v) in the neighborhood be denoted WS(u, v) and the
true similarity of this edge be WT (u, v). The next lemma bounds the maximum error an algorithm
maintaining Invariant 1 can observe for an edge incident to an active cluster.

Lemma D.8. Let e = (U, V ) be an edge in the neighborhood of an active cluster U . Then, (1 +
ε)−2WS(U, V ) ≤WT (U, V ).

Proof. There are two ways that the similarity of the (U, V ) edge can change as the algorithm merges
clusters:

1. By a merge which adds parallel edges to Cut(U, V ) (e.g., if U merges with a cluster Z which
is also connected to V , thereby increasing the total similarity of edges crossing the cut).

2. By a merge to |U | or |V | that does not affect the total similarity of edges going across
Cut(U, V ) (e.g., if U merges with a cluster Z that is not connected to V ).

If a Type 1 update occurs, then the similarity of this edge will be set to the true value upon
this update, since the algorithm will update the similarities of every edge in the intersection of the
merge. Therefore, we can ignore these updates when trying to bound the maximum drift between
the true and stored similarities. On the other hand, we could have many Type 2 updates occur.

9



In this case, the similarity of this edge will not be updated unless Invariant 1 becomes violated for
either U or V . Therefore, we have the following upper bounds on the maximum size of U and V ,
namely that |U | < (1 + ε)S(U) and |V | < (1 + ε)S(V ).

In the worst case, the stored similarity could have used S(U) and S(V ) to normalize (since the
similarity must have been updated when these stored similarities were set), and the true similarity
could use (1 + ε)S(U) and (1 + ε)S(V ). Since the sum term in the similarity equation doesn’t
change (since there are no Type 1 updates), we have that

WS(U, V ) ≤ 1

S(U) · S(V )
·

∑
(u,v)∈Cut(U,V )

w(u, v)

and therefore

WT (U, V ) ≥ 1

(1 + ε)2 · S(U) · S(V )
·

∑
(u,v)∈Cut(U,V )

Therefore, the true similarity is at most a (1 + ε)−2 factor smaller than the stored similarity.

Theorem D.9. There is an ε-close HAC algorithm for the average-linkage measure that runs in
O(m log2 n) time.

Proof. First we show that our algorithm is ε-close. Let δ be the closeness parameter used internally
in the algorithm, which we will set shortly. For each (U, V ) edge, since the simialrities in the algo-
rithm only decrease, we have that WT (U, V ) ≤ WS(U, V ). Combining this fact with Lemma D.8,
we have that

(1 + δ)−2WS(U, V ) ≤WT (U, V ) ≤WS(U, V )

for all active edges U, V .
Next, consider a merge step in the algorithm which merges two clusters A,B. We have that

WS(A,B) is the largest stored similarity among any active cluster in the graph. We also have that
(1 + δ)−2WS(A,B) ≤ Wmax where Wmax is the current maximum similarity in the graph, since
otherwise the stored similarity corresponding to Wmax would be larger than WS(A,B) and thus
(A,B) would not be the edge selected from the global heap, H. Therefore our approach yields a
(1− (1 + δ)−2)-close algorithm, and by setting δ =

√
1/(1− ε)− 1 we obtain an ε-close algorithm.

Lastly, we show that the algorithm runs in O(m log2 n) time for any given constant ε. Other than
the extra work done to update stale clusters, the algorithm is identical to the heap-based algorithm
from our framework. To bound the work done for stale clusters, observe that each cluster can
become stale at most O(log1+δ n) = O(log1+ε n) times, and performs O(log n) work per incident
edge each time it becomes stale. Since each of the original m edges is associated with at most two
active clusters at any point in the algorithm, the overall time-complexity of updating stale vertices
is O(m log1+ε n log n) = O(m log2 n) for any constant ε. Combining this with the time-complexity
of the heap-based algorithm completes the proof.

E Experimental Evaluation

Graph Data. We list information about graphs used in our experiments in Table 1. com-DBLP
(DB) is a co-authorship network sourced from the DBLP computer science bibliography1. YouTube

1Source: https://snap.stanford.edu/data/com-DBLP.html.

10

https://snap.stanford.edu/data/com-DBLP.html


Table 1: Graph inputs, including vertices and edges.

Graph Dataset Num. Vertices Num. Edges

com-DBLP (DB) 425,957 2,099,732
YouTube-Sym (YT) 1,138,499 5,980,886
Skitter-Sym (SK) 1,696,415 22,190,596
LiveJournal-Sym (LJ) 4,847,571 85,702,474
com-Orkut (OK) 3,072,627 234,370,166

Table 2: Adjusted Rand-Index (ARI) and Normalized Mutual Information (NMI) scores of our graph-based
HAC implementations (columns 2–5) versus the HAC implementations from sklearn (columns 6–9). The
scores are calculated by evaluating the clustering generated by each cut of the generated dendrogram to
the ground-truth labels for each dataset. Our graph-based implementations run over an approximate k-NN
graph with k = 50.

Dataset Single Complete WPGMA Apx-Avg Avg Sk-Single Sk-Complete Sk-Avg Sk-Ward

A
R
I

iris 0.702 0.462 0.605 0.759 0.759 0.714 0.642 0.759 0.731
wine 0.297 0.286 0.317 0.331 0.331 0.297 0.370 0.351 0.368
digits 0.661 0.133 0.500 0.876 0.880 0.661 0.478 0.689 0.812
cancer 0.561 0.543 0.539 0.489 0.489 0.561 0.464 0.537 0.406
faces 0.467 0.438 0.480 0.508 0.508 0.467 0.471 0.529 0.608

N
M
I

iris 0.733 0.641 0.733 0.805 0.805 0.761 0.722 0.805 0.770
wine 0.410 0.388 0.387 0.427 0.427 0.417 0.463 0.448 0.448
digits 0.772 0.572 0.713 0.900 0.902 0.772 0.711 0.838 0.868
cancer 0.316 0.359 0.384 0.460 0.460 0.385 0.442 0.456 0.446
faces 0.847 0.846 0.857 0.859 0.859 0.856 0.855 0.867 0.871

(YT) is a social-network formed by user-defined groups on the YouTube site2. Skitter (SK) is
an internet topology graph generated from traceroutes3. LiveJournal (LJ) is a directed graph of
the social network4. com-Orkut (OK) is an undirected graph of the Orkut social network5. These
graphs are sourced from the SNAP dataset [LK14].

Another family of graphs that we consider are generated from point datasets by using an
approximate k-NN graph construction. All of the point datasets that we use can be found in the
sklearn.datasets package6. We note that the large real-world graphs that we study are not weighted,
and so we set the similarity of an edge (u, v) to 1

log(d(u)+d(v)) . We symmetrized all directed graph
inputs considered in this paper.

References

[Ben82] Jean-Paul Benzécri. Construction d’une classification ascendante hiérarchique par la
recherche en châıne des voisins réciproques. Cahiers de l’analyse des données, 7(2):209–
218, 1982.

2Source: https://snap.stanford.edu/data/com-Youtube.html.
3Source: https://snap.stanford.edu/data/as-Skitter.html.
4Source: https://snap.stanford.edu/data/soc-LiveJournal1.html.
5Source: https://snap.stanford.edu/data/com-Orkut.html.
6For more detailed information see https://scikit-learn.org/stable/datasets.html.

11

https://snap.stanford.edu/data/com-Youtube.html
https://snap.stanford.edu/data/as-Skitter.html
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://snap.stanford.edu/data/com-Orkut.html
https://scikit-learn.org/stable/datasets.html


[BFS16] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered sets.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
253–264, 2016.

[BT79] Mark R Brown and Robert E Tarjan. A fast merging algorithm. Journal of the ACM
(JACM), 26(2):211–226, 1979.

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. J. ACM, 34(3), 1987.

[HNW20] Monika Henzinger, Stefan Neumann, and Andreas Wiese. Explicit and implicit dynamic
coloring of graphs with bounded arboricity. CoRR, abs/2002.10142, 2020.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection, 2014.

[MLLL19] Benjamin Moseley, Kefu Lu, Silvio Lattanzi, and Thomas Lavastida. A framework for
parallelizing hierarchical clustering methods. In ECML PKDD 2019, 2019.

[MRS08] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[SFB18] Yihan Sun, Daniel Ferizovic, and Guy E Blelloch. Pam: Parallel augmented maps. In
ACM Symposium on Principles and Practice of Parallel Programming (PPoPP), 2018.

12


	Overview of Materials Included
	Algorithms and Definitions
	Linkage Measures
	Algorithms

	Neighbor-Heap Details
	Deferred Proofs
	Framework Analysis
	A Faster Randomized Chain-Based Algorithm
	Neighbor-Heaps using Meldable Heaps and Hashing
	Merging Clusters
	Modifications to the Chain-Based Algorithm

	Exact Unweighted Average-Linkage
	Approximate Unweighted Average-Linkage

	Experimental Evaluation

