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Abstract
We study the widely used hierarchical agglom-
erative clustering (HAC) algorithm on edge-
weighted graphs. We define an algorithmic frame-
work for hierarchical agglomerative graph cluster-
ing that provides the first efficient Õ(m) time ex-
act algorithms for classic linkage measures, such
as complete- and WPGMA-linkage, as well as
other measures. Furthermore, for average-linkage,
arguably the most popular variant of HAC, we pro-
vide an algorithm that runs in Õ(n

√
m) time. For

this variant, this is the first exact algorithm that
runs in subquadratic time, as long as m = n2−ε

for some constant ε > 0. We complement this
result with a simple ε-close approximation algo-
rithm for average-linkage in our framework that
runs in Õ(m) time. As an application of our algo-
rithms, we consider clustering points in a metric
space by first using k-NN to generate a graph from
the point set, and then running our algorithms on
the resulting weighted graph. We validate the per-
formance of our algorithms on publicly available
datasets, and show that our approach can speed
up clustering of point datasets by a factor of 20.7–
76.5x.

1. Introduction
Clustering is a fundamental and widely used unsupervised
learning technique with numerous applications in data min-
ing, machine learning, and social network analysis. Hierar-
chical clustering is a popular approach to clustering which
outputs a hierarchy of clusters, where the input data objects
are singleton clusters at the bottom of the tree, with interior
vertices corresponding to merging the two children clusters.
In this paper, we consider the family of hierarchical agglom-
erative clustering (HAC) algorithms, which have attracted
significant theoretical and practical attention since they were
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first proposed nearly 50 years ago (King, 1967; Lance &
Williams, 1967; Sneath & Sokal, 1973).

A HAC algorithm takes as input a set of n points and pro-
ceeds in n− 1 steps. In each step, it finds two most similar
points and merges them together. Here, the notion of simi-
larity is defined by a configurable linkage measure.

The specific choice of the linkage measure affects both the
clustering quality and the computational complexity of the
HAC algorithm. In the case of a general linkage measure,
HAC can be implemented in O(n3) time, assuming that
we are given the similarity between each two points as
input. For the most commonly used linkage measure (single,
average, Ward’s and complete linkage) this complexity can
be improved to O(n2) by using the nearest-neighbor chain
algorithm (Benzécri, 1982).

The O(n2) time algorithms for HAC are often referred to
as optimal, given that they take the entire n× n similarity
matrix as the input. However, from a practical point of view,
this quadratic lower bound is very pessimistic, as in many
applications only a small fraction of the n× n similarities
are non-negligible. As an example, consider the problem
of clustering search engine queries studied in (Beeferman
& Berger, 2000). Each query is assigned a set of relevant
URLs and the similarity between two queries is based on
the overlap between their URL sets. Clearly, for the vast
majority of query pairs, the similarity is zero.

Knowing that in practice only o(n2) pairs of input points
have non-negligible similarity scores results in two natural
questions. First, is it possible to design a subquadratic HAC
algorithm in this case? And if so, does this algorithm lead
to improved running times in practical applications? In this
paper, we answer both these questions affirmatively.

1.1. Our Contributions

In this paper we study the HAC algorithm on edge-weighted
graphs. Formally, we consider a graph G(V,E) with n ver-
tices and m edges, where each vertex represents one input
point and edge weights describe the similarities between the
endpoints.

We develop a general framework that encompasses both
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average-linkage, and complete- and WPGMA-linkage,
where common primitives used in HAC are modularized
into a neighbor-heap data structure, which offers tradeoffs in
the theoretical guarantees depending on the representation
used. In particular, different applications of this framework
result in the first subquadratic (and in many cases near-linear
time) algorithms for several variants of HAC.

Complete-linkage and WPGMA-linkage. As a direct ap-
plication of our framework, we obtain Õ(m)-time exact
algorithms for the complete-linkage and WPGMA-linkage
measures. For these measures we assume that the similarity
between pairs of vertices not connected by an edge is “un-
defined”. If we denote the undefined similarity by ⊥, for
each x ∈ R we have max(x,⊥) = x and L(x,⊥) = x for
any linkage measure L.

Average-linkage. As our main algorithmic result, we
give an Õ(n

√
m) time-exact algorithm for HAC with the

average-linkage (UPGMA) measure, as well as an Õ(m)
time approximate algorithm1. Both algorithms assume that
any two vertices not connected by an edge have a similarity
equal to 0.

Average-linkage is arguably the most commonly used
variant of HAC, due to its very good empirical perfor-
mance (Shao et al., 2007; Moseley & Wang, 2017; Cohen-
Addad et al., 2019). However, to the best of our knowledge,
no subquadratic time algorithm for average-linkage HAC
has been described prior to our work, even whenm = Θ(n).

Our exact average-linkage HAC algorithm dynamically
maintains a low-outdegree orientation of the graph, i.e.,
it assigns a direction to each edge, attempting to minimize
the outdegrees of all vertices. At each step, the maxi-
mum outdegree is O(α), where α is the arboricity (see
Section 1.3 for the definition) of the graph, which allows us
to bound the amortized number of updates per cluster merge
by O(α+ poly log n).

The running time of the exact algorithm is derived from
a more general bound. Consider a sequence of graphs
G1 = G,G2, . . . , Gn−1 computed by the HAC algorithm.
That is, Gi+1 is obtained by contracting the largest weight
edge in Gi and updating the edge weights using the cho-
sen linkage measure. We show that the exact algorithm
runs in Õ(n · ᾱ) time, where ᾱ is the maximum arboricity
of the graphs G1, . . . , Gn−1. The Õ(n

√
m) bound comes

from the fact that arboricity of any m-edge graph is upper-
bounded byO(

√
m). However, in many cases better bounds

on graph arboricity are known. In particular, on planar
graphs (and more generally graphs with an excluded mi-
nor) our algorithm runs in Õ(n) time. Similarly, for graphs
with treewidth at most t (Robertson & Seymour, 1986), the

1Formally, for a constant ε we obtain an ε-close algorithm
according to the definition of (Moseley et al., 2019).

overall running time is Õ(nt).

Empirical evaluation. We provide efficient implementa-
tions of all the near-linear time algorithms that we give and
study their empirical performance on large data sets.

Specifically we show an average speedup of 6.9x over a
simple exact average-linkage algorithm on large real-world
graphs. We have made our implementations publicly avail-
able on Github. 2

Finally, we show that our efficient implementations can be
used to obtain a significantly faster HAC algorithm, even
if the input is a collection of points. Namely, we leverage
an existing approximate nearest neighbor computation li-
brary (Guo et al., 2020) to compute a k-nearest neighbor
graph on the input data points. We then cluster this graph
using our efficient graph-based HAC implementation. As
we show, the end-to-end time of finding nearest neighbors
followed by running our HAC implementation is 20.7-76.5x
faster than an efficient O(n2) implementation on point sets.
At the same time, somewhat surprisingly, the quality of the
clustering obtained by using our approximate method is on
average the same as what is computed by the exact HAC,
where for average-linkage, we achieve on average a 1.13%
increase on the Adjusted Rand-Index score and a 1.06%
increase on the Normalized Mutual Information score.

1.2. Related Work

The theoretical foundations of HAC algorithms have been
well-studied (Dasgupta, 2016; Moseley & Wang, 2017), and
have provided motivation for the use of certain variants of
HAC in real-world settings (Roy & Pokutta, 2016; Charikar
& Chatziafratis, 2017; Cohen-Addad et al., 2017; Charikar
et al., 2019; Cohen-Addad et al., 2019). Moreover, the
version of HAC that takes a graph as input has been studied
before, especially in the context of graphs derived from
point sets (Guha et al., 1999; Karypis et al., 1999; Franti
et al., 2006), although without strong theoretical guarantees.

A rich body of work has focused on breaking the quadratic
time barrier for HAC. In a recent major advancement, Ab-
boud et al. (Abboud et al., 2019) showed that if the input
points are in Euclidean space and Ward’s linkage method
is used (Ward, 1963), only Õ(n) similarity computations
are needed. By using an efficient nearest-neighbor data
structure, they obtained a subquadratic approximate HAC
algorithm for Ward’s linkage measure.

Another special case is the single-linkage measure, again
in the setting of Euclidean space and using approximate
distances. By computing an approximate minimum span-
ning tree, one can obtain an approximate HAC solution

2https://github.com/ParAlg/gbbs/tree/
master/benchmarks/Clustering/SeqHAC
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that runs in O(n log n) total time (Smid, 2018). A related
method is affinity clustering, which provides a parallel HAC
algorithm inspired by Borůvka’s minimum spanning tree
algorithm (Bateni et al., 2017).

A number of papers proposed subquadratic HAC algorithms
by sacrificing theoretical guarantees on the quality of the
result, see (Cochez & Mou, 2015) and the references therein.
A prominent line of work leverages locality sensitive hash-
ing to obtain improved running bounds. However, the im-
provements in the running time often come at a significant
cost. For example, some of the algorithms (Cochez & Mou,
2015) do not come with a closed form expression giving the
approximation ratio, or produce an incomplete dendrogram
(by merging some datapoints together) (Gilpin et al., 2013).

Additionally, many different HAC implementations are
available, both open source and proprietary (Wikipedia con-
tributors, 2020). However, the fastest available implemen-
tations require Θ(n2) time in the worst case (e.g. (Müll-
ner, 2013; The SciPy community, 2020; SAS Institute Inc.,
2020)). Such implementations are typically capable of clus-
tering up to tens of thousands of points in few minutes, and
in these cases they are heavily optimized, for example by
taking advantage of GPUs (Gorg Sissons, 2015). In com-
parison, by combining our efficient implementation with an
efficient similarity search, we are able to cluster a dataset of
almost 3 · 105 points in under two minutes.

Finally, we note that although subquadratic approximate
algorithms for HAC are known in a few settings, to the best
of our knowledge, the implementations of these algorithms
are not publicly available.

1.3. Preliminaries

We denote a weighted graph by G = (V,E,w), where
w : E → R assigns a weight to each edge. The number of
vertices in a graph is n = |V |, and the number of edges is
m = |E|. When reporting asymptotic bounds, we assume
that m = Ω(n). Vertices are assumed to be indexed from 0
to n−1. Unless otherwise mentioned, all graphs considered
in this paper are undirected, and we assume that there are
no self-edges or duplicate edges. We use N(v) to denote
the neighbors of vertex v and d(v) = |N(v)| to denote
its degree. We use Cut(X,Y ) to denote the set of edges
between two sets of vertices X and Y .

The arboricity (α) of a graph is the minimum number of
spanning forests needed to cover the graph. Note that
α is upper bounded by O(

√
m) and lower bounded by

Ω(m/n) (Chiba & Nishizeki, 1985). A c-orientation of
a graph G(V,E) directs each edge e ∈ E such that the
maximum out-degree of each vertex is at most c. It is well
known that every arboricity α graph admits an α-orientation.
The dynamic graph-orientation problem is to maintain an

orientation of a graph as it is modified over a series of edge
insertions and deletions. The two quantities of interest are
the out-degree of the maintained orientation and the update
time, or the time taken to process each edge update. We say
that an algorithm maintaining a c-orientation in ∆ time per
update is a (c,∆)-dynamic graph-orientation algorithm.

2. Graph-Based HAC
Given a graph G(V,E,w), the hierarchical agglomerative
clustering (HAC) problem for a given linkage measure L is
to compute a dendrogram by repeatedly merging the two
most similar clusters (the two clusters connected by the
largest-weight edge) until only a single cluster remains. For
simplicity, we assume that the graph contains a single con-
nected component, although our algorithms and implemen-
tations handle graphs with multiple components. We treat
clusters and vertices interchangeably in this paper. For ex-
ample, we often refer to the degree d(C) or neighborsN(C)
of a cluster C. We useW(C,D) to denote the weight of an
edge between two clusters C and D. The size of a cluster
|C| is defined to be the number of initial (singleton) clusters
that it contains.

Initially, there are n singleton clusters containing the ver-
tices v0, . . . , vn−1. Clusters containing multiple vertices
are generated over the course of the algorithm by merging
existing clusters. The merge of two clusters X,Y results
in a new cluster Z. The weights of edges incident to the
cluster formed by the merge are given by a linkage measure
(discussed below). A dendrogram is a vertex-weighted tree
where the leaves are the initial clusters of the graph, the
internal vertices correspond to clusters generated by merges,
and the weight of a vertex created by merging two clusters
X,Y is given by the weight (similarity) of the edge between
the two vertices at the time they are merged.

Linkage Measures. A linkage measure specifies how
to reweight edges incident to a cluster created by a
merge. Many different linkage measures that have pre-
viously been studied are applicable in the graph-based
setting. In single-linkage, the weight between two clus-
ters (X,Y ) is max(x,y)∈Cut(X,Y ) w(x, y), or the maximum-
similarity edge between two vertices in X and Y . In
complete-linkage the weight between two clusters (X,Y ) is
min(x,y)∈Cut(X,Y ) w(x, y), or the minimum-similarity edge
between two vertices inX and Y . In the popular unweighted
average-linkage (UPGMA-linkage) measure (often called
the average-linkage measure) the similarity between two
clusters (X,Y ) is

∑
(x,y)∈Cut(X,Y ) w(x, y)/(|X| · |Y |) or

the total weight of inter-cluster edges between X and Y ,
normalized by the number of possible inter-cluster edges.
The weighted average-linkage (WPGMA-linkage) measure
is similar, but is defined in terms of the current weights. If a
cluster Z is created by merging clusters X,Y , the similar-
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ity of the edge between Z and a neighboring cluster U is
W(X,U)+W(Y,U)

2 if both the (X,U) and (Y,U) edges exist,
and otherwise just the weight of the existing edge.

We define the best-neighbor of a cluster X to be the cluster
argmaxY ∈N(X)W(X,Y ). We call the edge connecting X
and Y the best-edge of X . We say that a linkage measure is
reducibile (Benzécri, 1982), if for any three clustersX,Y, Z
where X and Y are mutual best-neighbors, it holds that
W(X ∪ Y, Z) ≥ max(W(X,Z),W(Y, Z)).

Our framework yields exact HAC algorithms for any re-
ducible linkage measure that also satisfies the following
property.

Definition 2.1. A linkage measure is called triangle-based
if it satisfies the following property. Consider any step of
the algorithm which merges clusters B and C into a cluster
B ∪ C. Let A be a cluster distinct from B and C. Then, if
edge (A,C) does not exist,W(A,B) =W(A,B ∪ C).

In other words, the weight of an edge in an triangle-based
linkage measure changing implies that the affected cluster (a
cluster not participating in the merge) was part of a triangle
with both of the clusters being merged.

Lemma 2.2. Single-, complete-, and WPGMA-linkage are
all triangle-based linkages.

Unfortunately, while unweighted average-linkage is a re-
ducible linkage measure, it is not a triangle-based link-
age. We design a special algorithm for unweighted average-
linkage in Section 4.

3. Algorithmic Framework
In this section we design an algorithmic framework for solv-
ing graph-based HAC for triangle-based linkage measures.
We give two different algorithms, based on the nearest-
neighbor chain and heap-based algorithms respectively from
the classic literature on HAC.

Overview. There are two key substeps found in both the
classic nearest-neighbor chain and heap-based algorithms:
(i) merging two clusters to obtain a new cluster and (ii)
finding the best-edge (edge to the most similar neighbor)
out of a given cluster. The classic algorithms use simple
ideas to implement both steps, for example, by using a
linear-time merge for step (i), or by checking the similarity
between all pairs of points for step (ii) in the case of the
chain-based algorithm.

Unfortunately, directly applying these simple ideas to graphs
yields algorithms with quadratic time-complexity. For exam-
ple, implementing (i) using a linear-time merge algorithm
will, on a n-vertex star graph (m = O(n)), take Θ(n2)
time for any sequence of merges. A similar example shows
that exhaustively searching a neighbor-list for step (ii) in a

Algorithm 1 MERGE(A,B,L)

Input: Active clusters A and B, triangle-based linkage L.
Output: Cluster ID of the remaining active cluster.

1: (A,B) = (argmin(d(A), d(B)), argmax(d(A), d(B)).
2: Remove B from HEAP(A) (and vice versa).
3: HEAP(B) = HEAP(A) ∪ HEAP(B) (using L to merge

the weights of C ∈ HEAP(A) ∩ HEAP(B)).
4: Mark cluster A as inactive.
5: For each C ∈ HEAP(A), update the cluster ID from A

to B in HEAP(C), using L to merge if B ∈ HEAP(C).
6: Return B.

chain-based algorithm may take up to Θ(n2) time.

We address these problems by noting that we can reuse the
data structures for clusters that are being merged, and by
using heap data structures that support efficient updates.
For example, when merging two clusters, we can reuse
data structures associated with both merged clusters since
they are logically deleted after the merge. Furthermore, for
efficiency we represent neighbors of a cluster using data
structures that can merge two instances of size s, l where
s ≤ l in O(s log (l/s+ 1)) time. Our analysis shows that
we can perform any sequence of merges, while performing
best-edge queries on the intermediate graphs in Õ(m) time.

3.1. Algorithms

Data Structures and Common Primitives. Initially all
v ∈ V are active singleton clusters. Each cluster A main-
tains a neighbor-heap data structure HEAP(A), which is
abstractly a max-heap that stores the neighbors of cluster
A. The heap elements are key-value pairs containing the
neighbor’s cluster id and the weight (similarity) to the neigh-
bor. The neighbor-heap supports the BESTEDGE operation,
which returns the best (highest-priority) edge in H . In addi-
tion, the data structure supports the UNION operation, which
given two neighbor-heapsH1, H2, and a triangle-based link-
age L, creates H1 ∪H2, where the weights of the pairs in
KEYS(H1) ∩ KEYS(H2) are merged using L.

We consider two different representations of a neighbor-
heap. The first is a deterministic representation using aug-
mented balanced trees where the augmented values are
the heap priorities (Blelloch et al., 2016). We also con-
sider a representation of neighbor-heaps using mergeable
heaps (e.g., Fibonacci heaps) combined with hash tables,
which enables a faster implementation of the chain-based
algorithm (discussed further in the appendix). If s =
min(|H1|, |H2|), l = max(|H1|, |H2|), the cost of UNION
is O(s log(l/s+1)) using augmented trees, and O(s) amor-
tized using mergeable heaps. The cost for BESTEDGE in
both implementations is O(log n).
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Algorithm 2 GraphHAC-Chain(G = (V,E,w),L)
Input: Edge weighted graph, G, triangle-based linkage L.
Output: Dendrogram D for L-HAC.

1: for each cluster v ∈ V do
2: if v is active then
3: Initialize stack S, initially containing only v.
4: while S is not empty do
5: Let t be TOP(S).
6: Let (t, b,W(t, b)) = BESTEDGE(t).
7: if b is already on S then
8: POP(S).
9: MERGE(t, TOP(S)). [Algorithm 1]

10: POP(S).
11: else
12: Push b onto S.

Merging in both of our algorithms is performed using Al-
gorithm 1. Given two clusters A and B, suppose without
loss of generality that A has fewer neighbors. The algo-
rithm merges A into B, where the weights to neighbors
in N(A) ∩ N(B) are computed using the linkage mea-
sure L (Lines 1–3). A is then marked as inactive (Line 4).
Lastly, the algorithm maps over each neighboring cluster
C ∈ N(A), deletes the entry for A in HEAP(C), and in-
serts this entry with the new cluster ID B, merging using L
if B already exists in HEAP(C). Critically, this algorithm
ensures that after it runs, all clusters which previously had
edges to A now point to B, and that the weights of all edges
to B are correctly updated using L.

Next, we provide pseudocode for the two HAC algorithms in
our framework. Note that both algorithms output a dendro-
gram D, but for simplicity we do not show the pseudocode
of this step (the dendrogram can easily be maintained as
part of Algorithm 1).

Algorithm 2 shows the pseudocode for our chain-based algo-
rithm. The structure of our algorithm is similar to the classic
nearest-neighbor chain algorithm (Murtagh, 1983), using a
stack to maintain a path of best-neighbors and merging two
vertices that are connected by a reciprocal best-edge.

Algorithm 3 shows the pseudocode for our heap-based al-
gorithm. Our algorithm uses a lazy approach for handling
edges in the global heap H which point to inactive clusters
(Lines 5–7). Although we could potentially eagerly update
the heap H when deactivating vertices in Algorithm 1 with-
out an asymptotic increase in the running time, the lazy
version is simpler to describe.

3.2. Analysis

We start with the following lemma, which bounds the cost
of the MERGE operations performed in Algorithm 1 for any
sequence of n− 1 merges.

Algorithm 3 GraphHAC-Heap(G = (V,E,w),L)
Input: Edge weighted graph, G, triangle-based linkage L.
Output: Dendrogram D for L-HAC.

1: Let H be a max-heap storing the highest-weight edge
incident to each active cluster in the graph.

2: while |H| > 1 do
3: Let e = (u, v,W(u, v)) be the max edge in H .
4: Delete e from H .
5: if v is inactive then
6: Let e′ = (u, v′,W(u, v′)) = BESTEDGE(u).
7: Insert e′ into H .
8: else
9: x = MERGE(u, v). [Algorithm 1]

10: Let e′ = (x, y,W(x, y)) = BESTEDGE(x).
11: Insert e′ into H .

Lemma 3.1. Let m1, . . . ,mn−1 be the sequence of merge
operations performed by an algorithm where mi = (ui, vi).
Let Cost(mi) = min(d(ui), d(vi)), where d(ui) and d(vi)
are the degrees of the clusters when they are merged. Then,
the total cost

∑n−1
i=1 Cost(mi) = O(m log n).

Theorem 3.2. There are deterministic implementations of
the chain-based and heap-based algorithms that run in
O(m log2 n) time for any triangle-based linkage L.

Proof sketch. We sketch the proof for the chain-based algo-
rithm. The complete proof is given in the appendix.

Clearly, there are at most n− 1 MERGE operations and the
total number of merged elements is bounded by O(m log n)
due to Lemma 3.1. Using an augmented tree, the amortized
cost of merging a single element is bounded by O(log n),
which results in the total time of O(m log2 n).

From the properties of the nearest-neighbor chain algorithm
at most 2n elements are ever added to the stack, which
implies that the BESTEDGE operation is called O(n) times.
Hence all BESTEDGE operations take O(n log n) time.

We show that in the case of the chain-based algorithm, we
can obtain an asymptotically faster algorithm by using hash
tables and Fibonacci heaps to represent the neighbor-heaps.

Theorem 3.3. There is a randomized implementation of
the chain-based algorithm that runs in O(m log n) time in
expectation for any triangle-based linkage L.

4. Average Linkage
The key challenge for HAC using the average-linkage
(UPGMA-linkage) measure is that merging two clusters into
a new cluster affects the weights of all edges incident to the
new cluster, and thus our framework from Section 3 is not
directly applicable. We show that by carefully modifying
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Algorithm 4 FLIPEDGE(A,B)

Input: Edge oriented from active clusters A to B.
Output: Edge oriented from B to A.

1: w =W(A,B). [true weight of the edge]
2: Update the edge (A,B,w) in HEAP(A).

Algorithm 5 UPDATEORIENTATION(A,B, EO)

Input: Active clusters A and B, dynamic orientation struc-
ture EO.

1: (A,B) = (argmin(d(A), d(B)), argmax(d(A), d(B)).
2: For each C ∈ N(A), delete (C,A) and insert (C,B)

into the orientation data structure. Edge flips are han-
dled using FLIPEDGE [Algorithm 4]

3: for each edge (B,C) oriented out of B do
4: w =W(B,C). [true weight of the edge]
5: Update the edge (B,C,w) in HEAP(C).

our framework, we can obtain an efficient exact algorithm
for average-linkage that runs in sub-quadratic time.

Overview. Two simple ideas to support average-linkage in
our framework are a fully eager approach, which updates
all of the edges incident to a merged cluster, and a fully lazy
approach, which updates none of the edges incident to a
merged cluster and forces a BESTEDGE(v) computation to
spend d(v) time. Unfortunately, simple examples show that
both approaches can be forced to spend Θ(n2) time for an
m = O(n) edge graph (e.g., a star on n vertices).

Our approach is to enable the HAC algorithm to perform
BESTEDGE queries while only updating a subset of the
edges incident to a newly-merged cluster. We achieve this
by using a dynamic graph-orientation data structure, which
maintains an dynamic O(α)-outdegree orientation where α
is the arboricity of the current graph. Our observation is
that using this data structure lets us maintain information
about the current clustered graph using a bounded amount
of laziness. Specifically, we maintain the invariant that each
vertex stores the up-to-date weight of all its incoming edges.

We show that we can perform the i-th merge with an extra
cost of O(αi) (in addition to the merge-cost in the frame-
work) where αi is the arboricity of the current graph at the
i-th merge. Similarly, we can perform a BESTEDGE op-
eration in O(αi) time. Using the fact that ∀i, αi ≤

√
m,

we can obtain a sub-quadratic bound as long as the num-
ber of BESTEDGE operations is o(n2/

√
m). Unfortu-

nately, the heap-based algorithm could perform O(m log n)
BESTEDGE computations, but we are guaranteed that the
chain-based algorithm will only perform O(n) BESTEDGE
computations, and thus gives an algorithm with Õ(n

√
m)

time-complexity.

Algorithm. The differences between our exact average-

link algorithm and Algorithm 2 are (1) that we maintain
a dynamic graph-orientation structure EO and (2) that we
run extra procedures before performing the BESTEDGE and
MERGE algorithms used by Algorithm 2. We also make a
minor change in how the weights of edges in each cluster’s
neighbor-heaps are stored.

Before a MERGE(A, B). Before merging two active clusters
using MERGE (Algorithm 1) we call UPDATEORIENTA-
TION (Algorithm 5). This algorithm updates EO by deleting
all edges going to the smaller deactivated cluster (A), and
relabeling and inserting these edges to refer to the remaining
active cluster (B). Note that the orientation data structure
could cause a number of edges to have their orientation
flipped. We inject Algorithm 4, which is called each time
an edge is flipped and which updates the weight of the edge
to its correct weight at the head of the new direction of the
edge. The last step in Algorithm 5 is to update the weights
for each of the edges oriented out of the active cluster B in
the heap of this directed neighbor of B.

Before a BESTEDGE(A). Before extracting the best-edge
from HEAP(A), the algorithm updates each of the edges
currently oriented out of A in EO. Specifically, for such a
directed edge (A,B), it computes the true weight of this
edge and updates this value in HEAP(u). Performing this
update is necessary, since B could have updated its size
since the last time the (A,B) edge was updated in HEAP(u).

Weight Representation in Neighbor-Heaps. If we store the
weights of edges in each neighbor-heap, then when a clus-
ter’s size increases through a merge, we must update all of
the edges incident to the new cluster since the weights of
all edges change. Instead, we store only part of the edge
weights. Specifically, for an edge to B incident to cluster
A we store 1

|B|
∑

(a,b)∈Cut(A,B) w(a, b) in HEAP(A), and
implicitly multiply this quantity by 1/|A|, explicitly multi-
plying by this quantity when extracting an actual weight.

We obtain our exact average-linkage algorithm using a spe-
cific dynamic graph-orientation data structure. Specifically,
we use the recent data structure of (Henzinger et al., 2020)
which maintains a (O(αi), O(log2 n))-dynamic graph-
orientation data structure EO. The out-degree of the orien-
tation maintained is adaptive, i.e., the out-degree of vertices
in EO after the i-th update is O(α(Gi)) where Gi is the
graph at the time of the i-th update.
Theorem 4.1. The exact average-linkage algorithm is cor-
rect and runs in Õ(n

√
m) time for arbitrary graphs.

Proof. We provide a proof-sketch here, and provide a de-
tailed proof in the appendix. Note that the dynamic graph-
orientation data structure is only updated and used during
the MERGE and BESTEDGE operations. Consider the i-
th such operation, and let Gi be the graph induced by
the current clustering at the time of this operation. It
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is easy to check that the cost for a MERGE operation is
O(α(Gi)+Cost(mi) log2 n) and the cost for a BESTEDGE
operation is O(log n+ α(Gi)). Therefore, the total number
of updates to EO is

∑n−1
i=1 Cost(mi) = O(m log n), and

the overall time-complexity of updating EO is O(m log3 n).
Since ∀i, α(Gi) ≤

√
m and there are O(n) merge and best-

edge operations, the time for updating the neighbor-heaps is
O(n
√
m+ n log n). Thus the total time-complexity of the

algorithm is Õ(n
√
m+m) = Õ(n

√
m).

Our approach yields near-linear time exact algorithms for
graphs whose minors all have bounded arboricity. Specif-
ically, we show that for minor-closed graphs, such as pla-
nar graphs, bounded genus graphs, and bounded treewidth
graphs we obtain algorithms with Õ(n) time-complexity.

Corollary 4.2. The exact average-linkage algorithm runs
in Õ(n · t) time on any graph from a minor-closed graph
family whose elements all have arboricity at most t.

4.1. Approximation algorithm

Next, we show that average-linkage can be approximated
in nearly-linear time. An ε-close HAC algorithm is an algo-
rithm which only merges edges that have similarity at least
(1− ε) · Wmax whereWmax is the largest weight currently
in the graph (Moseley et al., 2019). An ε-close algorithm is
constrained to merge an edge that is “close” in similarity to
the merge the exact algorithm would perform. At the same
time, the definition gives the algorithm flexibility in which
edge it chooses to merge, which it can exploit to save work.

The idea of our algorithm is to maintain an extra counter for
each cluster which stores the size the cluster had at the last
time that the algorithm updated all of the incident edges of
the cluster. Call this variable the staleness, S(A), of a given
cluster A. Our algorithm maintains the following invariant:

Invariant 1. For any active cluster A, |A| < (1 + ε)S(A).

We maintain this invariant by checking after merging two
clusters if the size of the remaining active cluster A is still
smaller than (1 + ε)S(A). If the invariant is violated, then
the algorithm performs a rebuild which updates the similar-
ities of all edges incident to A to their true weights. Note
that these updates are performed on the neighbor-heaps for
both endpoints of the updated edges.

Since Invariant 1 can be violated at most O(log1+ε n) times,
any given edge will be processed during a rebuild at most
O(log1+ε n) times over the course of the algorithm, for a
total cost of O(m log1+ε n).

We note that we only apply this approximation idea with
the heap-based algorithm from our framework. Although
it may be possible to combine this notion of approximation
with the chain-based algorithm, the analysis needs to handle

the fact that the chain-based algorithm merges local minima
instead of global minima, and so for simplicity we only
consider the heap-based approach.

Theoretical Guarantees. To argue that our approxima-
tion algorithm yields a ε-close HAC algorithm for average-
linkage, we show that the similarity of any edge stored
within an active cluster’s neighbors cannot be much larger
than its true edge similarity. Let the stored similarity of an
edge (u, v) in the neighborhood be denoted WS(u, v) and
the true similarity of this edge be WT (u, v).

Lemma 4.3. Let e = (U, V ) be an edge in the neighbor-
hood of an active cluster U . Then, (1 + ε)−2WS(U, V ) ≤
WT (U, V ).

This lemma implies that if we merge this edge, then in the
worst case, we will get a (1 + ε)−2-close algorithm since
the highest similarity edge could have a true similarity of
WS(e), but the edge merged by the algorithm could have
a true similarity of WT (e) = (1 + ε)−2WS(e). By setting
the value of ε that we use internally appropriately, we obtain
the following result.

Theorem 4.4. There is an ε-close HAC algorithm for the
average-linkage measure that runs in O(m log2 n) time.

5. Empirical Evaluation
We implemented our framework algorithms in C++ us-
ing the Graph Based Benchmark Suite (GBBS) (Dhulipala
et al., 2018; 2020), and using the augmented maps from
PAM (Blelloch et al., 2016) to represent neighbor-heaps.
We provide more details about our implementations in the
appendix. We run our experiments on a 72-core machine
with 4×2.4GHz Intel 18-core E7-8867 v4 Xeon processors,
and 1TB of memory. Both GBBS and PAM are designed
for parallel algorithms, but to enable a fair comparison with
other sequential algorithms we disabled parallel execution.

5.1. Experiments

Approximate vs. Simple-Exact Algorithm. We start by
evaluating the performance of our near-linear time approx-
imation algorithm for average-linkage vs. a simple imple-
mentation of an exact average-linkage algorithm which up-
dates the weights of all edges incident to a newly merged
cluster. We ran this experiment on a collection of large
real-world graphs from the SNAP datasets. Since these
graphs are originally unweighted, we set the similarity of
an edge (u, v) to 1

log(d(u)+d(v)) . We provide more details
about our graph inputs in the appendix. Figure 1 shows the
result of the experiment. Our approximate average-linkage
algorithm (using ε = 0.1) achieves an average speedup of
6.9x over the exact average-linkage algorithm. We note
that the dendrograms in the cases where the simple-exact
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Figure 1. Relative performance of the approximate and simple-
exact average-linkage algorithms on real-world graphs from the
SNAP datasets, normalized to the fastest time per graph. The value
on top of each bar is the running time in seconds.

algorithm performs reasonably well are shallower than in
cases where the algorithm performs poorly (e.g., the DB
dendrogram is 99x shallower than that of YT, although the
number of vertices in DB is only 2.6x smaller). A simple
upper-bound for the time-complexity of the simple-exact al-
gorithm is O(nD) where D is the depth of the dendrogram.
For other linkage measures, such as single-, complete-, and
WPGMA-linkage, we achieve up to 730x speedup over the
simple-exact algorithm that spends O(d(u) + d(v)) time to
merge two clusters, and note that the dendrograms observed
for these measures have very high depth.

Comparison with Metric Clustering. Next, we study
the quality and scalability of our graph-based HAC algo-
rithms compared to metric HAC algorithms. Given an input
pointset, P , we first apply an approximate k-NN algorithm
to P to build an approximate k-NN graph. We use the
state-of-the-art ScaNN k-NN library (Guo et al., 2020) for
this graph-building step. We note that ScaNN internally
uses multithreading, which we did not disable. We then
symmetrize the k-NN graph and run our graph-based HAC
implementation on it. We compare our results with those of
the widely-used Scikit-learn (sklearn) package.

Quality. In the first set of experiments, we evaluate our
algorithms and the four HAC variants supported by sklearn
on the iris, wine, digits, and cancer, and faces classification
datasets. We note that the heap-based and chain-based algo-
rithms yielded the same dendrograms. To measure quality,
we use the Adjusted Rand-Index (ARI) and Normalized
Mutual Information (NMI) scores. The level of the tree with
the highest score is used for evaluation.

We show the full quality scores in the appendix. Overall, our
graph-based algorithms produce results that are comparable
with, and sometimes superior to the results of the metric-
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Figure 2. End-to-end running times of the sklearn and our graph-
based algorithms on varying-size slices of the Fashion dataset.

based algorithms in sklearn. One exception is our complete-
linkage algorithm, which is almost always worse than the
sklearn algorithm, which is because the k-NN graph is miss-
ing large-distance edges which prevent cluster formation
in the metric setting. We note that running our complete-
linkage algorithm on the complete graph (with all distance
edges) results in clustering results that match the quality
of the sklearn algorithm. Our simple-exact and approxi-
mate average-linkage algorithm (using ε = 0.1) achieve
essentially the same quality results as the exact sklearn algo-
rithm (our algorithms achieve on average 1.8% better ARI
and 0.5% better NMI). Furthermore, the approximate and
simple-exact algorithms yield identical quality results for
all but the digits dataset, where the simple-exact algorithm
is less than 1% better for both quality measures.

Scalability. In the second set of experiments, we study
whether our approach can yield end-to-end speedups over
the sklearn algorithms on large pointsets. We use the
Fashion-MNIST (764-dimensions), Last.fm (65 dimen-
sions), and NYTimes (256 dimensions) datasets in these
experiments. We run both the sklearn and our algorithms on
slices of these datasets to understand how the running time
scales as the number of points to cluster increases.

Our results for the Fashion-MNIST dataset (shown in Fig-
ure 2) show that after about 10000 points, the end-to-end
time of using the graph-based approach is always faster than
using the O(n2) time metric-based algorithm. For the full
Fashion-MNIST dataset, which contains 60,000 points, our
approach yields an overall speedup of 20.7x.

In Figure 3 we show the results of the same experiment
using the Last.fm and NYTimes datasets, but using only
our approximate average-linkage algorithm to reduce clut-
ter (this is the slowest algorithm out of all of our linkage-
measures). We terminated algorithms that ran for longer
than 1 hour, and were therefore unable to finish running
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Figure 3. End-to-end running times of sklearn’s average-linkage
and graph-based approximate average-linkage on varying-size
slices of the Last.fm and NYTimes datasets.

the metric-based algorithm on the full Last.fm (292,385
points) and NYTimes (290,000 points) datasets. Our algo-
rithms achieve up to 36.2x speedup on the NYTimes dataset
and 76.5x speedup on the Last.fm dataset over the avail-
able datapoints for sklearn. Extrapolating from the trends
of the sklearn implementations, a rough estimate suggests
speedups of between 200x–500x for these datasets.

We note that we also ran the same experiments with the
C++-based HAC implementations provided in SciPy (The
SciPy community, 2020) a nd Fastcluster (Müllner, 2013).
We obtained running times that were within 10% of the
running times of sklearn for all of our datasets and linkage
functions, and thus only report the running times for sklearn
in Figures 2 and 3.

Limits of our Approach. We observed that once we have
generated a graph input, our algorithm’s performance scales
almost linearly with the number of edges in the graph. Cur-
rently, the main bottleneck in our experiments for pointsets
is the graph-building step which generates the k-NN graph
using ScaNN and writes the k-NN graph to disk. Supplying
the generated k-NN graph to our HAC algorithms without
first writing it to disk will further accelerate our algorithms.

Ignoring the cost of the writing to disk, both the memory
usage and running time of the graph-clustering step is lower
than that of ScaNN. Specifically, the memory usage of our
algorithms (excluding ScaNN) is approximately 56 ·m +
O(n) bytes (where the constant on the n term is small).
Therefore, our implementations can solve graphs with up to
several billion vertices and 2–3 billion edges on a machine
with 256GB of memory (obtainable from Google Cloud
for a few dollars per hour). In terms of running time, we
observed that our graph-based algorithms scale linearly with
the number of edges in practice, and we could thus solve
such a graph in between 12–24 hours.

6. Conclusion
In this paper we designed efficient HAC algorithms which
run in near-linear time with respect to the number of input
similarity pairs. We conducted a preliminary empirical eval-
uation, which shows that our algorithms achieve significant
speedups while maintaining competitive clustering quality.

For future work, it would be very interesting to understand
the parallel complexity of graph-based HAC, and to design
efficient exact and approximate algorithms for these prob-
lems in a parallel or dynamic setting. From an experimental
perspective, a significant challenge is to design HAC imple-
mentations that can be run on graphs with tens of billions of
edges in a reasonable amount of time. Combining the ideas
in this paper with an efficient dynamic graph processing
system such as Aspen (Dhulipala et al., 2019) may be a
first step towards such a result. Finally, an interesting open
question is to design a near-linear time exact HAC algorithm
for the unweighted average-linkage measure.
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