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Abstract

We study the problem of designing online algo-
rithms given advice about the input. While prior
work had focused on deterministic advice, we
only assume distributional access to the instances
of interest, and the goal is to learn a competi-
tive algorithm given access to i.i.d. samples. We
aim to be competitive against an adversary with
prior knowledge of the distribution, while also
performing well against worst-case inputs.

We focus on the classical online problems of ski-
rental and prophet-inequalities, and provide sam-
ple complexity bounds for the underlying learn-
ing tasks. First, we point out that for general dis-
tributions it is information-theoretically impossi-
ble to beat the worst-case competitive-ratio with
any finite sample size. As our main contribu-
tion, we establish strong positive results for well-
behaved distributions. Specifically, for the broad
class of log-concave distributions, we show that
poly(1/ε) samples suffice to obtain (1 + ε)-
competitive ratio. Finally, we show that this sam-
ple upper bound is close to best possible, even for
very simple classes of distributions.

1. Introduction
Uncertainty in the input is a central challenge in the area
of algorithm design. A number of both classical and re-
cent paradigms have been introduced to capture this is-
sue. Online computation is a prototypical domain where
dealing with uncertainty of future data naturally arises.
To get around the inherent uncertainty of the online set-
ting, many different models have been introduced: on-
line algorithms with lookahead (Grove, 1995), with sta-
tistical adversary (Raghavan, 1992), or with diffused ad-
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versary (Koutsoupias & Papadimitriou, 2000). A more re-
cent line of work studies online algorithms with predictions
or advice (also known as learning-based/data-driven online
algorithms) (Renault & Rosén, 2015; Angelopoulos et al.,
2015; Lykouris & Vassilvtiskii, 2018; Purohit et al., 2018;
Gollapudi & Panigrahi, 2019; Angelopoulos et al., 2020;
Dütting et al., 2020; Lattanzi et al., 2020; Anand et al.,
2020; Bamas et al., 2020).

In this work, we introduce a new model of learning-based
algorithms. Our goal is to design algorithms that can lever-
age the learnable structure of the input. Specifically, we
assume sample access to the underlying distribution over
inputs. Given i.i.d. samples from this distribution, we want
to design methods that are competitive against the optimal
performance of any algorithm with exact knowledge of the
distribution over inputs; and at the same time are robust to
model misspecification or adversarial predictions. In other
words, when the predictions are almost perfect, we expect
the algorithm to solve the problem almost optimally; and
if the predictions are misleading, the algorithm is required
to attain guarantees comparable to the best possible worst-
case bounds. This work falls in the active domain of be-
yond worst-case analysis (see the recent book (Roughgar-
den, 2020) and the related chapter on algorithms with pre-
dictions (Mitzenmacher & Vassilvitskii, 2020)).

While most of the existing results in learning-based on-
line algorithms only consider deterministic predictions, in
this work we aim to design such algorithms when predic-
tions are random and drawn from an underlying distribu-
tion. This setting can accurately model the type of predic-
tions that arise in real applications. In many scenarios, we
have access to past data, i.e., distributional advice, that can
be used to design an algorithm that performs well on un-
seen data.

In this paper, we focus on two basic online problems with
distributional information. In particular, we investigate the
trade-off between the efficiency and the sample complex-
ity of the ski-rental and the prophet inequality problems
in an online model when the input distribution is assumed
to belong to a known class of distributions. Unlike the
classical online setting, we consider the diffused adversary
model proposed by Koutsoupias and Papadimitriou (2000),
which assumes that the given input distribution belongs to
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a known class C of distributions. We note that Koutsou-
pias and Papadimitriou study the generalized competitive
ratio of online problems such as paging and k-server in the
defused adversary model only assuming knowledge of the
class of distributions. In contrast, we also assume sample
access to the input distribution.

1.1. Problem Statement

Given an online minimization problem f , a distribution D
on inputs for f , and an algorithm A, we denote cost(A; t)
the cost of A for f on input t and cost(A;D) :=
Et∼D[cost(A; t)], i.e., the average cost of A when the in-
put is drawn from D. We remark that when A is a ran-
domized algorithm, the expected cost is computed with re-
spect to the randomness of both A and D. We also define
the optimal cost under the distribution D to be the min-
imum achievable cost for any algorithm, i.e., OPTD =
minA cost(A;D).

Observe that apart from the computational hardness of op-
timizing over possible algorithms, computing OPTD re-
quires exact knowledge of the input distribution D. In our
setting, we only assume sample access to D.

For maximization problems, we define OPTD similarly
where instead of minimizing cost(·) the goal is to maxi-
mize gain(·), i.e., OPTD = maxA gain(A;D).

Robustness and Consistency. Two measures of interest
in the domain of algorithms with predictions are consis-
tency and robustness. At a high-level, the consistency re-
quirement implies that, if the samples that we observe are
accurate, then the generalized competitive ratio should ap-
proach one. The robustness requirement implies that in any
case (i.e., no matter how inaccurate the predictions are), the
(generalized) competitive ratio should not be much worse
compared to the best pure online algorithm.

Fix a family of distributions C and some distribution D not
necessarily in C. Let X be a finite set of i.i.d. samples from
D and letAX be the algorithm that we learn given the set of
samples X . We say that the algorithm AX is α-consistent
and β-robust under the class C if the following hold.

• If D ∈ C, then cost(AX ;D)/OPTD ≤ α.

• Otherwise, cost(AX ;D)/OPTONL ≤ β, where
OPTONL is the cost of an optimal classical online al-
gorithm on D.

Similarly, we can define the notion of robust and consistent
algorithms for maximization problems by considering the
inverse ratios, e.g., OPTD

gain(AX ;D) ≤ α.

In this paper, our goal is to answer the following question.

“Given finite samples from a distribution D, can we
efficiently design consistent and robust algorithms?”

1.2. Our Results

Ski Rental. In the ski-rental problem, each day the player
has to decide whether to rent skis for this day, which costs
one unit, or buy skis for the rest of the season at a cost
of b units. The goal is to minimize the total cost paid by
the player. Ski-rental is a well-studied problem and admits
an algorithm with competitive ratio equal to e

e−1 , which is
known to be tight (Karlin et al., 1994).

Before we present our result for the ski-rental setting, we
note that it is not possible to improve over the existing com-
petitive ratio bounds without distributional assumptions.

Observation 1.1. Fix any α < e/(e − 1). There is no
algorithm that for any input distribution D, draws finitely
many samples from D and returns an α-consistent strategy
for the ski-rental problem.

We show that we can bypass this negative result when the
input distributions are assumed to have some “nice” struc-
ture. In previous literature for the ski-rental problem with
predictions (Purohit et al., 2018; Gollapudi & Panigrahi,
2019; Wang et al., 2020), the authors assume that the ad-
vice is a guess for the exact number of the days that we are
going to ski. A distributional generalization of this would
be to assume that number of ski-days is distributed uni-
formly in some interval of the real line. More generally,
a natural model for the number of ski-days is that it fol-
lows a log-concave distribution. Log-concave distributions
are a general non-parametric class of distributions that have
been used as a model extensively in statistics and machine
learning (Bagnoli & Bergstrom, 2005). In particular, they
include the uniform distribution on any interval, but also
distributions with infinite support, including Gaussians and
exponentials.

Definition 1.2 (Log-Concave Distributions). We say that a
distribution is log-concave if its density can be written as
p(x) = ef(x), for some concave function f : R→ R.

As our first main contribution, we show that under any log-
concave distribution we can design consistent and robust
algorithms for the ski-rental problem.

Result 1. For any λ > 1, there exists an algorithm that
draws Õ(1/ε2) samples, runs in sample near-linear time,
and outputs a (λ(1+ε))-consistent and ( λ

λ−1 )-robust strat-
egy for ski-rental under log-concave distributions (see The-
orem 2.9).

To prove the above result, we first show that we can obtain
ε-additive strategies, i.e., strategies with cost OPTD + ε,
for general distributions, see Section 2.1. Next, we show
that the optimal solution under log-concave distributions
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is structured: it either corresponds to buying the skis ini-
tially or renting them indefinitely. Then, by an application
of our result on ε-additive strategies, we derive a (1 + ε)-
multiplicative strategy on log-concave distributions with
tight sample complexity, see Section 2.2. Finally, by using
an algorithm of Mahdian et al. (2012) in black-box fashion,
we obtain our main result for ski-rental.

We also prove that the sample complexity of Result 1 is es-
sentially optimal: in Section 2.4 we show that Ω(1/ε2) are
necessary in order to obtain (1 + ε)-consistent algorithm,
even when the underlying distributions are exponentials.

Prophet Inequality. In the prophet inequality problem,
there are n distributions D1, . . . , Dn. A gambler knows
both the distributions Di and their order. Each “day”, the
gambler observes a value Xi ∼ Di and has to decide
whether to accept and get Xi as reward or to reject and
continue with Xi+1, losing Xi irrevocably. The gambler’s
goal is to maximize the gain. In the standard setting, the
gambler is competing against the “prophet” who knows
the exact realizations X1, . . . , Xn and therefore achieves
gain equal to E[max(X1, . . . , Xn)]. In this setting, it is
known that the best possible competitive ratio is 1/2 (Kren-
gel & Sucheston, 1978) and it is achievable by simple stop-
ping rules such as the median of maxiXi (i.e., a value T
s.t. Pr[maxiXi > T ] = 1/2) (Samuel-Cahn, 1984) or
E[maxiXi]/2 (Kleinberg & Weinberg, 2012). In our dis-
tributional setting, the gambler does not know exactly the
distributions D1, . . . , Dn, but only has sample access to
them. Similar to the ski-rental setting, the gambler is com-
peting against an adversary who knows the distributions
D1, . . . , Dn (not their exact realizations X1, . . . , Xn).

Similarly to Observation 1.1 for ski-rental, we cannot im-
prove over the existing, worst case, competitive ratio of 1/2
for prophet inequality without distributional assumptions
(see the full version of the paper for the formal statement).
For log-concave distributions, we show:

Result 2. For any λ > 1, there exists an algo-
rithm that draws Õ(n3/ε2) samples from the distributions
D1, . . . , Dn and, in sample near-linear time, outputs a
((1 + ε)λ)-consistent and (2λ/(λ − 1))-robust strategy
for prophet inequality under log-concave distributions (see
Theorem 3.3).

We remark that Ω(n) samples are necessary to guarantee
any non-trivial error guarantees in the prophet inequality
setting: if we do not observe at least one sample from each
Di we may ignore one with very high average value. We
did not attempt to optimize the sample complexity of our
algorithm with respect to the number of distributions n.
This is left as an interesting question for future work.

Stronger Sampling Models. We show that, assuming ac-
cess to the stronger conditional sampling oracle as intro-
duced in (Canonne et al., 2015; Chakraborty et al., 2016),
we can achieve a (1 + ε)-multiplicative guarantee on any
distribution without structural assumptions. We work in
the ski-rental setting. Given an unknown distribution D
supported on [0,+∞), for any subset S ⊆ [0,+∞), the
conditional sampling oracle returns a sample with proba-
bility proportional to the conditional distribution of D re-
stricted to S. In this paper, we use a weaker version of this
oracle where the target sets S are of form [α,+∞). Due
to space limitations, we include the proof of the following
result in the final version of the paper.

Result 3. For any input distribution D, O(1/ε4) condi-
tional samples from D suffice to design a strategy A that
achieves cost(A;D) ≤ (1 + ε)OPTD.

We remark that under some natural anti-concentration
properties of the distribution, the conditional sampling ac-
cess we require can be simulated via traditional samples
and rejection sampling with a small overhead.

1.3. Related Work

Online Algorithms with Advice. Incorporating machine
learning advice in the design of online algorithm has re-
ceived a lot of attention in recent years (Mahdian et al.,
2012; Angelopoulos et al., 2015; Esfandiari et al., 2018;
Lykouris & Vassilvtiskii, 2018; Purohit et al., 2018; Gol-
lapudi & Panigrahi, 2019; Kodialam, 2019; Indyk et al.,
2020; Anand et al., 2020; Angelopoulos et al., 2020; Ro-
hatgi, 2020; Lattanzi et al., 2020; Dütting et al., 2020;
Lavastida et al., 2020; Antoniadis et al., 2020; Bamas et al.,
2020). In particular, the ski-rental problem has served
as one of the prominent standard test beds for most of
developed techniques and proposed models in this area,
e.g., (Purohit et al., 2018; Gollapudi & Panigrahi, 2019;
Kodialam, 2019; Anand et al., 2020; Bamas et al., 2020).

Algorithms with predictions have been also studied ex-
tensively in other domains such as online learning (Alabi
et al., 2019; Bhaskara et al., 2020), data structures (Kraska
et al., 2018; Mitzenmacher, 2018; Dai & Shrivastava, 2019;
Vaidya et al., 2021), streaming and sketching (Hsu et al.,
2019; Indyk et al., 2019; Jiang et al., 2020; Cohen et al.,
2020) and combinatorial problems (Gupta & Roughgarden,
2017; Dai et al., 2017; Balcan et al., 2017; 2018).

Comparison with (Anand et al., 2020). We provide a
comparison of our framework to the recent result of Anand,
Ge, and Panigrahi, in which the authors design a “learning
to rent” framework. In their setting, the algorithm receives
a feature vector x which can be considered as “prediction”,
and they assume that there exists an unknown underlying
joint distribution between x and the actual number of ski-
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Table 1. This table shows the sample complexity of our algorithms in different settings of ski-rental and prophet inequality. In ski-rental,
b denotes the price of ski. In prophet inequality, for ε-additive approximation guarantee, we assume D1, . . . , Dn are supported on [0, b].

(1 + ε)-Multiplicative
Consistency and Robustness ε-Additive

General Log-Concave

Ski-Rental Inapprox. Õ(ε−2) Theorem 2.9 Õ(b2ε−2)

Prophet Inequality Inapprox. Õ(n3ε−2) Theorem 3.3 Õ(b2n2 ε−2)

days y; (x, y) ∼ K. Then, their goal is to learn an algorithm
θ(x), which decides the number of days to rent. The goal
of Anand et al. is to output a learning rule θ, which can
be thought as a mapping from the “distributional” predic-
tion to a stopping time, and their objective is to minimize
the expected value of the competitive ratios over prediction
x. In contrast, in our work, we design a single strategy
for the given unknown distribution and our measure of effi-
ciency is the competitive ratio of the expected costs. While
the objective of both papers is to design learning-based al-
gorithms under distributional information, the settings and
approaches are quite different.

2. Ski-Rental
In this section, our main goal is to prove Result 1. In Sub-
section 2.1 we show that we can obtain additive approx-
imations to OPTD under any distribution with Õ(1/ε2)
samples. In Subsection 2.2 we show that using the additive
approximation result we can obtain multiplicative approx-
imations assuming that the underlying distribution is log-
concave. In Subsection 2.4 we prove that Ω(1/ε2) samples
are necessary in order to obtain (1 + ε)-multiplicative esti-
mates for log-concave distributions.

2.1. Sample Complexity of Additive Approximation

In this subsection, we study the sample complexity of
ε-additive approximation algorithms for ski-rental. We
remark that in this problem any deterministic algo-
rithm/strategy A is equivalent to a threshold T where we
decide to buy the skis. For example, if our strategy is to
buy the skis initially we have T = 0 or, on other extreme,
renting them indefinitely corresponds to T =∞. Any ran-
domized algorithm for this problem corresponds to a distri-
bution over thresholds. The cost of an algorithm A corre-
sponding to a distribution q over thresholds with respect to
some distribution D is then defined as1

cost(A;D) = cost(q;D)

= E
T∼q

[
E
x∼D

[1{x < T}x+ (b+ T )1{x ≥ T}]
]
,

1We denote by 1{x < t} the indicator function that is 0 for
all x < t and 1 otherwise.

where the first term corresponds to the case where the ac-
tual number of ski-days x ∼ D is smaller than T : we just
pay amount x for renting the skis for those days. The sec-
ond term corresponds to x ≥ T in which case we buy the
skis at day T and pay b+ T overall. We denote by OPTD
the cost achieved by the optimal threshold for a given dis-
tribution D, i.e.,

OPTD = min
T∈[0,+∞]

[
E
x∼D

[1{x < T}x+(b+T )1{x > T}]
]
.

Observe that the optimal cost is given by a deterministic
threshold T . We first define the notion of ε-additive ap-
proximation algorithms.

Definition 2.1 (ε-Additive Approximation). Given an in-
stance of ski-rental in which the number of ski-days is
drawn from an unknown distributionD, and the ski price is
b, we say that an algorithm A achieves ε-additive approxi-
mation if, cost(A;D) ≤ OPTD+ε, where OPTD denotes
the optimal cost when D is known.

The main result of this section is the following theorem,
where we show that for any value of ε > 0, Õ(1/ε2) sam-
ples from D suffices to design an ε-additive approximation
algorithm for ski-rental over D without any assumption on
the distribution D.

Theorem 2.2. Let D denote the distribution of the number
of ski-days. There exists an algorithm (see Algorithm 1)
that for any ε, δ ∈ (0, 1], draws Õ(b2ε−2 log(1/δ)) sam-
ples from D, runs in time linear in the number of samples,
and, with probability at least 1 − δ, outputs a strategy A
that satisfies cost(A;D) ≤ OPTD + ε .

Proof. The proof follows from an application of Dvoret-
zky, Kiefer, and Wolfowitz (DKW) inequality. Let
X1, . . . , Xn be i.i.d. samples from D and let Dn denote
the (empirical) distribution constructed from the sampled
points. Formally, the cdf of Dn is defined as follows:

PDn(x) =
1

n

n∑
i=1

1{Xi ≤ x} x ∈ R.

By DKW inequality, for n = Ω(b2ε−2 log(1/δ)), with
probability at least 1−δ, it holds dK(Dn, D) ≤ ε/b. Recall
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that, the Kolmogorov distance of distributions D and D′

with cdf respectively F and F ′ is defined as dK(D,D′) :=
supx∈R |F ′(x)− F (x)|.

For any threshold θ ∈ R, let Aθ denote the algorithm that
buys at θ. First, we prove the following result that relates
the cost of an algorithm of the form Aθ for ski-rental on D
to its cost on a distribution D′ where dK(D,D′) ≤ ε/b.
The proof of the following claim can be found in the Sup-
plementary Material.

Claim 2.3. Suppose that dK(D,D′) ≤ ε/b. If there exists
T ′ and t∗ ≤ T such that cost(AT ′ ;D′) ≤ OPTD′ + ε
and cost(At∗ ;D) ≤ OPTD + ε, then cost(AT ′ ;D) ≤
OPTD +O(ε (T + T ′ + b)/b).

Next, we bound the value T in Claim 2.3. In other words,
we show that for any distribution there exists an ε-additive
approximation strategy of form At∗ with t∗ = O(b log b

ε ).

Claim 2.4. For any D, we can find a t∗ ≤ 2b log b
ε such

that cost(At∗ ;D) ≤ OPTD +O(ε).

Now, we are ready to describe our algorithm (Algorithm 1).
By Claim 2.4, recall that n = Θ(b log(1/δ)/ε2), we
can find an ε-additive approximation strategy Aθε , for
Dn with θε ≤ 2b log b

ε . Moreover, by another applica-
tion of Claim 2.4, there exists t∗ = 2b log b

ε such that
cost(At∗ ;D) ≤ OPTD + ε. Hence, since with proba-
bility at least 1 − δ, dK(D,Dn) ≤ ε/b, by an application
of Claim 2.3 with D′ = Dn, we obtain

cost(Aθε ;D) ≤ OPTD +O(ε · (θε + t∗ + b)/b)

≤ OPTD +O(ε log(b/ε)).

Hence, Õ(b2ε−2 log(1/δ)) samples from the input suf-
fices to design an ε-additive approximation strategy for ski-
rental on D.

Algorithm 1 Algorithm for ε-Additive Approximation
1: Input: i.i.d. samples X1, . . . , Xn ∼ D
2: Output: A buying time T
3: Dn is empirical distribution computed from
X1, . . . , Xn

4: T ′ ← optimal buying time for ski-rental on Dn

5: return min{b log 1
ε , T

′}

2.2. Multiplicative Guarantee for Log-Concave
Distributions

In this subsection, we focus on the class of log-concave
distributions and design an efficient algorithm that achieves
(1 + ε)-multiplicative approximation for the case the num-
ber of days is drawn from a log-concave distribution. The
main result of this section is the following theorem.

Theorem 2.5. Assume that the number of ski-days follows
a log-concave distribution D. There exists an algorithm
that for any ε, δ ∈ (0, 1], draws Õ(log(1/δ)/ε2) samples
from D, runs in time linear in the number of samples, and,
with probability at least 1− δ, outputs a strategy A s.t.

cost(A;D) ≤ (1 + ε)OPTD.

Proof. First, we show that the ε-additive approximation al-
gorithm, Algorithm 1, can be used for designing (1 + ε)-
multiplicative approximation algorithms on distributions
whose optimal strategy is to either buy initially or rent in-
definitely. The proof of the following claim can be found
in the Supplementary Material.

Claim 2.6. Let D be a distribution whose optimal strat-
egy is either to buy initially or rent indefinitely. Fix
ε, δ ∈ (0, 1]. There exists an algorithm that draws
Õ(log(1/δ)/ε2) samples from D and with with probability
at least 1− δ outputs a strategy A such that cost(A;D) ≤
(1 + ε)OPTD.

Next, we show that the optimal strategy for log-concave
distributions is to either buy initially or rent indefinitely.
Let pD and PD respectively denote the pdf and the cdf of
D. Let q(·) be the pdf corresponding to a randomized strat-
egy where for each x > 0, q(x) denotes the probability of
stopping at time x. The cost of the strategy corresponding
to q is,

cost(A;D) =

∫ ∞
0

q(x)
(∫ x

0

ypD(y) dy

+ (b+ x)(1− PD(x))
)
dx . (1)

Therefore, to minimize the cost, we need to set q(·) to be a
point mass on x that minimizes

g(x) :=

∫ x

0

ypD(y) dy + (b+ x)(1− PD(x)) .

To find the minimizer of g, we compute the derivative
g′(x) = (1 − PD(x)) − bpD(x) = (1 − PD(x))(1 −
bhrD(x)), where hrD(x) = pD(x)/(1 − PD(x)) is the
hazard rate function of the distributionD. SinceD is a log-
concave distribution, we have that its hazard rate hrD(x) is
an increasing function of x.

1. If for all x ∈ R, it holds hrD(x) < 1/b, then g(·) is
an increasing function and the optimal strategy is to buy
the skis initially. Similarly, if for all x ∈ R, it holds
hrD(x) > 1/b, then g is minimized at +∞, i.e., the
optimal strategy is to rent the skis indefinitely.

2. If for some x0 ∈ R, it holds hrD(x0) = 1/b, then g(·) is
increasing in [0, x0] and decreasing in [x0,+∞). This
means that g is either minimized for x = 0, or x = +∞.
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Therefore, when D is a log-concave distribution, the opti-
mal strategy is always to either buy the skis initially or rent
them indefinitely. The result follows from Claim 2.6.

2.3. Consistency-Robustness Trade-Off of Ski-Rental
in Distributional Setting

Here, we show that for any λ > 1, we can achieve(λ, λ
λ−1 )

consistency-robustness trade-off for ski-rental by applying
the result of Mahdian et al. (2012) that works for the more
general problem of online resource allocation in a black-
box fashion.

In online resource allocation, we are given a sequence of
jobs J and a set of servers S. Jobs arrive one by one, and
at each time t, the task is to assign the job Jt to a set of
servers. Each server Si has an activation cost ci and assigns
each job Jt to a server Si along with a serving cost di.
The goal is to find an assignment that minimizes the cost
of activating servers plus the serving costs. The ski-rental
problem is a special case of this problem where we have
two servers “buy” (S1) and “rent” (S2) with (c1 = b, d1 =
0) and (c2 = 0, d2 = 1). Moreover, each ski-day is a job.

Lemma 2.7 (Theorem 3.1 of Mahdian et al.). For any γ >
1, there exists an algorithmH(γ) that given two algorithms
A,B for an online resource allocation problem P , satisfies

cost(H(γ); I) ≤ min{λ cost(A; I), (
λ

λ− 1
) cost(B; I)}.

Corollary 2.8. Given two strategiesA,B for ski-rental, for
any instance I, and for any λ > 1, the cost the strat-
egy SKI-RENTAL(A,B, λ), Algorithm 2, on instance I is
at most min{λ cost(A; I), ( λ

λ−1 ) cost(B; I)}.

Algorithm 2 SKI-RENTAL: consistent and robust algo-
rithm for ski-rental adapted from (Mahdian et al., 2012).

1: Input: Two strategies A,B for ski-rental
2: Output: A buying time T
3: t← 0 {number of days}
4: while ski-day do
5: t← t+ 1
6: if costt(A) ≤ (1− γ)costt(B) then
7: if A buys at t buy; otherwise, rent
8: else
9: if B buys at t buy; otherwise, rent

10: end if
11: end while

Now we are ready to we prove the main result of the section
which is a formal restatement of Result 1.

Theorem 2.9. For any λ > 1, δ ∈ (0, 1], there exists an al-
gorithm that draws Õ(log(1/δ)/ε2) samples from the input
distributionD, runs in time linear in the number of samples

and, with probability at least 1 − δ, returns a (λ(1 + ε))-
consistent and ( λ

λ−1 )-robust strategy A for ski-rental un-
der log-concave distributions, i.e., if D is a log-concave
distribution, cost(A;D) ≤ λ(1 + ε)OPTD; otherwise,
cost(A;D) ≤ λ

λ−1OPTONL.

Proof. Let AX be the strategy guaranteed by Theorem 2.5
that receives samples X = {X1, . . . , XÕ(1/ε2 log(1/δ))}
from D. Moreover, let AONL be a worst-case optimal al-
gorithm (i.e., with competitive ratio e

e−1 ) for ski-rental.

By Theorem 2.5, for log-concave distributions, with
probability at least 1 − δ, cost(AX ;D) ≤ (1 +
ε) OPTD. Then, by an application of Corollary 2.8, SKI-
RENTAL(AX ,AONL) satisfied the desired consistency and
robustness guarantees.

2.4. Sample Complexity Lower Bound for Exponential
Distributions

In this subsection, we bound from below the sample com-
plexity for any algorithm that learns a strategy that achieves
(1 + ε)OPTD cost under log-concave distributions. Inter-
estingly, the lower bound holds for the simple case of ex-
ponential distributions which are a (very small) subset of
log-concave distributions.
Theorem 2.10. Suppose that there exists an algorithm that
for any log-concave distribution D and any ε ∈ (0, 1],
draws k samples from D and, with probability at least
2/3, outputs a strategy A such that cost(A;D) ≤ (1 +
ε)OPTD . Then k = Ω(1/ε2).

Proof. We reduce the above optimization problem to a
distribution testing problem. In particular, we show that
given an algorithm A that satisfies the guarantees of The-
orem 2.10, we can construct an algorithm that identifies
the distribution D that generated the samples. Set the buy-
ing cost of the ski-rental problem b = 1. For our proof,
we only need to consider two distributions. We set D1 to
be the exponential distribution with rate λ1 = 1/(1 + 2ε)
and D2 to be the exponential distribution with rate λ2 =
1/(1 − 2ε). Observe that since exponential distributions
are log-concave, their optimal strategy is to either buy ini-
tially or rent indefinitely, see the proof of Theorem 2.5. In
particular, the optimal strategy forD1 is to buy initially and
OPTD1

= 1, while the optimal strategy for D2 is to rent
indefinitely and OPTD2

= 1 − 2ε. Let X1, . . . , Xk be k
samples from Di and denote by q the distribution/strategy
that algorithm A(X1, . . . , Xk) outputs. Notice that this
captures also randomized algorithms that decide to buy at
some time t with density q(t). We consider the following
testing algorithm T :

• If cost(q;D2) ≥ (1− 2ε)cost(q;D1) then output 1, i.e.,
the distribution that generated the samples is D1.
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• Otherwise, output 2.

Our proof crucially relies on the following claim. We show
that any strategy q that performs well under distributionD1

cannot perform well under distribution D2. We provide its
proof in the Supplementary Material.

Claim 2.11. Let q be any distribution on [0,∞] such that
cost(q;D1) ≤ (1 + ε)OPTD1 . Then, for ε sufficiently
small it holds cost(q;D2) > (1 + ε)OPTD2

.

Assume, in order to reach to contradiction, that the testing
algorithm T outputs 2 and the underlying distribution is
D1, that is it holds cost(q;D2) < (1− 2ε)cost(q;D1). By
the guarantee for the strategyAwe have that cost(q;D1) ≤
(1 + ε)OPTD1 . This implies

cost(q;D2) < (1− 2ε)cost(q;D1)

= (1− 2ε)(1 + ε)OPTD1
= (1− 2ε)(1 + ε) .

From Claim E.1, we have that cost(q;D2) > (1 +
ε)OPTD2

= (1 + ε)(1 − 2ε). Therefore, we conclude
(1−2ε)(1+ε) > cost(q;D2) > (1+ε)(1−2ε) ,which is a
contradiction. The case where the algorithm outputs 1 and
the underlying distribution is D2 is similar. Therefore, our
testing algorithm can distinguish the two exponential dis-
tributions whose mean differ by O(ε). It is not hard to see
that, to distinguish between these two exponential distribu-
tions, Ω(1/ε2) samples are required. For the details, see
the full proof provided in the Supplementary material.

3. Prophet Inequality
In this section we prove our result for prophet inequalities,
Result 2. Any strategy in this setting can be described with
a set of thresholds T1, . . . Tn, see Algorithm 3. Since we
should always accept the last value Xn, the last threshold
Tn is redundant and should always be equal to 0. To keep
notation simple we assume that this is the case and use n-
thresholds.

Algorithm 3 Threshold-Algorithm
1: Input: Thresholds {Ti}i∈[n], values {Xi ∼ Di}i∈[n]
2: Output: One of the values Xi’s
3: i← 1
4: while Xi < Ti do i← i+ 1 end while
5: return Xi.

We first define the gain of a strategy T1, . . . , Tn.

Definition 3.1 (Gain of a Strategy). Fix distributions
D1, . . . , Dn. Let T1, . . . , Tn be a set of thresholds. We de-
fine the gain(T1, . . . , Tn;D1, . . . , Dn) to be the expected
output of Algorithm 3 with thresholds T1, . . . , Tn. When, it

is clear from the context, we may drop the distributions and
simply write gain(T1, . . . , Tn).

The following fact gives the optimal way to choose
the thresholds T1, . . . , Tn given that we know exactly
D1, . . . , Dn. For the proof, see Supplementary Material.

Fact 3.2. Algorithm 3 is optimal with respect
to D1, . . . , Dn when the thresholds are Ti =
EXi∼Di

[max(Xi, Ti+1)], Tn−1 = EXn∼Dn
[Xn],

Tn = 0. We use OPT to denote the gain of the optimal
algorithm that knows the distributions, see Fact 3.2.

For example, with two distributions D1 and D2, the
optimal gain according to the fact above is OPT =
EX1∼D1 [max(X1,EX2∼D2 [X2])].

We present below the main theorem of this section, i.e., the
formal statement of Result 2.

Theorem 3.3. For any λ > 1 and ε, δ ∈ (0, 1], there ex-
ists a randomized algorithm that draws Õ(n3/ε2) samples
from the distributions D1, . . . , Dn and, in sample near-
linear time, with probability at least 1 − δ, outputs an
((1 + ε)λ)-consistent and (2λ/(λ− 1))-robust strategy for
prophet inequality under log-concave distributions.

For the proof of Theorem 3.3 we rely on two main com-
ponents. The first is the following lemma that shows that
when the underlying distributions are log-concave we can
obtain multiplicative approximations to the optimal gain.

Lemma 3.4. Let X1, . . . , Xn be non-negative indepen-
dent random variables with log-concave densities. There
is an algorithm such that for any ε, δ ∈ (0, 1] draws
O(n

2

ε2 log(n/δ)) samples from each distribution Di, and
computes in near-linear sample time a set of thresholds
T1, . . . , Tn such that, with probability at least 1−δ, it holds
OPT/gain(T1, . . . , Tn) ≤ 1 + ε .

Theorem 3.3 follows by combining our multiplicative ap-
proximation result of Lemma 3.4 that works under the as-
sumption that the distributions are log-concave with a re-
cent result from (Rubinstein et al., 2019) for the prophet
inequality problem showing that with just one sample from
each of D1, . . . , Dn we can obtain value (1/2)OPTONL.

Lemma 3.5 (Theorem 1 of (Rubinstein et al., 2019)).
There is an algorithm that draws n samples from
D1, . . . , Dn, runs in sample linear time, and outputs a
strategy A such that gain(A) ≥ (1/2)OPTONL .

We now proceed with the proof of Lemma 3.4.

Proof sketch of Lemma 3.4. Our proof crucially relies on
the following result where we prove that, when the underly-
ing distribution of a random variableX ≥ 0 is log-concave,
we can obtain multiplicative estimates of thresholds, i.e., of
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quantities of max(X, c) with a sample complexity indepen-
dent of the support size of X .

Lemma 3.6. Let X be a non-negative random variable
with log-concave density and let c > 0. Fix ε, δ ∈ (0, 1],
then by drawing N = O( 1

ε2 log(1/δ)) samples, we can
compute, in sample linear time, an estimate T̂ such that

1

1 + ε
≤ T̂

E[max(X, c)]
≤ 1 + ε .

Proof. Denote µ = E[max(X, c)]. We draw n i.i.d. sam-
ples X1, . . . , Xn from the log-concave distribution and
use the empirical average T̂ = 1

n

∑n
i=1 max(c,Xi). By

Chebyshev’s inequality we obtain

Pr
[∣∣∣T̂ − µ∣∣∣ ≥ εµ] ≤ Var[T̂ ]

ε2µ2
=

Var[max(c,X)]

nε2µ2
. (2)

To bound Var[max(c,X)] consider X ′ to be an indepen-
dent copy of X . We have

Var[max(c,X)] =
1

2
E[(max(c,X)−max(c,X ′))2]

≤ 1

2
E[(X −X ′)2] = Var[X] .

In order to bound the variance of X we are going to use the
following reverse Hölder inequality for log-concave distri-
butions, see, for example, (Lovász & Vempala, 2007).

Lemma 3.7 (Reverse Hölder for Log-concave Measures).
Let X be a random variable distributed according to
some log-concave density on R. It holds E[|X|k| ≤
(2k)k(E[|X|])k.

Since X is distributed according to a log-concave den-
sity we have that Var[X] ≤ E[X2] ≤ 16E[|X|]2 =
16E[X]2, where the last equality follows from the fact
that X is non-negative. Finally, we have that E[X] ≤
E[max(c,X)] = µ and therefore, from Equation (2), we
obtain that Pr

[∣∣∣T̂ − µ∣∣∣ ≥ εµ] ≤ 16
nε2 . Therefore, with

O(1/ε2) samples we have that with probability at least 2/3
it holds |T̂ /µ− 1| ≤ ε which also implies that 1/(1 + ε) ≤
T̂ /µ ≤ 1 + ε by the fact that 1 − ε ≤ 1/(1 + ε) for all
ε ∈ [0, 1]. To amplify the success probability to 1 − δ
for any δ > 0 we can use the “median-trick”, i.e., repeat
the above process M = O(log(1/δ)) times and keep the
median of the estimates T̂1, . . . , T̂M . Since each one of
them satisfies the error guarantee with probability at least
2/3 we have that the probability that the median violates
the same error guarantee is at most (2/3)M/2 ≤ δ. This
holds because for the median to be outside the interval
[µ − εµ, µ + εµ] we need at least half of T̂1, . . . , T̂M to
fall outside the same interval. Overall, we obtain that with
O(1/ε2 log(1/δ) we can compute an estimate T̂ such that
1/(1 + ε) ≤ T̂ /µ ≤ 1 + ε.

We now return to the proof of Lemma 3.4. For simplicity
assume that we have two distributions D1 and D2. Let T̂
be an (1 + ε)-multiplicative approximation of the optimal
threshold T = E[X2], calculated using O(1/ε2 log(1/δ))
samples, see Lemma 3.6 (set c = 0).

gain(T̂ ) = E[X11{X1 ≥ T̂}+X21{X1 < T̂}]
= E[X11{X1 ≥ T̂}+ E[X2]1{X1 < T̂}]

≥ E[X11{X1 ≥ T̂}+
T̂

1 + ε
1{X1 < T̂}]

≥ 1/(1 + ε)E[max(X1, T̂ )]

≥ 1/(1 + ε)2OPT

where we used T ≥ T̂ /(1 + ε) ≥ T/(1 + ε)2. Similar
analysis can be applied when we have n distributions to
obtain (1+ε)2ngain(T̂1, . . . , T̂n) ≥ OPT. By setting ε′ =
Θ(ε/n), we have (1 + ε′)gain(T̂1, . . . , T̂n) ≥ OPT. For
this value of ε′ we obtain that Õ(n2/ε2 log(1/δ)) samples
from each Di suffice to estimate the thresholds T̂1, . . . , T̂n.
The full proof is deferred to Supplementary Material.

Proof of Theorem 3.3. Let A be the randomized strategy
that with probability 1/λ uses the (1 + ε)-multiplicative
strategy for log-concave distributions (Lemma 3.4), other-
wise, it uses the worst-case optimal algorithm for the online
setting given in Lemma 3.5, which has (1/2)-competitive
ratio. If the underlying distributions are log-concave, the
expected gain of A is with probability 1/λ, OPT/(1 + ε)
and with probability (λ−1)/λ at least zero. Thus, the algo-
rithm A is ((1 + ε)λ)-consistent. On the other case, where
the underlying distributions are arbitrary, the expected gain
of A is (1/2)OPTONL with probability 1 − 1/λ, and at
least zero, otherwise. Thus, A is (2λ/(λ− 1))-robust.

Similar to the additive result for ski-rental, we remark that
we can obtain additive approximation guarantees in the
prophet inequality setting. We remark that we assume noth-
ing about the distributions D1, . . . , Dn apart from their
support being bounded in some interval [0, b].

Theorem 3.8. Let X1, . . . , Xn be non-negative indepen-
dent random variables with maximum value b > 0. There
is an algorithm such that for any ε, δ ∈ (0, 1], draws
Õ(nb

2

ε2 log(1/δ)) samples from each one, and in sample
polynomial time, computes a set of thresholds T1, . . . , Tn
such that OPT− gain(T1, . . . , Tn) ≤ ε .
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