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Abstract

Multi-modal distributions are commonly used to

model clustered data in statistical learning tasks.

In this paper, we consider the Mixed Linear Re-

gression (MLR) problem. We propose an optimal

transport-based framework for MLR problems,

Wasserstein Mixed Linear Regression (WMLR),

which minimizes the Wasserstein distance be-

tween the learned and target mixture regression

models. Through a model-based duality analy-

sis, WMLR reduces the underlying MLR task

to a nonconvex-concave minimax optimization

problem, which can be provably solved to find

a minimax stationary point by the Gradient De-

scent Ascent (GDA) algorithm. In the special

case of mixtures of two linear regression mod-

els, we show that WMLR enjoys global conver-

gence and generalization guarantees. We prove

that WMLR’s sample complexity grows linearly

with the dimension of data. Finally, we discuss the

application of WMLR to the federated learning

task where the training samples are collected by

multiple agents in a network. Unlike the Expec-

tation Maximization algorithm, WMLR directly

extends to the distributed, federated learning set-

ting. We support our theoretical results through

several numerical experiments, which highlight

our framework’s ability to handle the federated

learning setting with mixture models.

1. Introduction

Learning mixture models which describe data collected from

multiple subpopulations has been a basic task in the ma-

chine learning literature. Multi-modal distributions typically

emerge in distributed learning settings where the training

data are gathered from a heterogeneous group of users. For
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example, speech data or genetic data may exhibit a clustered

distribution based on language and ethnicity, respectively.

Such settings require learning methods that can efficiently

learn an underlying multi-modal distribution in both a cen-

tralized and a distributed setting.

In this paper, we specifically focus on Mixed Linear Re-

gression (MLR) problems. In the MLR problem, the output

variable for every user is a randomized linear function of the

feature variables, generated according to one of k unknown

linear regression models. This structured model provides

a simple but expressive framework to analyze multimodal

labeled data. The clustered structure of MLR appears in

several supervised learning applications. For example, users

of a recommendation engine usually have unknown yet clus-

tered sets of preferences which leads to multiple regression

models. In genetic datasets, the underlying cell-type of

collected samples is a latent variable that can result in dif-

ferent linear regression models. Under such scenarios, the

cluster identity is an unknown latent variable that should be

estimated along with the linear regression models.

To address the MLR problem, we propose an optimal

transport-based learning framework, which we refer to as

Wasserstein Mixed Linear Regression (WMLR). We revisit

optimal transport theory to formulate the centralized MLR

task as a minimax optimization problem solved by the

WMLR algorithm. The formulated minimax problem is

the dual problem of minimizing the Wasserstein distance

between the target and learned mixture regression models.

Because the original minimax problem formulated by apply-

ing the standard Kantorovich duality (Villani, 2008) incurs

significant computational and statistical costs, we reduce the

minimax learning task to a tractable problem by a model-

based simplification of the dual maximization variables.

For a general MLR problem, we prove that the proposed

minimax problem can be reduced to a nonconvex-concave

optimization problem for which the gradient descent ascent

(GDA) algorithm is guaranteed to converge to a station-

ary minimax solution. Furthermore, under the well-studied

benchmark of a mixture of two symmetric linear regres-

sion models, we theoretically support our framework by

providing global convergence and generalization guarantees.

In particular, we show that our framework can provably

converge to the global minimax solution and properly gen-
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eralize from the empirical distribution of training samples

to the underlying mixture regression model.

Next, we examine the WMLR algorithm for MLR tasks in

the distributed federated learning setting (McMahan et al.,

2017). In a federated learning task, a set of local users

connected to a central server train a global model over the

samples observed in the network. While the Expectation-

Maximization (EM) algorithm is widely considered as the

state-of-the-art approach for centralized MLR problems,

in the federated learning setting, the maximization step

of every iteration of the EM algorithm requires multiple

gradient computation and communication steps to obtain an

exact solution via an iterative method. As a result, the EM

algorithm cannot be decomposed into an efficient distributed

form.

On the other hand, we show that while the maximization step

in the EM algorithm does not directly reduce to a distributed

form, the gradient steps of WMLR extend to the federated

learning setting. As a result, our theoretical guarantees

in the centralized case also hold in the federated learning

setting. Finally, we present the results of several numerical

experiments which support the flexibility of our proposed

minimax framework in both centralized and decentralized

learning tasks.

Our main contributions are summarized as follows:

1. We propose a minimax framework, Wasserstein Mixed

Linear Regression (WMLR), to solve the MLR prob-

lem using optimal transport theory.

2. We reduce WMLR to a tractable nonconvex-concave

minimax optimization problem, which can be solved

by the GDA algorithm.

3. We show that WMLR enjoys convergence and gener-

alization guarantees in both centralized and federated

learning settings in the symmetric MLR case.

4. We support WMLR’s theoretical guarantees with nu-

merical experiments for the centralized and federated

learning settings.

1.1. Related Work

The MLR model, introduced in the statistics literature by

De Veaux (1989) and later in the machine learning litera-

ture by Jordan & Jacobs (1994) as “hierarchical mixtures of

experts”, provides a simple but expressive framework to ana-

lyze multimodal data. However, despite the simplicity of the

model, learning mixed regression models is computationally

difficult; the maxmium likelihood problem is intractable in

the general case (Yi et al., 2014).

EM-based Algorithms for MLR Kwon et al. (2019)

prove global convergence for balanced mixtures of symmet-

ric two component linear regressions. Several other papers

have extended (Kwon et al., 2019)’s results to unequally

weighted components and K components in the noiseless

setting (See (Kwon & Caramanis, 2020) and references

therein). Furthermore, Kwon & Caramanis (2020) prove

local convergence for k-MLR in the noisy case. However,

the EM algorithm still requires “good” initialization for con-

vergence to the optimal solution (Balakrishnan et al., 2017).

For finding such a good initialization, several methods have

been proposed in the EM literature, including methods based

on PCA (Yi et al., 2014) and method of moments (Chaganty

& Liang, 2013). Without proper initialization, the EM algo-

rithm has been empirically shown to find poor estimations

due to EM’s “sharp” selection of clusters.

Gradient-based Algorithms for MLR The traditional

EM algorithm fully solves a maximization at each step,

resulting in the “sharp” behavior. Several alternative al-

gorithms have been proposed that take a gradient descent

approach. First-order EM, where only one gradient step in

the maximization problem is taken, enjoys a local conver-

gence guarantee (Balakrishnan et al., 2017). Zhong et al.

(2016) show local convergence for a nonconvex objective

function that solves the k-MLR problem. Chen et al. (2014)

provide a convex formulation for the two component case,

but it is unclear how this method generalizes to k > 2.

Federated Learning with Heterogeneous Data Several

approaches have been proposed in the literature to deal with

heterogeneity in FL, including correcting the local updates

(Karimireddy et al., 2020) or using meta-learning techniques

for achieving personalization (Fallah et al., 2020). In partic-

ular, clustering is one of these approaches where the idea is

to group client population into clusters (Sattler et al., 2020;

Ghosh et al., 2020; Mansour et al., 2020; Li et al., 2021).

Most relevant to our work, Mansour et al. (2020) and Ghosh

et al. (2020) propose alternating minimization algorithms,

where at each step the agents find their cluster identity, com-

pute the loss function gradient, and send them back to the

server. Ghosh et al. (2020) further prove convergence guar-

antees for linear models and strongly convex loss functions

under certain initialization assumptions. These frameworks

include a much larger class of problems than MLR, but they

do not enjoy the same global convergence and optimality

guarantees that WMLR has for the MLR case.

Minimax Frameworks for Federated Learning Several

related works explore the applications of minimax frame-

works for improving the fairness and robustness of federated

learning algorithms. Mohri et al. (2019) introduce Agnostic

Federated Learning as a min-max framework that improves

the fairness properties in federated learning tasks. Rei-
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sizadeh et al. (2020) propose a minimax federated learning

framework that is robust to affine distribution shifts. Sim-

ilarly, Deng et al. (2021) develop a distributionally-robust

federated learning algorithm using a minimax formulation.

However, unlike our work the mentioned frameworks do

not address the clustered federated learning problem.

Generative Adversarial Networks (GANs) Similar to

our proposed framework, GANs (Goodfellow et al., 2014)

reduce the distribution learning problem to a minimax opti-

mization task. Optimal transport costs have been similarly

used to formulate GAN problems (Arjovsky et al., 2017;

Sanjabi et al., 2018; Farnia & Tse, 2018; Feizi et al., 2020).

Also, Genevay et al. (2018) formulate a min-max problem

for learning generative models using the optimal transport-

based Sinkhorn loss functions. On the other hand, since stan-

dard GAN formulations perform suboptimally in learning

multimodal distributions (Goodfellow, 2016), Farnia et al.

(2020) propose a similar model-based minimax approach

to successfully learn mixtures of Gaussians. Mena et al.

(2020) introduce the optimal transport-based Sinkhorn EM

framework for learning mixture models. However, while

the mentioned minimax frameworks focus on unsupervised

learning tasks, our proposed approach addresses the super-

vised MLR problem.

1.2. Notation

For two random variables Y and Y ′, Y
d
= Y ′ means that

Y and Y ′ have the same distribution. For a finite set A,

Unif({A}) stands for the uniform distribution over A, and

IA(u) is the indicator function of A, i.e., IA(u) = 1 if

u ∈ A and 0 otherwise. Given two distributions P and Q,

defined over sets ZP and ZQ, respectively, Π(P,Q) denotes

the set of joint distributions over ZP × ZQ such that its

marginal over ZP and ZQ is equal to P and Q, respectively.

The 2-Wasserstein cost between distributions PY and QY
on Y is defined as:

W2(PY , QY )
2 := inf

(Y,Y ′)∼M∈Π(PY ,QY )
EM

[
‖Y − Y ′‖22

]
,

(1)

where Y, Y ′ are constrained to be marginally distributed

as P, Q, respectively. To extend this definition to the su-

pervised learning setting, for joint distributions PX,Y and

QX,Y sharing the same marginal PX we define:

W2(PX,Y , QX,Y ) := EPX

[
W2(PY |X=x, QY |X=x)

]
. (2)

2. Problem Formulation

We consider the mixed linear regression problem, where the

output to each input vector is generated by one of k linear

regression models. Specifically, we observe data points

S := {(xi, yi)}ni=1 where, for every i, xi ∈ X ⊂ R
d,

yi ∈ R, and

yi =
k∑

j=1

1{zi = j}(β∗
j )

⊤xi + ǫi, i = 1, ..., n, (3)

with latent variable zi ∈ {1, 2, ..., k}. Each β∗
j ∈ R

d de-

notes the regression vector for one of the overall k com-

ponents. We assume that the input data {xi}ni=1 are norm-

bounded random vectors with xi drawn i.i.d. from px with

supx∈X ‖x‖ ≤ C, that the noises {ǫi}ni=1 are independent

of the input data and drawn i.i.d. from the normal distribu-

tion pǫ := N (0, σ2) where σ2 is known, and that each zi is

drawn from {1, 2, ..., k} uniformly at random.

The MLR problem is to find the distribution p⋆ that best

fits the data S (according to some metric). We know that

p⋆ lies in the class of distributions P , parameterized by

β[k] := (βj)
k
j=1:

P :=

{
pβ[k]

(X,Y ) : X ∼ px, Z ∼ Unif({1, ..., k}),

P(Y | X = x, Z = j)
d
= N (β⊤

j x, σ
2)

}
. (4)

The Expectation Maximization algorithm (EM) is com-

monly used to tackle this problem. The EM algorithm

provides a widely-used heuristic for computing the maxi-

mum likelihood estimator (MLE) for the regressors (β∗
j )
k
j=1.

However, implementing the EM algorithm in the federated

learning setting can be challenging. We consider finding the

β[k] which minimizes the distance between pβ[k]
and p∗β[k]

with respect to a distribution distance measure, i.e.,

argmin
β[k]

D
(
pβ∗

[k]
, pβ[k]

)
,

where D(·, ·) is a distribution distance metric to be chosen.

In this work, we use the expected 2-Wasserstein cost as our

metric, resulting in the problem

argmin
β[k]

Wc(pβ∗

[k]
, pβ[k]

) (5)

It is worth noting that, here, and similar to well-known EM

analysis (Kwon et al., 2019), we assume σ is known to

simplify the derivations. However, we could extend our

framework to the case that σ is not known by parametrizing

P by both β[k] and σ and minimzing over both of them in

(5). Furthermore, as we will see in Section 4, one advantage

of our proposed method works without the knowledge of σ
for the symmetric case with k = 2.

In the next section, we use the properties of 2-Wasserstein

distance to build a minimax framework for mixed linear

regression and then show how it can be used in the federated

learning setting.
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3. A Wasserstein Minimax Approach to MLR

To formulate a minimax learning problem, we replace the

Wasserstein cost in (5) with its dual representation according

to the Kantorovich duality (Villani, 2008). This reformula-

tion results in the following minimax optimization problem:

argmin
β[k]

max
ψ

Epβ∗

[k]
[ψ(x, y)]− Epβ[k]

[ψc(x, y)], (6)

where the optimization variable ψ : Rd × R → R is an

unconstrained function, and the c-transform ψc(x, y) is de-

fined as

ψc(x, y) = sup
y′
ψ(x, y′)− 1

2
‖y − y′‖22. (7)

Note that the two distributions pβ[k]
and pβ∗

[k]
have the same

marginal px and only differ in the conditional distribution

py|x. As a result, the optimal transport task requires to

only move mass to match the conditional distribution. This

observation results in the cost function used to define the

c-transform operation in (7).

However, the above optimization problem for an uncon-

strained ψ is known to be statistically and computationally

complex (Arora et al., 2017). In this section, our goal is

to show that one can solve (6) over the following space of

functions for ψ parameterized by 2k vectors γ[2k] ∈ F , with

F =

{
ψγ[2k]

:ψγ[2k]
(x, y) =

log

(∑k
i=1 exp

(
−1
2σ2 (y − γ⊤2i−1x)

2
)

∑k
i=1 exp

(
−1
2σ2 (y − γ⊤2ix)

2
)
)}

.

This provides a tractable minimax optimization problem

whose solution is provably close to that of (6). To find the

above parameterized space for ψ, we apply Brenier’s theo-

rem connecting the optimal ψ to a transport map between

two MLR models.

Lemma 1 (Brenier’s Theorem, (Villani, 2008)). Assume

X ∼ px, and consider random variables Y and Y ′ such

that (X,Y ) ∼ pβ∗

[k]
and (X,Y ′) ∼ pβ[k]

provide two MLR

models according to β∗
[k] and β[k], respectively. Then, the

optimal ψ in (6) satisfies the following transportation prop-

erty

(X,Y − ψy(X,Y ))
d
= (X,Y ′), (8)

where ψy(x, y) :=
∂
∂y
ψ(x, y).

The above lemma shows that the optimal transport map’s

derivative will transport samples between the two domains.

Therefore, we need to characterize the potential optimal

transport maps and consider their integral for constraining

ψ. To do this, we find an approximation of this optimal

mapping in two steps: First, we use a randomized tech-

nique, adapted from (Farnia et al., 2020), to come up with a

mapping Ψ that maps (X,Y, Z) to (X,Y ′) where Z is the

regression index for (X,Y ). Then, we obtain Ψ̃ by taking

the expectation of Ψ with respect to Z to drop the depen-

dence of Z. We bound the error of this approximation step

in Theorem 1.

For the first step, consider the following randomized trans-

portation map:

Ψ(X,Y, Z) := Y +

k∑

i=1

1{Z = i}(βi − β∗
i )

⊤X, (9)

where Z denotes the regression model index in the first

mixture (X,Y ). Note that the above randomized map will

transport samples between the two MLR distributions, i.e.,

(
X,Y +

k∑

i=1

1{Z = i}(βi − β∗
i )

⊤X
) d
=
(
X,Y ′).

However, the above mapping is a randomized function of

x, y since Z remains random after observing the outcome

for x, y. To obtain a deterministic map Ψ̃ : Rd × R →
R from this randomized map, we consider its conditional

expectation given (X,Y ):

Ψ̃(x, y) := E
[
Ψ(X,Y, Z)|X = x, Y = y

]

= y +
k∑

i=1

P(Z = i|X = x, Y = y)(βi − β∗
i )

⊤x.

(10)

In the above equation, by Bayes’ rule we have

P(Z = i|X = x, Y = y)

=
exp( −1

2σ2 (y − (β∗
i )

⊤x)2)
∑k
j=1 exp(

−1
2σ2 (y − (β∗

j )
⊤x)2)

=
exp( −1

2σ2 y(β
∗
i )

⊤x) exp( −1
2σ2 ((β

∗
i )

⊤x)2)
∑k
j=1 exp(

−1
2σ2 y(β∗

j )
⊤x) exp( −1

2σ2 ((β∗
j )

⊤x)2)
.

Note that if Ψ̃ was the optimal transport with ∂
∂y
ψ̃(x, y) =

Ψ̃(x, y), then

W2

(
pβ[k]

, pβ∗

[k]

)
= Epβ∗

[k]
[ψ̃(x, y)]− Epβ[k]

[ψ̃c(x, y)]

With Ψ̃ as an approximate solution, we next state the fol-

lowing result which bounds the duality gap of Ψ̃.

Theorem 1. Let ψ̃ : Rd × R → R be a convex function

such that for every x ∈ X , ∂
∂y
ψ̃(x, Y ) shares the same

distribution with Ψ̃(x, Y ) in (10)1. Assume that for every

x ∈ X and every βi we have |(β∗
i )

⊤x| ≤ C ′. For an ob-

servation of input and output (X,Y ) with regression index

1The existence of ψ̃ is guaranteed based on Brenier’s theorem.
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Z, we denote the optimal Bayes classifier of the cluster of

(X,Y ) as Z∗(X,Y ). Let Perr := P(Z 6= Z∗(X,Y )) be

the probability error of the Bayes classifier. Then, we have:

0 ≤W2

(
pβ[k]

, pβ∗

[k]

)
− Epβ∗

[k]
[ψ̃(x, y)] + Epβ[k]

[ψ̃c(x, y)]

≤ 16(C ′2 + 2σ2)
√
Perr + 2(C ′2 + σ2) 4

√
Perr.

Proof. See Appendix A.

Finally, we estimate ψ̃ with a function from F that does not

depend on the optimal β⋆[k].

Proposition 1. Assume that
∑k
i=1 |P(βj)kj=1

(Z = i|X =

x, Y = y) − P(β∗

j
)k
j=1

(Z = i|X = x, Y = y)| ≤ δ and

maxi |β⊤
i x|,maxi |(β∗)⊤i x| ≤ C ′ for every x ∈ X and

feasible βi. Then, there exists (γi)
2k
i=1 such that the function

ψγ[2k]
(x, y) = log

(∑k
i=1 exp

(
−1
2σ2 (y − γ⊤2i−1x)

2
)

∑k
i=1 exp

(
−1
2σ2 (y − γ⊤2ix)

2
)
)
,

(11)

approximates ψ̃, with error bounded by C ′δ.

Proof. See Appendix B.

Combining (6) and Proposition 1, we formulate the follow-

ing minimax problem which approximates (6):

min
β[k]

max
γ[2k]

Epβ∗

[k]
[ψγ[2k]

(x, y)]− Epβ[k]
[ψcγ[2k]

(x, y)].

(12)

By Proposition 1 and Theorem 1, the approximation error

is bounded when the clusters can be identified with high

precision by the optimal Bayes classifier. This condition

can be thought of as a separability condition.

3.1. Reducing c-transform to Norm Regularization

In order to simplify the c-transform operation, we introduce

a regularization penalty term to substitute the c-transform

term in (14). To do this, we bound the expected value of

the c-transform ψc(x, y) (7) by the expectation of ψ(x, y)
and a regularization term. This bound, given in the follow-

ing proposition, allows us to formulate a strongly-concave

maximization problem.

Proposition 2. Consider the discriminator function

ψγ[2k]
(x, y) in (17) and recall that ‖x‖ ≤ C. Assume that

2kC2 maxi ‖γi‖2 ≤ η < 1. Then, for any set of vectors

γ̃[2k] ∈ R
2k×d, we have

E

[
ψcγ[2k]

(x, y)
]
≤ E

[
ψγ[2k]

(x, y)
]
+
kC2

E
[
(1 + C|y|)2

]

1− η

×
(

k∑

i=1

‖γi − γ̃i‖2 + ‖γi+k − γ̃i‖2
)
.

(13)

Algorithm 1 WMLR

Input: (xi, yi)i∈[n], β
(0)
[k] , γ

(0)
[2k], step sizes αmin, αmax

for t = 0 to T − 1 do

for i = 1 to k do

β
(t+1)
i = β

(t)
i − αmin∇βi

L̂(β(t)
[k] , γ

(t)
[2k])

γ
(t+1)
i = γ

(t)
i + αmax∇γiL̂(β(t)

[k] , γ
(t)
[2k])

γ
(t+1)
i+k = γ

(t)
i+k + αmax∇γi+k

L̂(β(t)
[k] , γ

(t)
[2k])

end for

end for

Proof. See Appendix C.

3.2. WMLR Algorithm

It can be seen that (12) represents a nonconvex-nonconcave

optimization problem. As shown in Proposition 2, we could

bound the c-transform by adding a regularization, and, as a

result, we obtain the following nonconvex strongly-concave

minimax problem

min
β[k]

max
γ[2k]

L(β[k], γ[2k]) :=

Epβ∗

[k]
[ψγ[2k]

(x, y)]− Epβ[k]
[ψγ[2k]

(x, y)]

− λ

(
k∑

i=1

‖γi − γ̃i‖2 + ‖γi+k − γ̃i‖2
)
, (14)

where γ̃ is a properly chosen reference vector.

Since we do not have access to pβ∗

[k]
in practice, we re-

place Epβ∗

[k]
[ψγ[2k]

(x, y)] above with Ep̂[ψγ[2k]
(x, y)] where

p̂ is the empirical problem over the observed dataset S =
{(x1, y1), . . . , (xn, yn)}. We denote the resulting function

by L̂(β[k], γ[2k]).
WMLR, given in Algorithm 1, uses GDA to solve (14).

Later, we show that solving (14) can recover the underlying

β[k] that solves the original unregularized (12).

Federated Learning Since we use the gradient-based

GDA algorithm to solve the minimax optimization prob-

lem, WMLR is particularly amenable to distributed com-

putation. Here, we consider a federated learning setting

with M agents, where each agent m has data samples

(xi,m, yi,m)m∈[M ], i∈[N ]. This setting can model both the

following scenarios: 1) each sample belongs to any of the

k components with equal probability, as in the centralized

case; or 2) all the samples for each individual agent are

associated with the same cluster. The latter scenario arises

when an unknown latent variable governs the regression

model that best describes the relationship between y and

x. We note that our proposed algorithm can apply to both

these cases. Every agent only has access to its own data and
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Algorithm 2 F-WMLR

Input: (xi,m, yi,m)m∈[M ], i∈[N ], β
(0)
[k] , γ

(0)
[2k], step sizes

αmin, αmax.

for t = 0 to T − 1 do

Broadcast β
(0)
[k] , γ

(0)
[2k] to all agents

for each agent m = 1 to M do

for i = 1 to k do

β
(t+1)
i,m = β

(t)
i − αmin∇βi

L̂m(β
(t)
[k] , γ

(t)
[2k])

γ
(t+1)
i,m = γ

(t)
i + αmax∇γiL̂m(β

(t)
[k] , γ

(t)
[2k])

γ
(t+1)
i+k,m = γ

(t)
i+k + αmax∇γi+k

L̂m(β
(t)
[k] , γ

(t)
[2k])

end for

Send β
(t+1)
[k],m , γ

(t+1)
[2k],m to server

end for

Collect β
(t+1)
[k],m , γ

(t+1)
[2k],m from all agents m ∈ [M ]

for i = 1 to k do

β
(t)
i = 1

M

∑M
m=1 β

(t+1)
i,m

γ
(t)
i = 1

M

∑M
m=1 γ

(t+1)
i,m

γ
(t)
i+k = 1

M

∑M
m=1 γ

(t+1)
i+k,m

end for

end for

therefore can only estimate its own minimax objective L̂m.

Therefore, the total minimax objective in the network will

be

L̂(β(t)
[k] , γ

(t)
[2k]) =

1

M

M∑

m=1

L̂m(β
(t)
[k] , γ

(t)
[2k]), (15)

where L̂m computes Ep̂ using only the data on agent m.

Our Federated WMLR (F-WMLR) algorithm adds a com-

munication step after each GDA iteration, as described in

Algorithm 2. This algorithm could be extended to include

multiple GDA steps or partial agent participation at each

round. We show that F-WMLR enjoys the same theoretical

guarantees as WMLR in Section 4 below.

3.3. Generalization to Non-linear Models

The WMLR algorithm can also be used for the setting where

the output is a mixture of linear regressions of a nonlinear

transformation of the input vector that is common to all

components. The corresponding ψ function will be

ψφ,γ[2k]
(x, y) = log

(∑k
i=1 exp

(
−1
2σ2 (y − γ⊤2i−1φ(x))

2
)

∑k
i=1 exp

(
−1
2σ2 (y − γ⊤2iφ(x))

2
)
)
.

(16)

Our theoretical results, discussed in the subsequent section,

do not extend to the nonlinear case in general. However,

WMLR will still convergence to a minimax stationary point

when ψ has the form (16).

4. Convergence Guarantees for WMLR

In this section, we focus on the case k = 2, and further

explore the minimax formulation (14). In particular, to

simplify the derivations, we focus on the symmetric case, i.e.,

β∗
2 = −β∗

1 , which has been studied in the in EM literature

as well (see (Kwon et al., 2019) and references therein).The

non-symmetric case can be reduced to the symmetric case,

by first estimating β̄ as the mean of β∗
[2], and then replacing

each data point (xi, yi) by (xi, yi − β̄⊤xi).

In the symmetric setting, we have that γ3 = −γ1 and γ4 =
−γ2 in ψγ[4] and β2 = −β1 in pβ[2]

. We next observe that,

in this case, ψγ[4] can be decomposed into the following two

terms

ψγ[4](x, y)

= log

(
exp
(

−1
2σ2 (y − γ⊤1 x)

2
)
+ exp

(
−1
2σ2 (y + γ⊤1 x)

2
)

exp
(

−1
2σ2 (y − γ⊤2 x)

2
)
+ exp

(
−1
2σ2 (y + γ⊤2 x)

2
)
)

= x⊤Ax+ log

(
exp(

yγ⊤1 x

2σ2
) + exp(

−yγ⊤1 x
2σ2

)

)

− log

(
exp(

yγ⊤2 x

2σ2
) + exp(

−yγ⊤2 x
2σ2

)

)
,

where A :=
γ1γ

⊤

1 −γ2γ
⊤

2

2σ2 .

Since the marginal distribution of pβ[k]
over X is con-

stant (and equal to px), we can ignore the quadratic term

x⊤Ax as it will be canceled out in Epβ∗

[2]
[ψγ[4](x, y)] −

Epβ[2]
[ψcγ[4](x, y)]. Furthermore, we can absorb 2σ2 into γ1

and γ2. Thus, we can replace ψγ[4] in (14) with k = 2 by

ψγ1,γ2(x, y) := log
(
exp(yγ⊤1 x) + exp(−yγ⊤1 x)

)

− log
(
exp(yγ⊤2 x) + exp(−yγ⊤2 x)

)
. (17)

As a result, and in this section, we work with ψγ1,γ2(x, y)
instead of ψγ[4] in (14). Also, we simplify L(β[2], γ[4]) and

L̂(β[2], γ[4]) by L(β, γ1, γ2) and L̂(β, γ1, γ2), respectively.

Our goal is to solve the minimax problem (14) to a minimax

stationary point, which we define below.

Definition 4.1. Consider a function f(x, y), where f(x, ·)
is strongly concave for all x. The point x⋆ is an ǫ minimax

stationary point of

min
x

max
y

f(x, y) (18)

if ‖∇xF (x
⋆)‖ ≤ ǫ, and F (x) = maxy f(x, y).

To discuss the convergence to stationary points in our setting,

we define

L(β) := max
γ[2]

L(β, γ1, γ2)

L̂(β) := max
γ[2]

L̂(β, γ1, γ2).
(19)
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The outline of our theoretical results is as follows: We first

show that the added regularization term forms a strongly

concave inner maximization problem, and using that, in

Theorem 2, we show WMLR finds the minimax stationary

point solution of L̂. Next, in Theorem 3, we show that under

certain assumptions, this solution is optimal β∗. Finally, we

provide bounds on the generalization error as well.

4.1. Local and Global Convergence of WMLR

In this subsection, we show that the GDA algorithm is guar-

anteed to converge to the optimal solution to (14).

Theorem 2. Consider the minimax problem (14). Assume

that C2
Ep̂[y

2] ≤ η < λ
2 and C2 < λ

2 . Then the WMLR

algorithm (Algorithm 1) with step sizes αmax = 1
L

and

αmin = 1
κ2L

for L = λ+4η(1+η/λ+‖γ̃‖) and κ = L
λ−2η

will find an ǫ-approximate stationary point in the following

number of iterations:

O
(
κ2L∆+ κL2(2η/λ)2

ǫ2

)
,

where ∆ := L̂(β(0))−minβ L̂(β).

Proof. See Appendix D.

Remark 1. Consider the minimax problem (14) where x
is replaced by non-linear φ(·;w), a neural network param-

eterized by weights w. The weights w appear in the mini-

mization problem; hence, the problem remains nonconvex

strongly-concave and the guarantee in Theorem 2 also ap-

plies to the non-linear case, i.e., WMLR still results in an

approximate stationary point.

In Theorem 3 below, we show global convergence under

correlated projections along β∗ and γ̃.

Theorem 3. Consider two symmetric components for fea-

ture variables x. Suppose that the variables γ̃⊤x and β∗⊤x
are correlated enough such that

max
{
P
(
γ̃⊤xx⊤β∗ ≤ 0

)
, P
(
γ̃⊤xx⊤β∗ ≥ 0

)}
= 1.

Then, any stationary minimax solution β̂ to the minimiax

problem (14) which satisfies the above condition will further

provide a global minimax solution to (14).

Proof. See Appendix E.

The above theorem shows that if γ̃ and β∗ are sufficiently

aligned such that the random variables γ̃⊤x and β∗⊤x are

correlated enough, then a stationary minimax point for the

WMLR’s minimax problem further leads to a global solution

to the WMLR problem.

Note that the condition in the theorem statement automat-

ically holds for a 1-dimensional scalar x. In general, the

theorem condition suggests that we need to chose the ref-

erence vector γ̃ almost aligned to β∗. One way to do so

is as follows: First, note that β∗
norm := β∗/‖β∗‖ is the

top eigenvector of M := Ex[(x
⊤β∗)2xx⊤]. Let us as-

sume the top eigenvector of M is unique, i.e., β∗
normis the

only eigenvector corresponding to the maximum eigen-

value of M. In that case, it can be shown that for suffi-

ciently large n, β∗
norm is approximately the top eigenvector

of Mn := 1
n

∑n
i=1 y

2
i xix

⊤
i . To see this, we need to show

the solution to argmaxv:‖v‖=1 v
⊤Mnv is close to β∗

norm. To

do so, first note that by classic concentration bounds we

could show that, for sufficiently large n, v⊤Mnv is close

to E[‖v⊤(xy)‖2]. That said, maximizing E[‖v⊤(xy)‖2]
over v is equivalent to maximizing E[‖v⊤(xx⊤β∗)‖2] =
v⊤Ex[(x

⊤β∗)2xx⊤]v = v⊤Mv over v, and we assumed

β∗
norm is the unique solution to the latter problem. We further

evaluate this choice of refrence vector in the our numerical

experiments.

Remark 2. (Federated Learning) F-WMLR (Algorithm 2)

will produce the same sequence of iterates as the central-

ized WMLR algorithm by linearity of the gradient operator.

Therefore, the above convergence results for WMLR will

also apply to F-WMLR.

4.2. Generalization of WMLR

Here we establish generalization error bounds for the con-

vergence of the value and gradient of the empirical objective

to those of the underlying distribution.

Theorem 4. Recall the definition of L(β) and L̂(β) (19).

Consider the minimax mixed regression setting with norm-

bounded random vector X, ‖X‖2 ≤ C and noise vector

ǫ ∼ N (0, σ2). Assume that max{C, σ} ≤ 1. Then, we

have the following generalization bounds hold with proba-

bility at least 1− δ for every ‖β‖2 ≤ η:

|L(β)− L̂(β)| ≤ O
(
√
dη4 log(η/λδ)

n

)
,

‖∇L(β)−∇L̂(β)‖2 ≤ O
(
√
dη4 log(η/λδ)

(1− η/λ)2n

)
.

5. Numerical Experiments

We consider k = 2 and focus on the symmetric case with

β∗
2 = −β∗

1 for the numerical experiments. We implement2

Algorithms 1 and 2 in Section 3 for both the centralized

and federated learning settings. In both settings, we run

experiments for a high SNR (10) and a low SNR (1) regime.

We include two additional SNRs in the federated experi-

ments. We set d = 128, draw xi from N (0, I), set noise

variance σ2 = 1, and draw β⋆ uniformly at random from the

spherical shell SSNR = {z | ‖z‖ = SNR}. We search over

2https://github.com/tjdiamandis/WMLR.
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regularization parameter λ, and step sizes are αmax = 1/2λ
and αmin = αmax/10 (motivated by Theorem 2). Note that

the algorithms operate without the knowledge of the noise

variance or SNR.

Evaluation Metrics We evaluate methods in terms of the

relative error
‖β̂−β∗‖
‖β⋆‖ , where β̂ is the last iterate of the ap-

plied method, and the negative log likelihood (NLL) for the

symmetric 2-component MLR problem (4). Note that NLL

can be computed without knowledge of the true underlying

regressor β⋆ and noise variance σ2.

Baselines We compare WMLR against EM and Gradient

EM (GEM), which is similar to EM, but instead of solving

the maximization problem at each iteration, it takes one

gradient ascent step. The noise variance for EM and GEM

is initialized as σ2(0) = 1. See Appendix G for additional

details and discussion of the EM and GEM algorithms for

two-component MLR. We do not compare these algorithms

to GAN based methods in this work since GAN-based meth-

ods usually take thousands of iterations to converge, as

shown by Farnia et al. (2020) for Gaussian mixture models.

5.1. Centralized Setting

For all experiments, the initial iterates β(0), γ
(0)
1 and γ

(0)
2

are all chosen i.i.d. from N (0, 1
d
I). Note that these ini-

tializations will have approximately unit norm (Vershynin,

2018). We use the eigenvector of E
[
y2xxT

]
associated with

the largest eigenvalue as the reference vector γ̃; however, the

algorithm is not sensitive to this parameter. WMLR simply

needs a reference vector that has non-negligible correlation

with β⋆ to avoid vanishing gradients (also see Theorem 3).

We compare the solution reached at iteration 100 of each

algorithm in Table 1. We evaluate each algorithm over

several hyperparameter choices, and we choose the run with

the smallest final negative log likelihood. Both WMLR and

EM converge quickly (under 100 iterations) while GEM

often does not converge by that number of iterations, as

seen in the higher SNR case. In the low SNR case, all

three algorithms have similar performance. In the high SNR

case, WMLR outperforms EM and GEM both in terms of

negative log likelihood and the distance to the true parameter.

However, one drawback of WMLR and GEM compared to

EM is that WMLR and GEM require hyperparameter tuning.

For additional discussion, implementation details, and the

hyperparameter selection, see Appendix H.

5.2. Federated Setting

As described in Algorithm 2, we extend WMLR to F-

WMLR by broadcasting the model to all agents from the

central node at each iteration, having each agent take one

gradient decent ascent step using his or her own data, and

Table 1. Comparison of algorithms at iteration T = 100 (β(T ))
in terms of negative log likelihood (NLL) and relative ℓ2 error,

‖β(T ) − β⋆‖/‖β⋆‖.

Centralized Experiments, n = 100, 000
SNR Method NLL Relative ℓ2 error

EM 2.115 3.79× 10−2

10 GEM 3.765 1.03
WMLR 2.059 5.31× 10

−3

EM 1.657 8.62× 10−2

1 GEM 1.656 5.20× 10
−2

WMLR 1.656 7.78× 10−2

Centralized Experiments, n = 10, 000

EM 2.715 1.21× 10−1

10 GEM 3.758 9.98× 10−1

WMLR 2.065 2.08× 10
−2

EM 1.671 2.95× 10−1

1 GEM 1.657 1.80× 10
−1

WMLR 1.668 2.75× 10−1

then averaging the resulting new iterates at the central node.

Recall that the EM algorithm operates via two repeated

steps: an expectation step and a full maximization step.

However, in the federated setting, we cannot expect the av-

erage of the maximizers to be the maximizer of the average.

Here, we implement EM in the following way: For each

maximization, we perform several communication rounds

to solve the maximization problem at each EM step via

gradient ascent. We stop this inner maximization when the

norm of the gradient is under the threshold ν = 0.01 or after

50 iterations.

We simulate M = 10, 000 agents with 10 data points each.

We assume that each agent m ∈ {1, ...,M} has all her

samples drawn from only one of of the two regressors, i.e.,

agent m’s samples (ym,i, xm,i)
n
i=1 satisfy

ym,i = zm(β∗)⊤xm,i + ǫm,i, i = 1, ..., n, (20)

where zm is drawn from Unif ({−1, 1}). Again, we draw

β(0), γ
(0)
1 , γ

(0)
2 from N (0, 1

d
I). The final solutions and the

convergence behaviors of these algorithms are compared

in Table 2 and Figure 1. EM does not converge in 10,000

iterations for the medium and high SNR cases. In our exper-

iments, GEM and WMLR both converged to a comparable

level of relative error (Table 2). Theoretically, both of these

methods should converge to the optimal β⋆ in the population

case, so the observed error is mainly due to their general-

ization performance. Although WMLR takes longer per

iteration (about 3min for WMLR vs 1min for GEM in the

federated case), WMLR is overall much faster due to the

small number of iterations. WMLR consistently converges

in 60 to 100 iterations regardless of SNR, whereas GEM is
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Figure 1. Convergence of β̂ to β⋆ in the federated setting with

10,000 nodes with 10 samples each. EM is removed for tests which

it did not converge to a reasonable value within 5,000 iterations.

fast in the low SNR cases but is up to 175x slower in the

highest SNR case.

In addition, there is a significant communication cost in

the federated setting. Therefore, WMLR’s smaller itera-

tion number is particularly important in this setting. While

WMLR’s implementation is more complex, WMLR enjoys

higher robustness to the choice of hyperparameters than

GEM. The same hyperparamaters work for all tested SNRs

(Figure 2 and Table 3 in the appendix), and iteration count is

comparable across all SNRs. Since communication rounds

are very costly in the federated learning setting, these results

suggest that WMLR may be better equipped than GEM or

EM to handle distributed multimodal learning tasks. Addi-

tional details are provided in Appendix H.

Table 2. Comparison of algorithms at the final iterate in terms of

relative ℓ2 error, ‖β(T ) − β⋆‖/‖β⋆‖. The iterations required for

convergence is also compared. Note that EM did not convergence

(d.n.c.) for SNR = 10 and SNR = 5 cases within 5,000 iterations.

Federated Experiments, Final Iterate

SNR Method Iterations Req. Relative ℓ2 error

EM d.n.c d.n.c

20 GEM 12,948 1.93× 10
−3

WMLR 74 2.49× 10−3

EM d.n.c d.n.c

10 GEM 2, 007 3.92× 10
−3

WMLR 98 4.93× 10−3

EM d.n.c d.n.c

5 GEM 295 8.32× 10
−3

WMLR 81 9.95× 10−3

EM 544 5.60× 10−2

1 GEM 15 5.60× 10
−2

WMLR 66 7.25× 10−2
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Appendix

A. Proof of Theorem 1

In order to prove this theorem, note that Theorem 1 in (Farnia et al., 2020) shows that for a fixed x we have

0 ≤ W 2
2 (Pβ[k]

(y|x), Pβ∗

[k]
(y|x))− Epβ∗

[k]
[ψ̃(x, y)]− Epβ[k]

[ψ̃c(x, y)]

≤
(
8
√

E[y4|x] + 8E[y2|x]
)√

Perr(x) + 2E[y2|x] 4
√
Perr(x).

Also, note that the multiplicative matrix Γi’s in (Farnia et al., 2020)’s Theorem 1 will be equal to the identity matrix based

on the theorem’s assumptions. Since we assume |(β∗
i )

⊤x| ≤ C ′ holds with probability 1, we have

E[y2|x] ≤ C ′2 + σ2, E[y4|x] ≤ C ′4 + 3σ4 + 6C ′2σ2.

Therefore, we obtain the following inequalities

0 ≤ W 2
2 (Pβ(y|x), Pβ∗(y|x))−−Epβ∗

[k]
[ψ̃(x, y)]− Epβ[k]

[ψ̃c(x, y)]

≤
(
8
√
C ′4 + 3σ4 + 6C ′2σ2 + 8(C ′2 + σ2)

)√
Perr(x) + 2(C ′2 + σ2) 4

√
Perr(x)

≤ 16(C ′2 + 2σ2)
√
Perr(x) + 2(C ′2 + σ2) 4

√
Perr(x).

Furthermore, note that
√
p and 4

√
p are both concave functions, and hance an application of Jensen’s inequality implies the

following result since Perr = E[Perr(x)]:

0 ≤ EPX

[
Wc(Pβ(y|x), Pβ∗(y|x))

]
− Epβ∗

[k]
[ψ̃(x, y)]− Epβ[k]

[ψ̃c(x, y)]

≤ 16(C ′2 + 2σ2)
√
Perr + 2(C ′2 + σ2) 4

√
Perr.

Therefore, the proof is complete.

B. Proof of Proposition 1

Consider the function Ψ̃ and note that it can be written as follows:

Ψ̃(x, y) = y +

k∑

i=1

P(Z = i|x = x, Y = y)(β∗
i − βi)

⊤x (21)

= y +

k∑

i=1

P(Z = i|x = x, Y = y)β∗
i
⊤x−

k∑

i=1

P(Z = i|x = x, Y = y)β⊤
i x. (22)

Here, we define

Φ(βi)ki=1
(x, y) := log

( k∑

i=1

exp(β⊤
i xy)

)
. (23)

Then, we have

∂Φ(β∗

i
)k
i=1

∂y
(x, y) :=

k∑

i=1

Pr(βi)ki=1
(Z = i|x = x, Y = y)β∗

i
⊤x. (24)

Therefore,

Ψ̃ = y +
∂Φ(β∗

i
)k
i=1

∂y
(x, y)−

∂Φ(βi)ki=1

∂y
(x, y)

+

k∑

i=1

[
Pr(βi)ki=1

(Z = i|x = x, Y = y)− Pr(β∗

i
)k
i=1

(Z = i|x = x, Y = y)

]
β⊤
i x. (25)
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Therefore, under the proposition’s assumptions

∣∣ Ψ̃− y −
∂
{
Φ(β∗

i
)k
i=1

− Φ(βi)ki=1

}

∂y
(x, y)

∣∣≤ C ′δ. (26)

Note that according to the definitions we have

Φ(β∗

i
)k
i=1

(x, y)− Φ(βi)ki=1
(x, y) = log

( ∑k
i=1 exp(β

⊤
i xy)∑k

i=1 exp(β
∗
i
⊤xy)

)
. (27)

The above two equations complete the proposition’s proof.

C. Proof of Proposition 2

Note that due to the tower property of conditional expectation we have:

E

[
ψcγ[2k]

(x, y)
]

(a)
=E

[
E[ψcγ[2k]

(x, y)|x]
]

(b)

≤E

[
ψγ[2k]

(x, y) + E

[
3k2‖x‖22E[y2|x]

1− η

k∑

j=1

[
‖γTj x− γ̃Tj x‖22 + ‖γTj+kx− γ̃Tj x‖22 + |γj+k − γj |2‖x‖42

]
|x
]]

(c)

≤E
[
ψγ[2k]

(x, y)
]
+ E

[
E

[
3k2‖x‖42E[y2|x]

1− η

k∑

j=1

[
‖γj − γ̃j‖22 + ‖γj+k − γ̃j‖22 + ‖γj+k − γj‖2‖x‖22

]
|x
]]

(d)

≤E
[
ψγ[2k]

(x, y)
]
+ E

[
3k2C4(σ2 + η2)

1− η

k∑

j=1

[
‖γj − γ̃j‖22 + ‖γj+k − γ̃j‖22 + C2‖γj+k − γj‖22

]]

(e)

≤E
[
ψγ[2k]

(x, y)
]
+

6k2C4(1 + C2)2

1− η

k∑

j=1

[
‖γj − γ̃j‖22 + ‖γj+k − γ̃j‖22

]
.

In the above, (a) follows from the tower property of conditional expectation. (b) is a consequence of (Farnia et al., 2020),

Proposition 2 for reference vectors γ̃Tj x. (c) comes from the application of the Cauchy–Schwarz inequality. (d) uses the

bounded norm of x, and (e) follows from the assumption η < 1 and the application of Young’s inequality implying that

‖γj+k − γj‖22 ≤ 2
(
‖γj − γ̃j‖22 + ‖γj+k − γ̃j‖22

)
. (28)

Therefore, the proof is complete.

D. Proof of Theorem 2

This theorem follows from the convergence results of Theorem 4.4 in Lin et al. (Lin et al., 2020), restated in Lemma 2

below.

Lemma 2. (Theorem 4.4 in (Lin et al., 2020)) Consider a L-smooth function f(β, γ) where f(β, ·) is µ-strongly concave

with γ ∈ Γ, a convex set with diameter D. Define condition number κ = L/µ,

Φ(·) = max
γ∈Γ

f(·, γ), (29)

and ∆ = Φ(β(0))−minβ Φ(β). Then GDA returns an ǫ-stationary point in O
(
κ2L∆+κL2D2

ǫ2

)
iterations when step sizes

are chosen to be ηβ = Θ(1/κ2L) and ηγ = Θ(1/L).

First consider the inner maximization problem. ψ(x, y) is the difference of two log-sum-exp terms. Since log-sum-exp has a

Hessian with maximum eigenvalue bounded by 1, the norm of the Hessian of the non-concave terms (with respect to γi) are



A Wasserstein Minimax Framework for Mixed Linear Regression

bounded by E
[
‖yx‖2

]
≤ η. Thus, the inner maximization is λ− 2η strongly concave. Furthermore, the inner-maximization

is λ+ 4η smooth with respect to the vector of maximization variables.

The gradient of the objective with respect to β is 2(‖γ1‖ + ‖γ2‖)‖yx‖2-Lipschitz. Note that the optimal γi’s will be no

further than η/λ away from the reference vector γ̃. As a result, the optimal γi’s satisfy

‖γi‖ ≤ ‖γi − γ̃‖+ ‖γ̃‖ ≤ η

λ
+ ‖γ̃‖. (30)

Thus, the objective is 4η(η/λ+ ‖γ̃‖) smooth with respect to β. Applying Theorem 4.4 in (Lin et al., 2020) completes the

proof.

E. Proof of Theorem 3

In order to prove Theorem 3, note that at a stationary minimax point (β̂, γ̂1, γ̂2) we will have:

∇βE
[
log
(exp(yγ̂T1 x) + exp(−yγ̂T1 x)
exp(yγ̂T2 x) + exp(−yγ̂T1 x)

)]
= 0.

Claim: Under the theorem’s assumptions, the above equation implies that γ̂1 = γ̂2 .

To show this claim, note that

∇βE
[
log
(exp(yγ̂T1 x) + exp(−yγ̂T1 x)
exp(yγ̂T2 x) + exp(−yγ̂T1 x)

)]
= E

[
tanh (yγ̂T1 x)xx

T
]
γ̂1 − E

[
tanh (yγ̂T2 x)xx

T
]
γ̂2.

As a result, the optimality condition implies that

E
[
tanh(yγ̂T1 x)xx

T
]
γ̂1 = E

[
tanh(yγ̂T2 x)xx

T
]
γ̂2. (31)

In addition, the following will be the partial derivative of the above expression with respect to γ:

∂

∂γ
E
[
tanh(yγTx)xxT γ

]
= E

[
h(yγTx)xxT

]
, (32)

where we define h(z) := tanh(z) + z tanh′(z) which is an odd increasing function. Note that due to the theorem’s

assumption for the optimal solution we have γTxxTβ > 0 (or the reverse inequality) to always hold. Therefore, without

loss of generality we can assume E[y|x]γTx > 0 holds with probability 1 over px. We claim that this result implies that

E
[
h(yγTx)|x

]
> 0. (33)

The above equality holds because h is an odd increasing function, and E[y|x]γTx = 0 results in the following:

E[h(yγTx)|x] = 0.

As a result, assuming E[y|x]γTx > 0 the following inequality holds with probability 1 over px, because E[h(Z)] is

increasing in the mean of Z for a normally-distributed Z with a fixed variance:

E[h(yγTx)|x] ≥ 0.

Applying the tower property of conditional expectation completes the claim’s proof:

∂

∂γ
E
[
tanh(yγTx)xxT γ

]
= E

[
h(yγTx)xxT

]
,

= E
[
E[h(yγTx)xxT |x]

]

= E
[
E[h(yγTx)|x]xxT

]

≻ 0.
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Therefore, the claim holds since we showed for the feasible γ’s E
[
tanh(yγTx)xxT γ

]
will provide an invertible mapping

for γ.

Showing that γ̂1 = γ̂2, we further claim that γ̂1 = γ̂2 = γ̃ since otherwise the maximization objective will be −‖γ̂1− γ̃‖2−
‖γ̂2 − γ̃‖2 which is not optimal given that γ̂1 = γ̂2 = γ̃ achieves a larger value of 0. Consequently, the optimality condition

for the maximization problem at γ̂1 = γ̂2 = γ̃ shows that

E
p(β̂)

[
yx tanh(yγ̃Tx)

]
= Ep(β∗)

[
yx tanh(yγ̃Tx)

]
. (34)

We claim that the above equality implies that either β̂ = β∗ or β̂ = −β∗ holds. To see this, note that

∂

∂β
Ep(β)

[
yx tanh(yγ̃Tx)

]
= Ep(β)

[
h(yγ̃Tx)xxT

]
(35)

where h(z) := tanh(z) + z tanh′(z) is the previously defined odd and increasing function. As we showed earlier, the

assumption that γ̃TxxTβ > 0 holds with probability 1 implies that the above partial derivative is positive definite:

Ep(β)

[
h(yγ̃Tx)xxT

]
≻ 0. (36)

As a result either {β̂, β∗} or {β̂,−β∗} is a subset of a set with an invertible Ep(β)

[
yx tanh(yγ̃Tx)

]
mapping from β. As a

result, we have either β̂ = β∗ or β̂ = −β∗, which completes the proof.

F. Proof of Theorem 4

To show this result note that

L(β) := max
γ1,γ2

Ep(β)

[
log

(
exp(−yγ⊤1 x) + exp(yγ⊤1 x)

exp(−yγ⊤2 x) + exp(yγ⊤2 x)

)]
− Ep(β)

[
log

(
exp(−yγ⊤1 x) + exp(yγ⊤1 x)

exp(−yγ⊤2 x) + exp(yγ⊤2 x)

)]

− λ

2

(
‖γ1 − γ̃‖2 + ‖γ2 − γ̃‖2

)
,

L̂(β) := max
γ1,γ2

Ep̂

[
log

(
exp(−yγ⊤1 x) + exp(yγ⊤1 x)

exp(−yγ⊤2 x) + exp(yγ⊤2 x)

)]
− Ep(β)

[
log

(
exp(−yγ⊤1 x) + exp(yγ⊤1 x)

exp(−yγ⊤2 x) + exp(yγ⊤2 x)

)]

− λ

2

(
‖γ1 − γ̃‖2 + ‖γ2 − γ̃‖2

)
.

(37)

Therefore, assuming γ∗1 , γ
∗
2 are the optimal solutions to the maximization problem for the true distribution and minimization

variable β, and that γ̂∗1 , γ̂
∗
2 are the optimal solutions to the maximization problem for the empirical distribution and

minimization variable β we will have

L(β)− L̂(β) ≤ Ep

[
log

(
exp(−yγ∗⊤1 x) + exp(yγ∗⊤1 x)

exp(−yγ∗⊤2 x) + exp(yγ∗⊤2 x)

)]
− Ep̂

[
log

(
exp(−yγ∗⊤1 x) + exp(yγ∗⊤1 x)

exp(−yγ∗⊤2 x) + exp(yγ∗⊤2 x)

)]
(38)

and also

L(β)− L̂(β) ≥ Ep

[
log

(
exp(−yγ̂∗⊤1 x) + exp(yγ∗⊤1 x)

exp(−yγ̂∗⊤2 x) + exp(yγ∗⊤2 x)

)]
− Ep̂

[
log

(
exp(−yγ∗⊤1 x) + exp(yγ̂∗

⊤

1 x)

exp(−yγ∗⊤2 x) + exp(yγ̂∗
⊤

2 x)

)]
. (39)

Also, we have the following bound hold for the norm of the optimal maximization variables:

max
{
‖γ∗1 − γ̃‖, ‖γ∗2 − γ̃‖, ‖γ̂∗1 − γ̃‖, ‖γ̂∗2 − γ̃‖

}
≤ C2η + σC

λ
(40)

To establish a generalization bound on |L(β)− L̂(β)|, we bound the following concentration error for every norm-bounded

‖γ1 − γ̃‖, ‖γ2 − γ̃‖ ≤ C2η+σC
λ

:

Ep̂

[
log
(exp(−yγ⊤1 x) + exp(yγ⊤1 x)

exp(−yγ⊤2 x) + exp(yγ⊤2 x)

)]
− Ep

[
log
(exp(−yγ⊤1 x) + exp(yγ⊤1 x)

exp(−yγ⊤2 x) + exp(yγ⊤2 x)

)]
.
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We claim that log
(
(exp(−yγ⊤x) + exp(−yγ⊤x)

)
− E[log

(
(exp(−yγ⊤x) + exp(−yγ⊤x)

)
] is a sub-Gaussian random

variable with degree C2η2(C2η2 + σ2). This is because

P

(
log(

exp(−yγ⊤x) + exp(−yγ⊤x)
2

) ≥ v

)
≤ P

(
|yγ⊤x| ≥ v

)

≤ P

(
|y| ≥ v

ηC

)

≤ 2 exp
(
− v2

C2η2(C2η2 + σ2)

)
.

The above holds because y is the sum of two independent sub-Gaussian variables, i.e., the bounded βTx and Gaussian ǫ.

Therefore, the claim holds and covering all feasible norm-bounded γ1, γ2 vectors with O((C
2η+σC
λ

)d) points, we will have

the following bound hold with probability at least 1− δ for every norm-bounded ‖β‖2 ≤ η:

|L(β)− L̂(β)| ≤ O
(
√
C2η2(C2η2 + σ2)d log((C2η + σC)/λδ)

n

)

= O
(
√
C4η4σ2d log((C2η + σC)/λδ)

n

)

To establish the generalization bound for the objective’s gradient, note that the optimal solution to the maximization problem

will satisfy the following equations:

γ∗1 − γ̃ =
1

λ
Ep [yx tanh(γ∗1yx)]−

1

λ
Ep(β) [yx tanh(γ∗1yx)] ,

γ∗2 − γ̃ =
1

λ
Ep(β) [yx tanh(γ∗2yx)]−

1

λ
Ep [yx tanh(γ∗2yx)] ,

γ̂∗1 − γ̃ =
1

λ
Ep̂ [yx tanh(γ̂∗1yx)]−

1

λ
Ep(β) [yx tanh(γ̂∗1yx)] ,

γ̂∗2 − γ̃ =
1

λ
Ep(β) [yx tanh(γ̂∗2yx)]−

1

λ
Ep̂ [yx tanh(γ̂∗2yx)] .

Since both ‖x‖ ≤ C, | tanh(γT yx)| ≤ 1 are bounded, we have the following tail bound for yx tanh(γT yx):

P
(
|yx tanh(γT yx)| > v

)
≤ P

(
|y| > v

C

)
≤ exp(− v2

C2(η2C2 + σ2)
). (41)

Note that the above holds because y is the sum of two independent sub-Gaussian random variables βTx and ǫ. As

a result, yx tanh(γT yx) is a sub-Gaussian random variable with degree C2(η2C2 + σ2). Therefore, for the function

g(γ) = γ − 1
λ
Ep(β) [yx tanh(γyx)] whose Jacobian is Cη

λ
-close to identity, using a covering for all the potential norm-

bounded solution of γ∗’s we have the following hold with probability at least δ:

‖g(γ̂∗1 )− g(γ∗1 )‖ ≤ O
(
√
dC2(η2C2 + σ2) log((C2η + σC)/λδ)

n

)

‖g(γ̂∗2 )− g(γ∗2 )‖ ≤ O
(
√
dC2(η2C2 + σ2) log((C2η + σC)/λδ)

n

)

which implies that

‖γ̂∗2 − γ∗2‖ ≤ O
(
√
dC2(η2C2 + σ2) log((C2η + σC)/λδ)

(1− Cη/λ)2n

))

‖γ̂∗2 − γ∗2‖ ≤ O
(
√
dC2(η2C2 + σ2) log((C2η + σC)/λδ)

(1− Cη/λ)2n

)
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Furthermore, according to the Danskin’s theorem we have

∇L(β) = −∇βEp(β)

[
log

(
exp(−yγ∗⊤1 x) + exp(yγ∗⊤1 x)

exp(−yγ∗⊤2 x) + exp(yγ∗⊤2 x)

)]

= Ep(β)

[
tanh(yγ∗⊤2 x)xx

T γ∗2

]
− Ep(β)

[
tanh(yγ∗⊤1 x)xx

T γ∗1

]
,

∇L̂(β) = −∇βEp(β)

[
log

(
exp(−yγ̂∗⊤1 x) + exp(yγ̂∗

⊤

1 x)

exp(−yγ̂∗⊤2 x) + exp(yγ̂∗
⊤

2 x)

)]

= Ep(β)

[
tanh(yγ̂∗

⊤

2 x)xx
T γ̂∗2

]
− Ep(β)

[
tanh(yγ̂∗

⊤

1 x)xx
T γ∗1

]
,

Combining the above two consequences and noting that h(z) = z tanh(z) is a 1.2-Lipschiz function show that the following

will hold with probability at least 1− δ for every feasible β

‖∇L(β)−∇L̂(β)‖ ≤ O
(
√
dC10η2(η2C2 + σ2) log((C2η + σC)/λδ)

(1− Cη/λ)2n

)
= O

(
√

d log(1/λδ)

(1− Cη/λ)2n

)
. (42)

Therefore, the proof is complete.

G. The Expectation Maximization Algorithm for Mixed Linear Regression

EM seeks to find the MLE estimate, i.e., the maximizer of the likelihood function. Because the likelihood function can be

computationally expensive to maximize directly, the EM algorithm instead maximizes a lower bound at each step. For an

EM tutorial, see Bilmes et al. (1998). For an adaptation to the MLR problem, see Balakrishnan et al. (2017) and references

therein.

In our setup, the problem data are (yi, xi)
N
i=1, the latent variable is Z, and the parameters to be estimated are β and σ2

(recall the class of distributions in (4)). Denote the current parameter estimates by β and σ2 and the next iterates (to be

estimated) by β̃, σ̃2. Then the function of interest is

Q(β̃, σ̃2 | β, σ2) =
1

N

N∑

i=1

Pβ,σ2 (Z = 1 | X = xi, Y = yi) log fβ̃,σ̃2(Z = 1, X = xi, Y = yi)

+ Pβ,σ2 (Z = 2 | X = xi, Y = yi) log fβ̃,σ̃2(Z = 2, X = xi, Y = yi), (43)

where fβ,σ2 is the likelihood function of Z,X, Y , parameterized by β, σ2. We can simplify (43) for the symmetric

2-component MLR case explored in this work. First, define the weight function w(xi, yi) as

wβ,σ2(x, y) = Pβ,σ2 (Z = 1 | X = xi, Y = yi) =
exp( −1

2σ2 (y − β⊤x)2)

exp( −1
2σ2 (y − β⊤x)2) + exp( −1

2σ2 (y + β⊤x)2)
. (44)

Then, the function Q(β̃, σ̃2 | β, σ2) can be simplified as

Q(β̃, σ̃2 | β, σ2) = −1

2
log σ̃2 − 1

2σ̃2N

N∑

i=1

wβ,σ2(xi, yi)(y − β̃⊤x)2 + (1− wβ,σ2(xi, yi))(y + β̃⊤x)2. (45)

Note that all parameters inside the weight function are fixed over a maximization. When the noise variance σ2 is known,

there is a closed form solution for the maximizer of (45):

β̃ = Σ−1
X

(
1

N

N∑

i=1

(2wβ(xi, yi)− 1)yixi

)
,

σ̃2 =

(
1

N

N∑

i=1

wβ,σ2(xi, yi)(y − β̃⊤x)2 + (1− wβ,σ2(xi, yi))(y + β̃⊤x)2

)−1

Recall that we assume that px is known, so the covariance of X , ΣX is known. In practice, we can estimate ΣX when the

number of samples N is high in the centralized setting. In the distributed setting, we must maximize (45) iteratively (e.g.,

with gradient ascent). This procedure is summarized in Algorithms 3 and 4.
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Algorithm 3 EM

Input: (xi, yi)i∈[n], β
(0), σ2(0).

for t = 0 to T − 1 do

Compute β(t+1), σ2(t+1)
= argmaxβ,σ2 Q(β, σ2 | β(t), σ2(t))

end for

Algorithm 4 F-EM

Input: (xi,m, yi,m)m∈[M ], i∈[N ], β
(0), σ2(0), step size α.

for t = 0 to T − 1 do

β′ = β(t), σ2′ = σ2(t)

for i = 1 to 50 do

Broadcast β(t), σ2(t) to all agents

for each agent m = 1 to M do

β
(t+1)
m = β(t) + α∇βQm(β, σ2 | β′, σ2′)

σ2(t+1)
m = σ2(t) + α∇σ2Qm(β, σ2 | β′, σ2′)

Send β
(t+1)
m , σ2(t+1)

m to server

end for

Collect β
(t+1)
m , σ2(t+1)

m from all agents m ∈ [M ]

β(t) = 1
M

∑M
m=1 β

(t+1)
m

σ2(t) = 1
M

∑M
m=1 σ

2(t+1)
m

if ‖ 1
M

∑M
m=1 ∇βQm(β, σ2 | β′, σ2′)‖ ≤ ν then

break

end if

end for

end for

G.1. Gradient Expectation Maximization Algorithm (GEM)

Instead of solving the maximization problem entirely at each iteration, GEM takes one gradient ascent step on (45). The

gradients are

∇β̃Q(β̃, σ̃2 | β, σ2) =
1

σ̃2N

N∑

i=1

(
wβ,σ2(xi, yi)(y − β̃⊤x) + (wβ,σ2(xi, yi)− 1)(y + β̃⊤x)

)
x,

∇
σ̃2Q(β̃, σ̃2 | β, σ2) =

1

2σ̃4N

N∑

i=1

wβ,σ2(xi, yi)(y − β̃⊤x)2 + (1− wβ,σ2(xi, yi))(y + β̃⊤x)2 − 1

2σ̃2

This procedure is outlined in Algorithm 5, and the federated extension in Algorithm 6

With an appropriate choice of the stepsize α, this procedure is an ascent algorithm, i.e.,

Q(β(t+1), σ2(t+1) | β(t), σ2(t)) ≥ Q(β(t), σ2(t) | β(t), σ2(t)). (46)

Furthermore, we can incorporate the constraint that σ2 > 0 via a projection after the gradient iteration.

H. Numerical Experiments

All code is included in the supplementary materials. This section provides additional details regarding the implementation.

Estimating the Noise Variance in WMLR Recall that we evaluate the negative log likelihood of the estimated regressor.

Since WMLR does not estimate σ2 explicitly (unlike EM, GEM), we must estimate this from the last iterate β(T ) = β̂. We
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Algorithm 5 Gradient EM

Input: (xi, yi)i∈[n], β
(0), σ2(0), step size α.

for t = 0 to T − 1 do

β(t+1) = β(t+1) + α∇βQ(β, σ2 | β(t), σ2(t))

σ2(t+1)
= σ2(t) + α∇σ2Q(β, σ2 | β(t), σ2(t))

end for

Algorithm 6 F-GEM

Input: (xi,m, yi,m)m∈[M ], i∈[N ], β
(0), σ2(0), step size α.

for t = 0 to T − 1 do

Broadcast β(t), σ2(t) to all agents

for each agent m = 1 to M do

β
(t+1)
m = β(t) + α∇βQm(β, σ2 | β(t), σ2(t))

σ2(t+1)
m = σ2(t) + α∇σ2Qm(β, σ2 | β(t), σ2(t))

Send β
(t+1)
m , σ2(t+1)

m to server

end for

Collect β
(t+1)
m , σ2(t+1)

m from all agents m ∈ [M ]

β(t) = 1
M

∑M
m=1 β

(t+1)
m

σ2(t) = 1
M

∑M
m=1 σ

2(t+1)
m

end for

can estimate the noise variance by empirically computing

σ̂2 = Eǫ2 = Ey2 − ‖β̂‖2. (47)

This estimate is used to compute the negative log likelihood for the WMLR algorithm’s final iterate.

Motivation for Iteration Count Comparison Iteration seems to be (roughly) a good comparison. Gradients of the EM

function (45) have computational complexity O(Nd), as the dot product is the dominant term in each of the N summands.

Similarly, the gradient of ψ with reqspect to γ1 and γ2 have computational complexity O(Nd) since the terms have the form

tanh(yγTi x)yx (assuming that tanh can be computed in constant time). The gradient with respect to β is a bit trickier, since

it is a parameter of a Gaussian distribution from which we generate samples. However, forward-mode AD has complexity

that is bounded by a constant factor of the complexity of the function being differentiated (Margossian, 2019).

Hyperparameter Tuning GEM has a hyperparameter α that controls the gradient ascent step size (see Algorithm 5). In

the centralized experiments, for each SNR, we choose the hyperparameter from 10 points logarithmically spaced between

1e-4 and 10 that gives the smallest negative log likelihood. In the federated experiments, we choose the hyperparameter

from 20 points logarithmically spaced between 1e-4 and 10 that results in the fastest convergence.

WMLR has three hyperparameters: regularization term λ, maximization step size αmax, and minimization step size αmin.

We find the heuristic αmax = 1
2λ and αmin = αmax/10, inspired by Theorem 2, works reasonably well so we only search

over λ. In the centralized experiments, for each SNR, we choose the λ from 10 points logarithmically spaced between

1e-1 and 2 that gives the smallest negative log likelihood. In the federated experiments, we choose the λ from 20 points

logarithmically spaced between 1e-1 and 2 that results in the fastest convergence. Runs with different hyperparameters are

compared in Figure 2. Values chosen are in Table 3.

Iterations until Convergence Let e(T ) denote the relative ℓ2 error at the final iterate. We say that an algorithm has

converged at iterate t0 if ∀ k ∈ {t0, t0 + 1, ..., T}, we have that e(k) ≤ 1.05 · e(T ). In the federated experiments, we list the

minimum t0 for which this condition holds.

Confidence Intervals We reran the centralized experiments 50 times for WMLR and EM, randomly generating the

initialization and data each time. We list confidence intervals in Table 4. We observe that WMLR consistently outperforms
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Table 3. Hyperparameter choices for numerical experiments.

Federated Experiments, Final Iterate

Method SNR Hyperparameter (λ or α)

EM
1 N/A

10 N/A

GEM
1 α = 2.78

10 did not converge in 100 iterations

WMLR
1 λ = 0.38

10 λ = 0.53

F-EM

1 α = 0.08
5 did not converge

10 did not converge

20 did not converge

F-GEM

1 α = 2.98
5 α = 0.89

10 α = 0.48
20 α = 0.14

F-WMLR

1 λ = 0.35
5 λ = 0.41

10 λ = 0.41
20 λ = 0.41

EM as measured by relative ℓ2 error.

Table 4. Lower and upper quartiles over 50 runs.

Centralized Experiments: Confidence Intervals

SNR Method NLL Relative ℓ2 error

n = 100, 000
10 EM [2.114, 2.126] [3.68, 4.02]× 10−2

WMLR [2.057, 2.105] [4.97, 5.64]× 10−3

1 EM [1.657, 1.660] [8.60, 9.25]× 10−2

WMLR [1.656, 1.658] [7.02, 7.58]× 10−2

n = 10, 000
10 EM [2.729, 2.845] [1.21, 1.31]× 10−1

WMLR [2.061, 2.223] [1.83, 1.99]× 10−2

1 EM [1.661, 1.671] [2.74, 3.05]× 10−1

WMLR [1.655, 1.666] [2.37, 2.53]× 10−1

Computing Setup All experiments were run on a MacBook Pro with a 2.3GhZ 8-Core Intel i9 processor and 32GB of

RAM. For each algorithm, running 100 iterations with 100k samples in the centralized case takes under 2min. Specifically,

EM and GEM take about 4 seconds, and WMLR takes about 75 seconds. We suspect that much of this difference may

come from implementation (e.g., we use automatic differntiation for WMLR, whereas we wrote an efficient, non-allocation

gradient function for GEM and we analytically compute the maximizer in EM). In the federated case, all methods took on

the order of 1-3min per 100 iterations.
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Figure 2. Convergence for different hyperparameter values.


